IV - Descrição e Apresentação dos Dados. Prof. Herondino

Tamanho: px
Começar a partir da página:

Download "IV - Descrição e Apresentação dos Dados. Prof. Herondino"

Transcrição

1 IV - Descrção e Apresentação dos Dados Prof. Herondno

2 Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser consderados os "dados brutos" do próxmo. (Wkpéda) Dados Brutos Em nformátca dados brutos (raw data) desgnam os dados/valores recolhdos e estocados tal qual foram adqurdos, sem terem sofrdo o menor tratamento (Wkpéda)

3 Dados Brutos Suponhamos o seguntes dados Brutos como sendo a dade de alunos de uma turma de nformátca

4 Frequênca A frequênca de uma observação é o número de repetções dessa observação no conjunto de observações, ou anda, é o número de vezes que conjuntos de dados aparecem em uma população.

5 Tpos de Frequêncas Frequênca smples ou absoluta (f ) - são os valores que representam o número de dados de cada classe. Frequênca relatva(fr ) - são os valores das razões entre as frequêncas smples e a frequênca total. Frequênca acumulada(fa ) é o total das frequêncas de todos os valores nferores ao lmte superor do ntervalo de uma dada classe. Frequênca acumulada relatva(fa r ) é a frequênca acumulada da classe, dvdda pela frequênca total da dstrbução.

6 Dstrbução de Frequênca Smples ( ) f Dados ou varável (Idade) x f Frequênca (nº de Alunos)

7 Frequêncas Relatvas A frequênca relatva é o valor da frequênca absoluta dvddo pelo número total de observações. Varável (dade) x frequênca absoluta (Nº de alunos) f 11 /6 = 0,0769 frequênca relatva f r 1 5 5/6 = 0, /6 = 0, /6 = 0, /6 = 0, /6 = 0, /6 = 0,0385 N f TOTAL = 6 1,0000

8 Frequênca Acumulada Varável x freqüênca absoluta f freqüênca relatva fr frequênca absoluta acumulada f a frequênca relatva acumulada fra 11 /6 = 0,0769 /6 = 0, /6 = 0, /6 = 0, /6 = 0, /6 = 0, /6 = 0,69 0 0/6 = 0, /6 = 0, /6 = 0, /6 = 0, /6 = 0, /6 = 0, /6 = 1,0000 f fr TOTAL = 6 =1,0000

9 Regras de arredondamento na Numeração Decmal Norma ABNT NBR ) Quando o algarsmo medatamente segunte ao últmo algarsmo a ser conservado for nferor a 5, o últmo algarsmo a ser conservado permanecerá sem modfcação Exemplo: 1,333 3 arredondado à prmera decmal tornar-se-á 1,3

10 Regras de arredondamento na Numeração Decmal ) Quando o algarsmo medatamente segunte ao últmo algarsmo a ser conservado for superor a 5, ou, sendo 5, for segudo de no mínmo um algarsmo dferente de zero, o últmo algarsmo a ser conservado deverá ser aumentado de uma undade Exemplo 1,666 6 arredondado à prmera decmal tornar-se-á: 1,7. 4,850 5 arredondados à prmera decmal tornar-se-ão : 4,9.

11 Regras de arredondamento na Numeração Decmal 3) Quando o algarsmo medatamente segunte ao últmo algarsmo a ser conservado for 5 segudo de zeros, dever-se-á arredondar o algarsmo a ser conservado para o algarsmo par mas próxmo. Consequentemente, o últmo a ser retrado, se for ímpar, aumentará uma undade. Exemplo: 4,550 0 arredondados à prmera decmal tornar-se-ão: 4,6.

12 Regras de arredondamento na Numeração Decmal 4) Quando o algarsmo medatamente segunte ao últmo a ser conservado for 5 segudo de zeros, se for par o algarsmo a ser conservado, ele permanecerá sem modfcação. Exemplo: 4,850 0 arredondados à prmera decmal tornar-se-ão: 4,8.

13 Atvdade - III 1. Verfcar a altura em centímetro de cada aluno da turma e construr uma sequênca de Dados Brutos;. A partr dos Dados Brutos obtdos, construr a dstrbução de frequênca absoluta smples, a frequênca relatva, frequênca acumulada e frequênca relatva acumulada. Para o arredondamento utlze a regra da ABNT 5891.

14 Séres Estatístcas Tabela é um quadro que resume um conjunto de observações. Elementos da Tabela: Título o que? Quando? Onde? Cabeçalho parte superor da tabela que especfca o conteúdo Corpo lnha e colunas que contém as nformações Rodapé elementos complementares

15 Séres Estatístcas

16 Séres Hstórcas Descrevem os valores da varável, em determnado local, dscrmnado segundo ntervalos de tempo varáves.

17 Sére Geográfcas ou espacas Descrevem os valores da varável, em determnado nstante, dscrmnado segundo regões.

18 Seres Específcas ou categórcas Descrevem os valores da varável, em determnado tempo e local, dscrmnados segundo especfcações ou categoras. Exemplo:

19 Séres Conjugadas Quando apresenta em uma únca tabela, a varação de valores de mas de uma varável.

20 Apresentação dos dados O gráfco estatístco é uma forma de apresentação dos dados estatístcos, cujo objetvo é o de produzr, o nvestgador ou no públco em geral, uma mpressão mas rápda e vva do fenômeno em estudo, já que os gráfcos falam mas rápdo à compressão que as séres (Crespo, 00) Quando se dspõe de um grande número de observações, torna-se extremamente dfícl a letura de valores colocados em tabela.

21 Colunas ou em barras É a representação de uma sére por meo de retângulos, dspostos vertcalmente (em colunas) ou horzontalmente (em barras)

22 Hstograma Um hstograma é uma representação gráfca de uma únca varável que representa a frequênca de ocorrêncas (valores dos dados) dentro de categoras de dados. O hstograma tanto pode ser representado para as frequêncas absolutas como para as frequêncas relatvas. Nota nº de Alunos Total

23 Polígono de Frequênca O Polígono de frequêncas é obtdo lgando-se os pontos médos dos topos dos retângulos de um hstograma

24 Sobrepondo

25 Frequênca Acumulada Hstograma de frequênca acumulada (ou ogva) hstograma de frequênca acumulada (ou ogva) é a representação gráfca do comportamento da frequênca acumulada. 60 Dstrbução por Frequênca Acumulada

26 Gráfco de Setores É desgnado por um círculo, onde cada classe é representada por um setor crcular, cujo ângulo é proporconal ao tamanho da amostra. 0% Gráfco de Setores % 18% 4% 5% 7% 16% 9% 11% 15% 13%

27 Dstrbução de Frequênca agrupadas em Classe Para a determnação de classes não exste uma regra pré estabelecda, sendo necessáro um pouco de tentatva e erro para a solução mas adequada. 1. Defnr o número de classes Se n representa o número de observações (na amostra ou na população, conforme for o caso) o número aproxmado de classes pode ser calculado por Número de Classes = n arredondando os resultados.

28 Exemplo Altura em cm da Turma CA 013 Nº de Classes = 30 5,47 Fazendo arredondamento para 6 Fonte: Marques, 013

29 Dstrbução de Frequênca agrupadas em Classe. Calcular a ampltude das classes Essa será obtda conhecendo-se o número de classes e ampltude total dos dados. A ampltude total dos dados é o resultado da subtração valor máxmo - valor mínmo da sére de dados AmpltudeTotal = Valor Max- Valor Mn Ampltudede classe = AmpltudeTotal número de classes

30 Exemplo Rol Fonte: Vaz,013 Ampltude Total = Ampltude de classe =

31 Dstrbução de Frequênca agrupadas em Classe 3. Dstrbu a frequênca dos dados agrupados por classe O lmte superor de cada classe é aberto (e consequentemente, o lmte nferor de cada classe é fechado), ou seja, cada ntervalo de classe não nclu o valor de seu lmte superor, com exceção da últma classe. (Nº de Ordem) (Altura em cm) Total Lmte Inferor x Lmte Superor ( Nº de alunos) f

32 (Nº de Ordem) Dstrbução de Frequênca agrupadas em Classe (Altura em cm) x ( Nº de alunos) f Total f 30 Fonte: Tllmann, 013

33 Meddas de posção ou tendênca central 1. Méda Artmétca X x1 x... x n n 1 n n x

34 Exemplo: A nota fnal (NF) do curso será dada pela fórmula: Em que: AP Avalação Parcal AF Avalação Fnal NF AP AF AT1 AT... ATn AP n Sendo AP (Avalação Parcal) a méda artmétca das atvdades propostas (AT1, AT,...,ATn) A cada AT será atrbuído valores de 1 a 5.

35 Exemplo: X , X n x n

36 Meddas de posção ou tendênca central Propredades da méda artmétca 1. A méda é um valor típco, ou seja, ela é o centro de gravdade da dstrbução, um ponto de equlíbro. Seu valor pode ser substtuído pelo valor de cada tem na sére de dados sem mudar o total. Smbolcamente temos: x x 1 X n n. A soma dos desvos das observações em relação a méda é gual a zero. ( X ) 0 x 3. A soma dos desvos elevados ao quadrado das observações em relação a méda é menor que qualquer soma de quadrados de desvos em relação a qualquer outro número. Em outras palavras, ( X ) é um mínmo. x n

37 Exemplo x X x X ( x X ) ( X ) 0 x ( x X ) X n x n 1 n x

38 . Méda Ponderada Meddas de posção ou tendênca central n n n n P p p x p p p p x p x p x X Onde é o peso da observação p

39 Exemplo A unversdade defnu que as avalações parcas teram peso de 30% e a prova fnal tera peso de 40% no cálculo dos rendmentos dos alunos. Veja o quadro abaxo e calcule a méda do aluno. Ap nota peso Ap 1 8,0 0,30 Ap Fnal 9,0 9,6 0,30 0,40 X P 80,3 90,3 9,6 0,4 0,3 0,3 0,4

40 Méda artmétca Ponderada em dados agrupados (Nº de Ordem) (Altura em cm) x ( Nº de alunos) f ( Ponto médo) x m xm f n x 1 X m f f Total f 30 n 1 x f m.

41 Méda artmétca Ponderada em dados agrupados x m L nf L sup (Nº de Ordem) (Altura em cm) ( Nº de alunos) Total x f f 30 ( Ponto médo) x m xm f n x f m. n x 1 X X m f f 164

42 Medana (Md) A medana é o valor do tem central da sére quando estes são arranjados em ordem de magntude Exemplo: a), 4, 5, 7, 8 Md=5 b), 5, 6, 9, 10, 13, 15 Md=9 c) 3, 5,8,10, 15,1 Md=9 Para o calculo da medana, têm-se: Se a sére for ímpar sua posção será dada por posção n 1 ou se for Par a sua posção é dada por posção n n 1

43 Medana (Md) Cálculo da medana Se sére ímpar posção n 1 Ex: Calcule a medana da sére { 1, 3, 0, 0,, 4, 1,, 5 } 9 1 posção 5ª 1ª ª 3ª 4ª 5ª 6ª 7ª 8ª 9ª Md=

44 Medana (Md) Cálculo da medana Se a sequênca for par Ex: Calcule a medana da sére { 1, 3, 0, 0,, 4, 1, 3, 5, 6 } 10 posção n posção ª 6ª n 1 1ª ª 3ª 4ª 5ª 6ª 7ª 8ª 9ª 10ª Md 3,5

45 Dados Agrupados Sem ntervalos de Classe Identfcar a frequênca Acumulada medatamente superor à metade da soma das frequênca, ou seja, f 30 15

46 Dados Agrupados Se exstr uma frequênca acumulada (f a ), tal que: f a f a medana será dada por: Md x x 1 x f f a f 8 Veja no exemplo ao lado fa 4 Md 15, 5

47 Medana em dados Agrupados 1º Determnar as frequêncas acumuladas. º Calcular f 3º Encontrar a classe correspondente à frequênca acumulada medatamente superor à f - classe medana

48 f a f

49 Medana (Md) para valores agrupados f a 17 n ,5 9 Md , Md 6, Md 16,8 158 Md 164 x

50 Medana (Md) para valores agrupados Md Lnf Md ( n 1) / f Md f a c Lnf Md f a f Md c = lmte de classe nferor da classe da medana; = frequênca acumulada da classe medatamente anteror à classe da medana; = frequênca absoluta smples da classe da medana, = ampltude (tamanho) da classe da medana.

51 L nf 158 Md f a f Md Exemplo: c Md Md Md Md Md Md ( n 1) / f a Lnf Md c fmd (30 1) / , , ,87 16,87

52 Moda (Mo) É o valor que ocorre com maor frequênca em uma sére de valores. Exemplos: a){ 7, 8, 9, 10, 10, 10, 11, 1 } a moda é gual a 10. b){ 3, 5, 8, 10, 1 } não apresenta moda. A sére é amodal. c){, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 9 } apresenta duas modas: 4 e 7. A sére é bmodal.

53 Moda (Mo) Dados agrupados o Sem ntervalo de classe: é o valor da varável de maor frequênca. o Exemplo: Nota nº de Alunos Total 50

54 Moda (Mo) Dados agrupados o Com ntervalos de classe: A classe que apresenta a maor frequênca é denomnada classe modal. Nesta, é o valor domnante que está compreenddo entre os lmtes da classe modal. O cálculo da moda consste em tomar o ponto médo da classe modal (Moda Bruta). Mo ( L L ) sup nf (Nº de Ordem) Mo (Altura em cm) Total x 155 f

55 Moda (Mo) Classes agrupada Método pela fórmula de CZUBER: Mo d d 1 f f L nf f ant f post f Mo h L nf Mo Mo d f ant f post 1 d1 d h : lmte nferor da classe modal : frequênca anteror a classe modal : frequênca posteror a classe moda : frequênca da classe modal : ampltude da classe modal x Mo 58 4 (119) (118) f Mo Mo Mo 581,6 59,6

56 Interpretação Geométrca f Mo x

57 Atvdade IV 1. Procure exemplos de séres estatístcas em jornas e revstas de enfoque ambental e classfque essas séres;. Procure exemplos de gráfcos em jornas e revstas de enfoque ambental e classfque esses gráfcos 3. Um processo de medda no laboratóro fo avalada através da nserção aleatoramente de 7 amostras possundo uma concentração conhecda de η=8.0 mg/l para o fluxo normal de trabalho ao longo de um período de semanas. O resultado na ordem de observação foram 6.8, 7.8, 8.9, 5., 7.7, 9.6, 8.7, 6.7, 4.8, 8.0, 10.1, 8.5, 6.5, 9., 7.4, 6.3, 5.6, 7.3, 8.3, 7., 7.5, 6.1, 9.4, 5.3, 7.6, 8.1, e 7.9 mg/l. A partr dos valores observados, obter: a dstrbução de frequênca agrupada em classe, a frequênca relatva, frequênca acumulada e frequênca relatva acumulada. Para o arredondamento utlze a regra da ABNT 5891; Construa o seu hstograma, o polígono de frequênca, ogva e o gráfco de setores; A méda artmétca, a moda, a medana e localze essas meddas no hstograma.

58 Atvdade IV 4) Consderando os conjuntos de dados: a)3,5,,6,5,9,5,,8,6 b)0,9,7,,1,7,0,15,7 c)51,6; 48,7; 50,3; 49,5; 48,9 d)15, 18, 0, 13, 10, 16, 14 Calcule a méda, a medana e a moda. 5) Os dados de DBO coletados na tabela ao lado, são do baxo Ro Jar, realzada no período de novembro de 009 a novembro de 010. A partr desses dados construa: a) a sua dstrbução de frequênca agrupada em classe; b) O hstograma, a ogva e o gráfco em função do tempo; c) A meda, a medana e a moda. Mês DBO(mg/L) L 1 L L3 L4 nov 8,09 8, 8,0 8,11 dez 8,46 9,11 9,7 8,66 jan 6,75 5,96 6,41 6,4 fev 5,51 5,48 5,39 4,91 mar 4,96 5, 4,38 4,77 abr 6,37 6,4 5,74 5,9 ma 8,9 8,85 7,94 8,08 jul 7,87 7,94 7,75 7,85 ago 0,83 1,8 1,70 1,18 set 1,07 1,47 1,41 1,84 out 1,8 1,6 1,74,33 nov,53,58,44,31 Fonte: Olvera,013

59 Referênca BERTHOUEX, Paul Mac; BROWN, Lnfeld C.. Statstcs for Envronmental Engneers. ª Boca Raton London New York Washngton, D.c: Lews Publshers, 00. MORETTIN, Pedro Alberto; BUSSAB, Wlton de Olvera. Estatístca básca. São Paulo: Sarava, 006. TRIOLA, Maro F. Introdução à estatístca. Ro de Janero: LTC, OLIVEIRA, B. S. Sangel. Qualdade da água assocada à vulnerabldade clmátca e rscos santáros no baxo Ro Jarí AP / Brunna Stefanny Sangel de Olvera; orentador Alan Cavalcant da Cunha. Macapá, 013.

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Apostila De Estatística

Apostila De Estatística Apostla De Estatístca Professores: Wanderley Akra Shgut Valéra da S. C. Shgut Brasíla 006 INTRODUÇÃO 1.1. PANORAMA HISTÓRICO Toda Cênca tem suas raízes na hstóra do homem; A Matemátca que é consderada

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO J. W. B. Lopes 1 ; E. A. R. Pnhero 2 ; J. R. de Araújo Neto 3 ; J. C. N. dos Santos 4 RESUMO: Esse estudo fo conduzdo

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Vtóra Agosto de 2013 Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

CAPÍTULO 1 Exercícios Propostos

CAPÍTULO 1 Exercícios Propostos CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz,

Leia mais

Controle de Ponto Eletrônico. Belo Horizonte

Controle de Ponto Eletrônico. Belo Horizonte Controle de Ponto Eletrônco da Câmara Muncpal de Belo Horzonte Instrutor: André Mafa Latn DIVPES agosto de 2010 Objetvo Informar sobre o preenchmento da folha de frequênca; Facltar o trabalho das chefas;

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

2. BACIA HIDROGRÁFICA

2. BACIA HIDROGRÁFICA . BACIA HIDROGRÁFICA.1. GENERALIDADES Embora a quantdade de água exstente no planeta seja constante e o cclo em nível global possa ser consderado fechado, os balanços hídrcos quase sempre se aplcam a undades

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS PROCEDIMENTO DO SISTEMA DE GESTÃO DA QUALIDADE REVISÃO: 05 ABR/013 SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO REFERÊNCIAS 3 DEFINIÇÕES

Leia mais

ESTUDO DE TEMPOS (AULA INTRODUTÓRIA VISÃO GERAL)

ESTUDO DE TEMPOS (AULA INTRODUTÓRIA VISÃO GERAL) Você verá nesta dscplna: ESTUDO DE TEMPOS (AULA ITRODUTÓRIA VISÃO GERAL) Determnação dos tempos padrões através da cronometragem. Metodologas dos tempos predetermnados e da amostragem do trabalho. Determnação

Leia mais

Metodologia IHFA - Índice de Hedge Funds ANBIMA

Metodologia IHFA - Índice de Hedge Funds ANBIMA Metodologa IHFA - Índce de Hedge Funds ANBIMA Versão Abrl 2011 Metodologa IHFA Índce de Hedge Funds ANBIMA 1. O Que é o IHFA Índce de Hedge Funds ANBIMA? O IHFA é um índce representatvo da ndústra de hedge

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade Controle Estatístco de Processos: a questão da autocorrelação, dos erros de mensuração e do montoramento de mas de uma característca de qualdade Docentes: Maysa S. de Magalhães; Lnda Lee Ho; Antono Fernando

Leia mais

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA RODRIGO LUIZ PEREIRA LARA DESEMPENO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós Graduação

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012 5 POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 00-0 OPTICAL POLARIMETRY AND MODELING OF POLARS OBSERVED IN OPD/LNA IN THE PERIOD 00-0 Karleyne M. G. Slva Cláuda V. Rodrgues

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

FACULDADE DE TECNOLOGIA TUPY CURITIBA

FACULDADE DE TECNOLOGIA TUPY CURITIBA FACULDADE DE TECNOLOGIA TUPY CURITIBA MÉTODOS QUANTITATIVOS ESTATÍSTICA APLICADA VAGNER J. NECKEL 2010 Rev. 00 SUMÁRIO 1. CONCEITOS GERAIS...3 1.1 PANORAMA HISTÓRICO...3 1.2 DEFINIÇÃO...3 1.3 A ESTATÍSTICA

Leia mais

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca

Leia mais

Metodologia para Eficientizar as Auditorias de SST em serviços contratados Estudo de caso em uma empresa do setor elétrico.

Metodologia para Eficientizar as Auditorias de SST em serviços contratados Estudo de caso em uma empresa do setor elétrico. Metodologa para Efcentzar as Audtoras de SST em servços contratados Estudo de caso em uma empresa do setor elétrco. Autores MARIA CLAUDIA SOUSA DA COSTA METHODIO VAREJÃO DE GODOY CHESF COMPANHIA HIDRO

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

CÁLCULO DO ALUNO EQUIVALENTE PARA FINS DE ANÁLISE DE CUSTOS DE MANUTENÇÃO DAS IFES

CÁLCULO DO ALUNO EQUIVALENTE PARA FINS DE ANÁLISE DE CUSTOS DE MANUTENÇÃO DAS IFES MIISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO SUPERIOR DEPARTAMETO DE DESEVOLVIMETO DA EDUCAÇÃO SUPERIOR TECOLOGIA DA IFORMAÇÃO CÁLCULO DO ALUO EQUIVALETE PARA FIS DE AÁLISE DE CUSTOS DE MAUTEÇÃO DAS IFES

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO À AÁLISE DE DADOS AS MEDIDAS DE GRADEZAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...4

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

Portaria Inmetro nº 248 de 17 de julho de 2008

Portaria Inmetro nº 248 de 17 de julho de 2008 INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL - Portara Inmetro nº 248 de 17 de julho de 2008 O PRESIDENTE DO INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL,

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

MACROECONOMIA I LEC 201

MACROECONOMIA I LEC 201 ACROECONOIA I LEC 20 3.2. odelo IS-L Outubro 2007, sandras@fep.up.pt nesdrum@fep.up.pt 3.2. odelo IS-L odelo Keynesano smples (KS): equlíbro macroeconómco equlíbro no mercado de bens e servços (BS). odelo

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais