ANÁLISE DA VARIÂNCIA DA REGRESSÃO

Tamanho: px
Começar a partir da página:

Download "ANÁLISE DA VARIÂNCIA DA REGRESSÃO"

Transcrição

1 ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos níves podem ser assocados com pontos em uma escala numérca, tas como Temperatura, Pressão, Tempo, Doses (adubo, medcamento, etc.). FATOR QUALITATIVO: é aquele cujos níves não podem ser colocados em ordem de magntude, tas como Varedade, Raça, Lnhagem, Materal. Não exste razão para ordenalos em qualquer ordem numérca partcular. Ambos os tpos de fatores são tratados dentcamente na análse de varânca dos dados de um ensao. O pesqusador está nteressado em determnar as dferenças, se alguma, entre os níves dos fatores. Se o fator é qualtatvo, como Varedade, não tem sentdo consderar a resposta para um nível ntermedáro do fator. Entretanto, com um fator quanttatvo, como Dose, o pesqusador está usualmente nteressado na ampltude de valores usados como níves desse fator. Partcularmente, na resposta de um nível ntermedáro do fator. Por exemplo, se o fator é Tempo, e os níves.0h,.0h e.0h são usados no ensao, o pesqusador pode está nteressado na resposta a.h. Então, o pesqusador está freqüentemente nteressado em desenvolver uma equação de nterpolação a partr dos dados. Exemplo: Um pesqusador está nteressado em determnar se varando o conteúdo de algodão em uma fbra sntétca, afeta a tensão de resstênca, e ele executou um ensao no DIA com cnco níves de algodão (porcentagens) e cnco repetções. Dados de Resstênca à Tensão (lb/pol ) Porcentagem Repetções De Algodão 4 Totas Médas ,8

2 , , , ,8 G76 µ ˆ, 04 Resstênca à tensão Ajuste quadrátco e cúbco y x x R 0.96 y x x x R Porcentagens de algodão Do exame desse gráfco, fca claro que a relação entre Resstênca à Tensão e porcentagem de algodão não é lnear. Como uma prmera tentatva pode-se ajustar uma equação quadrátca aos dados, dgamos ya o +a x+a x +e onde a 0, a, e a são parâmetros a serem estmados e e é o resíduo de regressão (tudo que não é explcado pela equação ajustada). O ajuste de mínmos quadrados forneceu a prmera equação. Esse ajuste parece não ser muto satsfatóro porque ele dramatcamente subestma a resposta em x0% de algodão e superestma a resposta em x% de algodão. Talvez, uma melhora possa ser obtda adconando um termo cúbco em x. O ajuste cúbco é mostrado no gráfco, na segunda equação (em azul). O modelo cúbco parece ser superor ao modelo quadrátco pos ele fornece um melhor ajuste em x e x0% de algodão.

3 Em geral, procura-se ajustar uma equação polnomal de menor ordem (modelos parcmonosos) que adequadamente descreva os dados. Neste exemplo, o modelo cúbco polnomal parece ajustar melhor que o quadrátco, e assm uma complexdade extra do modelo cúbco é justfcada. Seleconar a ordem do polnômo não é sempre fácl, entretanto, é relatvamente fácl superajustar, sto é, adconar alta ordem polnomal mas que não melhora o ajuste sgnfcatvamente, aumentando a complexdade do modelo e prejudcando a sua utldade como um predtor ou equação de nterpolação. POLINÔMIOS ORTOGONAIS Na stuação onde os níves dos fatores são gualmente espaçados, o ajuste de modelos polnomas pelo método de mínmos quadrados é grandemente smplfcado. O procedmento faz uso dos coefcentes para contrates ortogonas (v. Tabela X do apêndce de Montgomery(99) ou Gomes(000) ou Neter e Wasserman(974)). Em adção ao ajuste da equação polnomal de mínmos quadrados, obtém-se o efeto e Soma de quadrados: lnear, quadrátco, cúbco, quarta ordem etc. para o fator (Tratamento). Isto permte estmar a contrbução de cada termo para o polnômo a ser testado. É possível extrar o efeto polnomal até a ordem I- (gl do fator ou do tratamento) se exstem I níves do fator envolvdo no expermento. Exemplo: O processo é lustrado na tabela abaxo usando os dados de Algodão. Porcentagem de Algodão Totas de Coefcentes (c ) para contraste ortogonal(caso de níves) Tratamentos Lnear Quadrátco Cúbco Quarta ordem Efetos: I c T

4 I S.Q.: J I ct c (4) (0),6 ( ) (4) 4, ( 7) (0) 64,98 ( 09) (70),9 Para esses dados, o fator ndependente Porcentagem de Algodão, é gualmente espaçado nos cnco níves. As somas de quadrados para os efetos: Lnear, Quadrátco, Cúbco e Quarta Ordem do fator, formam uma partção ortogonal da Soma de Quadrados de Tratamentos e pode ser ncorporada na ANVA. Cada efeto tem um grau de lberdade (pos é um contraste) e pode ser testado comparando suas respectvas Soma de Quadrados ao Quadrado Médo do Resíduo. Análse da varânca para os dados de Algodão Fonte de Varação Soma de Graus de Quadrado F Quadrados Lberdade Médo Tratamentos 47,76 4 8,94 4,76* (Lnear) (,6),6 4,7 (Quadrátco) (4,) 4, 4,8** (Cúbco) (64,98) 64,98 8,06* (Quarta Ordem) (,9),9 4, Resíduo 6,0 0 8,06 Total 66, Do quadro da ANVA acma, pode-se ver que os efetos Quadrátco e Cúbco da % de Algodão são estatstcamente sgnfcantes quando comparados a F (;0; 0,0) 4,. Dessa forma, deve-se ajustar aos dados um polnômo do tercero grau, como y 0 a + a P (x) + a P (x) + a P (x) + ε onde P u (x) é a u-ésma ordem do polnômo ortogonal, o qual mplca que se exstem I I níves de x têm-se P u (x j)ps (x j) 0. Os cnco prmeros polnômos ortogonas são: P 0 (x) j 4

5 (x x) (x) λ d P x x P (x) λ d I x x x x I 7 P (x) λ d d 0 4 x x P4 (x) λ4 d x x d I (I + 4 )(I 60 9) onde d é a dstânca entre os níves de x, I é o número de níves e { λ } são constantes tas que os polnômos tenham valores nteros. Ver Tabela X no apêndce de Montgomery (99), onde é lstado os coefcentes dos polnômos ortogonas e os valores de λ, para I 0. Para os dados do exemplo, têm-se as estmatvas de mínmos quadrados dos parâmetros do modelo polnomal: yp (x) J[ P (x)] â 0,,...,I-, ou Assm, yp0 (x) J[ P0 (x)] y 76 () â 0 yp (x) J[ P (x)] 4 (0) â yp (x) J[ P (x)] (4) â yp (x) J[ P (x)] 7 (0) â 0,800,4,400,0400 a ˆ J c T c Caso se quera adconar ou retrar termos do modelo, não é necessáro recalcular os parâmetros que já estão no modelo devdo a propredade de ortogonaldade dos polnômos.

6 ortogonal fca: Desde que I níves de x e a dstânca entre eles é d, o modelo polnomal x ŷ,04 + 0,8() x,4() x,4(/6) x () 7 0 onde λ λ e λ / 6 é obtdo da Tabela X. Esta equação pode ser smplfcada para ŷ 6,6 9,0x + 0,484x 0,00786x a qual é exatamente a mesma equação encontrada anterormente usando métodos de regressão geral pelo Excel ou SAS, consderando as aproxmações computaconas. CHECANDO A ADEQUACIDADE DO MODELO DE REGRESSÃO Análse de resíduo Como no ajuste de qualquer modelo lnear, análse dos resíduos de um modelo de regressão é necessáro para determnar a adequacdade do ajuste de mínmos quadrados. É útl examnar um gráfco de probabldade normal um gráfco de resíduo versus valores ajustados, e um gráfco de resíduos versus cada varável regressora. Em adção, se exstem varáves não ncluídas no modelo que são de potencal nteresse, então os resíduos devem ser representados contra esses fatores omtdos. Qualquer estrutura na qual uma representação ndcara que o modelo podera ser melhorado pela adção daquele fator. Um gráfco de probabldade normal dos resíduos do exemplo do algodão ajustado para os efetos Lnear, Quadrátco Cúbco e de Quarta ordem é mostrado a segur. Esse gráfco não ndca qualquer séra volação da suposção de normaldade para o resíduo da análse. R 4 R E S 0 T E - N - 0 N_RRESTE 6

7 Os resíduos ê são representados versus os valores ajustados ŷ. Esse gráfco não revela qualquer problema, tal que concluímos que a análse da varânca da regressão com os efetos lnear, quadrátco, cúbco e de quarta ordem é um ajuste adequado. R R E S T E N PRESTEN TESTE PARA FALTA DE AJUSTE DO MODELO DE REGRESSÃO Modelos de regressão são frequentemente ajustados aos dados quando a relação verdadera é conhecda. Naturalmente, gostaríamos de saber se a ordem do modelo assumdo por tentatva está correto. O pergo de usar um modelo de regressão é quando ele é uma aproxmação pobre da verdadera relação funconal, como mostrado na fgura a segur. y x Obvamente, um modelo polnomal de grau dos ou maor deve ser usado para essa stuação hpotétca. O resultado é que um modelo muto pobre fo obtdo para ajustar os dados. Um teste para qualdade do ajuste de um modelo de regressão será aquele que testa a hpóteses: H o : O modelo adequadamente ajusta os dados; H : O modelo não ajusta os dados. O teste envolve a partção da Soma de Quadrados do Resíduo nos seguntes dos componentes: SQ RESÍDUO SQ PURO +SQ FALTA DE AJUSTE, 7

8 em que SQ PURO é a soma de quadrados atrbuída ao erro expermental puro, e SQ FALTA DE AJUSTE é a soma de quadrados atrbuída à falta do ajuste do modelo. Para calcular a SQ PURO é precso observações sobre y para no mínmo um nível de x. Suponha que temos n observações tas que: y, y,..., y J observações em x y, y,..., y J observações em x : y I, y I,..., y IJ observações em x I Vemos que exste I dstntos níves de x. A contrbução para a Soma de Quadrados do Erro Puro no nível x, por exemplo, é J ( y j y ) j A Soma de Quadrados Total para o Erro Puro será obtdo somando a Equação anteror sobre todos os níves de x. como: Exstem n e I (J SQ PURO J I ( yj y ) j ) n I graus de lberdade assocados com a Soma de Quadrados do Erro Puro, em que nj +J +...+J I. A Soma de Quadrados para Falta de Ajuste é smplesmente SQ FALTA DE AJUSTE SQ RESÍDUO - SQ PURO, com n p - n e I - p graus de lberdade, em que p é o número de parâmetros no modelo que está sendo ajustado. O teste estatístco para falta de ajuste é então, SQFALTA DE AJUSTE /(I p) QM F o SQ /(n I) QM ERRO PURO FALTA DE AJUSTE ERRO PURO E rejetamos a hpótese de adequacdade do modelo se F o >F,I-p,n-I. Este procedmento teste pode ser faclmente ntroduzdo dentro da análse de varânca conduzda para a regressão. Se a hpótese nula da adequacdade do modelo é rejetada, então o modelo deve ser abandonado e tentatvas devem ser fetas para encontrar um modelo mas aproprado. Se H o não é rejetada, então não exste razão aparente para 8

9 duvdar da adequacdade do modelo, e QM ERRO PURO e QM FALTA DE AJUSTE são combnados para estmar σ. EXEMPLO: no caso dos dados de Algodão, temos:!"#$%&''( #)#*+%'&(,(- "(( ) ('-...!"#$%&''( +#/$#)%&''((,(, #)#*+%(&-,-((-, "(( ) ('-...!"#$%&''( +#/$#)%&''((,(, 0+ 0%&-,, #)#*+%&''-(-(' "(( ) ('- data ALGODAO; nput PORCENT RESTEN; LINEARPORCENT; QUADRATPORCENT**; CUBICOPORCENT**; QUARTAPORCENT**4; cards;

10 ; proc glm dataalgodao; class PORCENT; model RESTENPORCENT/ss; ttle 'ANVA DO DIA'; proc glm dataalgodao; model RESTENLINEAR QUADRAT CUBICO QUARTA/ss; ttle 'ANVA DA REGRESSÂO POR POLINÔMIOS ORTOGONAIS'; proc reg dataalgodao; model RESTENLINEAR QUADRAT CUBICO; ttle 'AJUSTE DO MODELO POLINOMIAL CÚBICO'; run; proc gplot dataalgodao; plot RESTEN*PORCENT; symbol vdot rc cblue; run; 40)")"#$##)#/"#*+)"4 #/# 6 $0"!)$")"!!"#$.$0"!) +#/$#).$0"!)44( 0+ 0.$0"!)44' +#$)#.$0"!)44 #)#*+.$0"!) 7 - (( ( (( (, (, ( (, (, (- (- '- '( '(( '- '(' 0

11 ' ' ' ' ' 678.#/# 7 $0"!) $")"!.$0"!)' 9#!:#// #9 678.#/# $")"!.!"#$+#/$#)0+ 0+#$)# 6.$".$$")"!6.$")"! 9#!:#/#$"$";$!< $)!# #/# $")"!.!"#$+#/$#)0+ 0 9#*+)"//"! # #/# 6$")"!4$0"!) >?..77.? 678.#/# 7 #)#*+ $")"!.!"#$#)#*+ 9)")"#$##)#/"#*+)"!"#$9 678.#/# 7 #)#*+ $")"!.!"#$+#/$#)#)#*+ 678.#/# 7 #)#*+ $")"!.!"#$+#/$#)0+ 0#)#*+ 09 O Coefcente de Determnação A quantdade R SQ REGRESSÃO SQ TOTAL É chamado de coefcente de determnação, e é frequentemente usado para julgar a adequacdade do modelo de regressão. Claramente 0<R. Frequentemente nos refermos

12 ao R como a proporção da varabldade nos dados explcada pelo modelo de regressão. Se a regressora x é uma varável aleatóra tal que x e y pode ser vsta como varáves aleatóras conjuntamente dstrbuídas, então R é exatamente a correlação smples entre y e x. Entretanto, se x não é uma varável aleatóra, como no caso de ensaos com níves quanttatvos para um fator, então o conceto de correlação entre y e x fca ndefndo. A estatístca R deve ser usada com cautela desde que é sempre possível fazer R gual a undade smplesmente adconando termos sufcentes ao modelo. Por exemplo, podemos obter um perfeto ajuste para n pontos de dados com um polnômo de grau (n- ). Também, R sempre aumentará se adconarmos uma varável ao modelo, porém sto não necessaramente sgnfca que o novo modelo é superor ao anteror. A menos que a Soma de quadrados do resíduo no novo modelo seja reduzda por uma quantdade gual ao Quadrado Médo do Resíduo, o novo modelo terá uma Soma de Quadrados do resíduo maor do que o modelo antgo por causa da perda de um grau de lberdade do resíduo. Assm, o novo modelo será realmente por do que o antgo. EXERCÍCIO: Consdere os dados de altura (cm) de plantas de alface (Lactuca satva L.) em relação aos níves de adubação orgânca (kg de esterco de bo/,6m, ) Slva e Ferera 98, adaptado de Ferera 99. Tratamentos 4 6 Totas de Tratamentos 0 8,07,69 6,6 7,68 8,4 8,07,0 0 8,7,96 6,8 7,6 7,60 0,84 4,0 0,80 8,00 9,80 9,8 8,6 0, 9,90 40,7,7 9,,0 0,60, 70, Pede-se: a) Fazer a análse da varânca da regressão por polnômos ortogonas. b) Obter a equação polnomal que melhor se ajuste aos dados. c) Faça o teste para falta de ajuste. d) Calcule o coefcente de determnação R, e nterprete-o.

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de Unversdade Federal de Vçosa Departamento de Estatístca Dscplna: EST 63 Métodos Estatístcos II Apostla Introdução à Metodologa de Superfíces de Resposta Paulo Roberto Cecon Anderson Rodrgo da Slva Vçosa,

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO ESTATISTICA EXPERIMENTAL: Com aplcaçoes em R Medcna

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres Análse de Varânca Rejane Sobrno Pnhero Tana Gullén de Torres Análse de Varânca Introdução Modelos de análse de varânca consttuem uma classe de modelos que relaconam uma varável resposta contínua com varáves

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

INTRODUÇÃO... 4 CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO

INTRODUÇÃO... 4 CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO 1 ÍNDICE INTRODUÇÃO... 4 CAPÍTULO 1... 6 INTRODUÇÃO... 6 Tpos de erros... 8 Erros aleatóros e sstemátcos em análses ttrmétrcas... 10 Manpulando erros sstemátcos... 1 CAPÍTULO... 16 ERROS EM ANÁLISES CLÁSSICAS...

Leia mais

1. Caracterização de séries com

1. Caracterização de séries com 1. Caracterzação de séres com sazonaldade Como dscutdo na Aula 1, sazonaldade é um padrão que se repete anualmente. A sazonaldade é determnístca quando o padrão de repetção anual é exato, ou estocástca,

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada 266 267 266 26 22 255 266 26 272 22 260 272 25 262 23 25 266 270 274 22 2 270 20

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

ANÁLISE DE VARIÂNCIA (ANOVA) CLÁSSICA: TÉCNICA ÚTIL, PORÉM RESTRITIVA!

ANÁLISE DE VARIÂNCIA (ANOVA) CLÁSSICA: TÉCNICA ÚTIL, PORÉM RESTRITIVA! ANÁLSE DE VARÂNCA (ANOVA) CLÁSSCA: TÉCNCA ÚTL, PORÉM RESTRTVA! Questões assocadas à verfcação de suas suposções: (adtvdade, ndependênca, homocedastcdade e normaldade) k..d.~n(0, ) quadrados mínmos ordnáros

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Resumo 7-22, Janete Pereira Amador 1, Sidinei José Lopes 2, João Eduardo Pereira 1, Adriano Mendonça Souza 1, Marcos Toebe 3

Resumo 7-22, Janete Pereira Amador 1, Sidinei José Lopes 2, João Eduardo Pereira 1, Adriano Mendonça Souza 1, Marcos Toebe 3 7-, 011 Análse das pressuposções e adequação dos resíduos em modelo de regressão lnear para valores ndvduas, ponderados e não ponderados, utlzando pro- cedmentos do SAS Janete Perera Amador 1, Sdne José

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

Aplicação de um modelo simulado na formação de fábricas

Aplicação de um modelo simulado na formação de fábricas Aplcação de um modelo smulado na formação de fábrcas Márca Gonçalves Pzaa (UFOP) pzaa@ldapalm.com.br Rubson Rocha (UFSC) rubsonrocha@eps.ufsc.br Resumo O objetvo deste estudo é determnar a necessdade de

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11 EERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Lnear 4. EERCÍCIOS PARA RESOLVER NAS AULAS 4.1. O gestor de marketng duma grande cadea de supermercados quer determnar

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências.

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências. 1 Fltros são dspostvos seletvos em freqüênca usados para lmtar o espectro de um snal a um determnado ntervalo de freqüêncas. A resposta em freqüênca de um fltro é caracterzada por uma faxa de passagem

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

CARGA E DESCARGA DE UM CAPACITOR

CARGA E DESCARGA DE UM CAPACITOR EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais