x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

Tamanho: px
Começar a partir da página:

Download "x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:"

Transcrição

1 Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma tabela ou de um gráfco. Se o conjunto refere-se a uma varável QUANTITATIVA há uma tercera manera de resum-lo: as Meddas de Síntese. As Meddas de Síntese, também chamadas de Estatístcas ou Meddas Descrtvas, dvdem-se em Meddas de Posção (Meddas de Tendênca Central), Meddas de Dspersão e Separatrzes. As Meddas de Posção obtém um valor numérco que represente a tendênca do conjunto (valor típco ). As mas mportantes são: Méda, Medana, e Moda. As Meddas de Dspersão obtém uma mensuração da dsposção dos dados no conjunto, da sua varabldade (se estão concentrados em torno de um valor, se dstrbuídos, etc). As mas mportantes são: Intervalo, Varânca, Desvo Padrão e Coefcente de Varação. As Separatrzes são meddas que dvdem o conjunto em um certo número de partes guas: Quarts (4 partes), Decs (10 partes), Cents (100 partes). 8.1 Meddas de Posção As Meddas de Posção procuram caracterzar a tendênca central do conjunto, um valor numérco que represente o conjunto. Esse valor pode ser calculado levando em conta todos os valores do conjunto ou apenas alguns valores ordenados. Méda A méda artmétca é smbolzada por x (lea-se x barra) e consste na soma de todas as observações x do grupo, dvdda pelo número "n" de observações do grupo. x x x 1 x... xn 1 x n n n Ex: A tabela abaxo refere-se às notas fnas de três turmas de estudantes. Calcular a méda de cada turma: n Ao somar os valores em cada turma teremos o mesmo resultado: 48. Como cada turma tem 8 alunos as três turmas terão a mesma méda: 6. No exemplo acma as três turmas têm a mesma méda (6), então se apenas essa medda fosse utlzada para caracterzá-las poderíamos ter a mpressão que as três turmas têm desempenhos dêntcos. Será? Observe atentamente a tabela acma. Na prmera turma temos realmente os dados dstrbuídos regularmente em torno da méda, com a mesma varação tanto abaxo quanto acma. Já na segunda vemos uma dstorção maor, embora a maora das notas sejam altas algumas notas baxas puxam a Caderno Ddátco de Estatístca

2 Professora Janete Perera Amador méda para um valor menor. E no tercero grupo há apenas uma nota baxa, mas seu valor é tal que realmente consegue dmnur a méda do conjunto. Um dos problemas da utlzação da méda é que, por levar em conta TODOS os valores do conjunto, ela pode ser dstorcda por valores dscrepantes ( outlers ) que nele exstam. É mportante então nterpretar corretamente o valor da méda.o valor da méda pode ser vsto como o ponto central de cada conjunto de dados, ou seja o ponto de equlíbro do conjunto: se os valores do conjunto fossem pesos sobre uma tábua, a méda é a posção em que um suporte equlbra esta tábua. Utlzando um dagrama aproprado vejamos como as notas dos alunos, de cada turma se dstrbuem entorno da méda. A méda dos três conjuntos (Turmas) é a mesma, mas observe as dferentes dsposções dos dados. O prmero grupo (Turma A) apresenta os dados dstrbuídos de forma smétrca em torno da méda. No segundo grupo (Turma B) a dstrbução já é mas rregular, com valores mas dstantes na parte de baxo, e o tercero grupo (Turma B) é claramente assmétrco em relação à méda (que fo dstorcda pelo valor dscrepante 0). Portanto muto cudado ao caracterzar um conjunto apenas por sua méda Outro aspecto mportante a ressaltar é que a méda pode ser um valor que a varável não pode assumr. Isto é especalmente verdade para varáves quanttatvas dscretas, resultantes de contagem, como número de flhos, quando a méda pode assumr um valor "quebrado", 4,3 flhos, por exemplo. É extremamente comum calcular médas de varáves quanttatvas a partr de dstrbuções de freqüêncas representadas em tabelas: smplesmente multplca-se cada valor (ou o ponto médo da classe) pela freqüênca assocada, somam-se os resultados e Caderno Ddátco de Estatístca

3 Professora Janete Perera Amador 3 dvde-se o somatóro pelo número de observações do conjunto. Na realdade trata-se de uma méda ponderada pelas freqüêncas de ocorrênca de cada valor da varável. Onde k é o número de valores da varável dscreta, ou o número de classes da varável agrupada, e x é um valor qualquer da varável dscreta, ou o ponto médo de uma classe qualquer. Ea: Calcular a méda do número de doadores de sangue contamnados com hepatte B (Quadro1) em 40 bancos de sangue. Observe que NENHUMA resdênca pode ter 4,3 pessoas. Assm, não se esqueça de que a méda pode assumr valores que a varável não pode assumr. Eb: Calcular a méda da taxa de mortaldade nfantl em muncípos do do Norte do Brasl... Classes f.f 9, ,6 9 14,6 18,34 18, ,34 13,98 98,74 7, , ,7 1,9 36, , ,4 161,68 44, ,5 0 49, , , 1 57,85 57,85 Total ,51 Caderno Ddátco de Estatístca

4 Professora Janete Perera Amador 4 Quando os dados não estão grupados (Ea) o resultado será dêntco ao que sera obtdo smplesmente somando todos os valores e dvdndo o somatóro pelo número de valores. Contudo, se a tabela estver agrupada em classes (Eb) TODAS as meddas (não somente a méda) serão apenas estmatvas dos valores reas, pos as meddas serão calculadas usando os pontos médos (que são os representantes das classes) e não mas os valores orgnas. No caso do Eb a méda real vale 5,39. Atualmente com as facldades computaconas dsponíves não se calcula mas a méda (ou qualquer outra medda) a partr de uma tabela agrupada em classes se os dados orgnas estão dsponíves: os programas calculam as meddas usando os dados orgnas e as tabelas são apresentadas apenas para dar uma déa da varação dos dados. Medana (Md) A medana é o ponto que dvde o conjunto em duas partes guas: metade dos dados têm valor menor do que a medana e a outra metade têm valor maor do que a medana. Pouco afetada por eventuas valores dscrepantes exstentes no conjunto (que costumam dstorcer substancalmente o valor da méda). A medana de um conjunto ordenado de valores, anotada por Md, é defnda como sendo o valor que separa o conjunto em dos subconjuntos do mesmo tamanho. Assm se n (número de elementos) é ímpar a medana é o valor central do conjunto. Caso contráro a medana é a méda dos valores central do conjunto. Tem-se: Exc: Calcular a medana das fnas de três turmas de estudantes (Ex). Posção medana = (n + 1)/ = (8+1)/ = 4,5 sgnfca que o valor da medana será calculado através da méda entre os valores que estverem na 4 a e na 5 a posção do conjunto. Turma A: Md = (6 + 6)/ = 6 Turma B: Md = (6 + 6)/ = 6 Turma C: Md = (7 + 7)/ = 7 Calcular a medana para o grupo a segur: Posção medana = (n + 1)/ = (9+1)/ = 5a como o conjunto tem um número ímpar de valores o valor da medana será gual ao valor que estver na 5ª posção. Md = 15 ; x = 0,89 Observe que neste caso méda e medana são dferentes, pos a méda fo dstorcda pelos valores mas altos 35 e 60, que consttuem uma mnora. Neste caso a medda de posção que melhor representara o conjunto sera a medana. Se a méda é Caderno Ddátco de Estatístca

5 Professora Janete Perera Amador 5 dferente da medana a dstrbução da varável quanttatva no conjunto de dados é dta ASSIMÉTRICA. Calcular a méda da taxa de mortaldade nfantl em muncípos do Norte do Brasl. Calcular a méda da taxa de mortaldade nfantl em muncípos do Norte do Brasl. (Exemplo Eb). Classes f x.f F 9, ,6 9 14,6 18, , ,34 13,98 98,74 7, , ,7 1,9 9 36, , ,4 161, , ,5 0 49, , , 1 57,85 57,85 34 Total ,51 Procedmentos n Calcula-se a posção Md: P Md = = = 17. A Md estará localzada na classe onde F P Md ; Classes f x.f F 3. 18, ,34 13,98 98, Para encontrar o valor da medana aplca-se a segunte equação: n F anteror. h Md L f ( Md) Onde: Md = medana L = lmte nferor da classe da medana; (18,6) n = tamanho da amostra; (34) F = freqüênca acumulada anteror a classe da Md; (9) h = ampltude da classe da Md; (8,7) f = freqüênca smples a classe da Md. (13) 17 9 Md 18,6 8,7 13 Md 3,3 Novamente o valor acma é apenas uma estmatva, a medana real vale: Como n é par a medana Md = 3,6 Moda (Mo) A moda é o valor da varável que ocorre com maor freqüênca no conjunto. É a medda de posção de obtenção mas smples, e também pode ser usada para varáves qualtatvas, pos apenas regstra qual é o valor mas freqüente, podendo este valor ser tanto um número quanto uma categora de uma varável nomnal ou ordnal. Um conjunto dedados pode ter apenas uma Moda, váras Modas ou nenhuma Moda. Encontre a moda das notas das três turmas. Caderno Ddátco de Estatístca

6 Professora Janete Perera Amador 6 A turma A tem 3 modas: os valores 5, 6 e 7 ocorrem duas vezes cada. A turma B tem duas modas: os valores 6 e 10 ocorrem duas vezes cada. A turma C tem uma moda apenas: o valor 7 ocorre 3 vezes. Para dados agrupados em classes a moda é calculada utlzando a equação 1 Mo ( Mo). h onde; 1 f f 1 Mo Mo ant f f ; post Mo = moda L = lmte nferor da classe modal F = freqüênca acumulada anteror a classe da Md f Mo = freqüênca smples a classe modal f ant = freqüênca smples anteror a classe modal f post = freqüênca smples posteror a classe modal Classe modal = classe de maor f. Calcular a moda do índce produção de produtores ruras que buscaram tecnologa para melhoras no processo produtvo, de acordo com a tabela do Exemplo Eb. Classes f x.f F 9, ,6 9 14,6 18, , ,34 13,98 98,74 7, , ,7 1,9 9 36, , ,4 161, , ,5 0 49, , , 1 57,85 57,85 34 Total , Mod 18,6.8,7 = 18,6.8,7, e Analsando o conjunto orgnal dos verfcamos que o conjunto de dados é amodal desta forma este valore apenas uma estmação. Caderno Ddátco de Estatístca

7 Professora Janete Perera Amador 7 Podemos apresentar uma breve comparação das meddas de posção. Fonte: REIS, M. M. & LINO, M. de O., Meddas de Dspersão O objetvo das meddas de dspersão é medr quão próxmos uns dos outros estão os valores de um grupo ou medndo a dspersão de um grupo de dados em torno da sua méda. Varânca (S ) A varânca é uma das meddas de dspersão mas mportantes. É a méda artmétca dos quadrados dos desvos de cada valor em relação à méda: proporcona uma mensuração da dspersão dos dados em torno da méda. S n N n 1 N Amostra População Onde x é um valor qualquer do conjunto. Se os dados referem-se a uma POPULAÇÃO usa-se N (tamanho da população) no denomnador da expressão. A razão da utlzação de n 1 no denomnador é ndspensável para que a varânca da varável na amostra possa ser um bom estmador da varânca da varável na população. A maora dos programas computaconas, porém, costuma calcular o desvo padrão supondo que os dados são provenentes de uma população. Em algumas planlhas eletrôncas há funções pré-programadas para ambos os casos. A undade da varânca é o quadrado da undade dos dados (e portanto o quadrado da undade da méda) causando dfculdades para avalar a dspersão: se por exemplo temos a varável peso com méda de 75 kg em um conjunto e ao calcular a varânca obtemos 1 kg a avalação da dspersão torna-se dfícl. Quanto maor a varânca mas dspersos os dados estão em torno da méda (maor a dspersão do conjunto) Caderno Ddátco de Estatístca

8 Professora Janete Perera Amador 8 Para fns de Análse Exploratóra de Dados caracterzar a dspersão através da varânca não é muto adequado. Costuma-se usar-se a raz quadrada postva da varânca, o desvo padrão. Desvo padrão (S) É a raz quadrada postva da varânca, apresentando a mesma undade dos dados e da méda, permtndo avalar melhor a dspersão. S n N n 1 N Amostra População As mesmas observações sobre população e amostra fetas para a varânca são váldas para o desvo padrão. É prátca comum ao resumr através de meddas de síntese um conjunto de dados referente a uma varável quanttatva apresentar a méda e o desvo padrão desse conjunto, para que seja possível ter uma déa do valor típco e da dstrbução dos dados em torno dele. Tal como no caso da méda pode haver nteresse em calcular o desvo padrão de varáves quanttatvas a partr de dstrbuções de freqüêncas representadas em tabelas. Tal como no caso da méda os valores da varável (ou os pontos médos das classes), e os quadrados desses valores, serão multplcados por suas respectvas freqüêncas: S f n 1 n. f Ex: Calcule o desvo padrão índce produção de produtores ruras que buscaram tecnologa para melhoras no processo produtvo, de acordo com a tabela do Exemplo Classes f.f 9, ,6 9 14,6 18,34 03, ,184 18, ,34 13,98 98,74 58, ,045 7, , ,7 1,9 1004, ,3 36, , ,4 161, , , , ,5 0 49, , , , 1 57,85 57, , ,65 Total , ,1317 f. f 868, ,1317 S n 34 = 10,19 n Tal como na méda, o resultado do desvo padrão calculado através de uma tabela agrupada em classes será apenas uma estmatva do valor real (o valor com os dados orgnas fo gual a 10,1. Coefcente de Varação (CV%) f Caderno Ddátco de Estatístca

9 Professora Janete Perera Amador 9 O coefcente de varação percentual é uma medda de dspersão relatva, pos permte comparar a dspersão de dferentes dstrbuções (com dferentes médas e desvos padrões). Onde S é o desvo padrão da varável no conjunto de dados, e é a méda da varável no mesmo conjunto. Quanto menor o coefcente de varação percentual, mas os dados estão concentrados em torno da méda, pos o desvo padrão é pequeno em relação à méda. E: Calcular o coefcente de varação percentual para as notas das três turmas de estudantes. A turma mas homogênea é a A, pos apresenta o menor coefcente de varação das três. Isso era esperado, uma vez que as notas da turma A estão dstrbuídas mas regularmente do que as das outras. No caso acma a comparação fcou anda mas smples pos as médas dos grupos eram guas, bastara avalar apenas os desvos padrões dos grupos, mas para comparar a dspersão de dstrbuções com médas dferentes é mprescndível a utlzação do coefcente de varação. O coefcente de varação para os dados do número de resdentes no domcílo corresponde a: 1,45 CV % ,7% 4,3 Para os dados do índce produção de produtores ruras que buscaram tecnologa para melhoras no processo produtvo,corresponde a: 1,19 CV % 100 4,66% 5, Meddas de Separatrzes As separatrzes são valores que dvdem a dstrbução em um certo número de partes guas: a medana dvde em partes guas, os quarts dvdem em 4 partes guas, os decs em 10 partes guas e os cents em 100 partes guas. O objetvo das separatrzes é proporconar uma melhor déa da dspersão do conjunto, prncpalmente da smetra ou assmetra da dstrbução. Vamos nos lmtar aos quarts. Caderno Ddátco de Estatístca

10 Professora Janete Perera Amador 10 0% 5% 50% 75% 100% Q1 Q =Md Q3 Ex: Calcular o prmero quartl da taxa de mortaldade nfantl em muncípos do Norte do Brasl. Classes f F 9, ,6 9 14,6 9 18, ,34 13,98 7, , ,7 9 36, , , , ,5 0 49, , , 1 57,85 34 Total 34 Procedmento: n Calcula-se a posção do quartl através da fórmula: PQ = ; 4 O quartl estará localzado na classe onde, pela prmera vez, F PQ; e para encontrar o seu valor, aplca-se a equação: PQ Fant. Q Lnf. h onde, f L nf = lmte nferor da classe do quartl; h = ampltude de classe; P Q = posção do quartl ; F.ant = freqüênca acumulada anteror a classe do quartl; f Q = freqüênca smples da calasse do quartl. Cálculo do prmero quartl: n 34 PQ = = 1 = 8, O prmero quartl ocupa esta ocupando a otava posção correspondente a prmera classe. f F 9, ,6 9 14,6 9 Montando a equação para calcular o valor do prmero quartl PQ Fant. 8 0 Q Lnf. h = 9,9 8,7 = 17,65 f 9 Q Interpretando: 5% das taxas de mortaldade encontram-se em até 17,65 e 75% da das taxas encontram-se com valores superores a 17,65. Q Caderno Ddátco de Estatístca

11 Professora Janete Perera Amador 11 Exercícos 1) Dado o rol de 50 notas de ndvíduos que cursaram a dscplna de estatístca. Construr uma tabela de dstrbução de freqüêncas (com todos os elementos já estudados), construr um hstograma e polígono de freqüêncas, calcular todas as meddas descrtvas ) Os preços do pacote de café, pesando 500g, obtdos em dferentes supermercados locas, são: R$3,50, R$,00, R$1,50 e R$1,00. Com base nessas nformações, julgue (justfcando) os tens que seguem: a) O preço médo do pacote de café de 500 g vale R$,00. b) Se todos os preços tverem uma redução de 50%, o novo preço médo será de R$1,50. c) A varânca dos preços é guala 0,65. d) Se todos os preços tverem um acréscmo de R$1,00, o coefcente de varação não se altera. e) Se todos os preços tverem um acréscmo de R$1,00,o coefcente de varação dos preços será aproxmadamente gual a 31,18%. f) Se todos os preços tverem um aumento de 50%, a nova varânca será exatamente gual à anteror, pos a dspersão não será alterada. g) A varânca fcará multplcada por,5 se todos os preços tverem um aumento de 50% Caderno Ddátco de Estatístca

12 Professora Janete Perera Amador 1 6) Consdere a dstrbução de freqüêncas a segur para responder às questões de 6.1 a 6.3. Peso (Kg) N o de anmas ) Marque a opção correta: a) 75% das observações têm peso não nferor a 4 Kg e nferor a 10 Kg. b) Mas de 75% das observações têm peso maor ou gual a 4 Kg. c) Menos de 5% das observações têm peso gual a 4 Kg. a) A soma dos pontos médos dos ntervalos de classe é nferor ao tamanho da amostra. e) 8% das observações têm peso no ntervalo de classe ) A méda da dstrbução é gual a : a) 5,7 Kg; d) 5,19 Kg; b) 5,4 Kg; e) 5,30 Kg; c) 5,1 Kg; 6.3) A medana da dstrbução é gual a : a) 5,30Kg; d) 5,10Kg; b) 5,00Kg; e) 5,0Kg; c) um valor nferor a 5,00Kg; 7) O frgorífco Industral Multcorte S. A. recebe de dos cradores propostas de vendas de bovnos para abate. Entretanto, ele exge do Departamento de Inspeção Santára que os anmas a serem compredos passem por um exame. Consdere as amostras seguntes (em Kg), resultantes da realzação do exame de bovnos: Estatístcas Amostra Unvaradas Kote Êmo Méda Desvo-padrão Total de bos Pergunta-se: a) Em qual das amostras houve maor varação absoluta nos pesos dos anmas? b) Em termos relatvos, quem está melhor em peso com relação a seu grupo, o bo Kote ou o bo Êmo? Bblografa FONSECA,J.S. & MARTINS G. de A., P. Curso de Estatístca. 5a. ed. São Paulo: Atlas, REIS, M. M. & LINO, M. de O. Notas de Aula: Introdução e Análse Exploratóra de Dados. UFSC. Ste: Caderno Ddátco de Estatístca

13 Professora Janete Perera Amador 13 TRIOLA, M. F. Introdução a Estatístca. 9a. ed. Ro de Janero: LTC Caderno Ddátco de Estatístca

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Aula 5 Senado Federal Parte 2

Aula 5 Senado Federal Parte 2 Aula 5 Senado Federal Parte Estatístca... Classe... 8 Lmtes de classe... 8 Ampltude de um ntervalo de classe... 9 Ampltude total da Dstrbução... 9 Ponto médo de uma classe... 9 Tpos de frequêncas... 10

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 11 Estatístca.... Classe.... 7 Lmtes de classe... 7 Ampltude de um ntervalo de classe... 7 Ampltude total da Dstrbução... 8 Ponto médo de uma classe... 8 Tpos de frequêncas... 9 Meddas de Posção...

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO 0 INTRODUÇÃO A medda de varação ou dperão, avalam a dperão ou a varabldade da eqüênca numérca em anále, ão medda que fornecem nformaçõe

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO ESTATISTICA EXPERIMENTAL: Com aplcaçoes em R Medcna

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Apostila de Estatística

Apostila de Estatística Apostla de Estatístca Prof. Ms. Osoro Morera Couto Junor Capítulo 1 - Introdução Estatístca 1.1 Hstórco A estatístca é um ramo da matemátca aplcada. A partr do século XVI começaram a surgr as prmeras análses

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6:

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6: Lsta de Exercícos - Probabldade INE 700 GABARITO LISTA DE EXERÍIOS PROBABILIDADE ) Vamos medr o tempo de duração da lâmpada. Ao lgarmos a lâmpada ela pode não funconar, ou durar um tempo ndetermnado. a)

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO Conteúdo Programátco Cálculo da varânca Cálculo e nterpretação do Devo-padrão VARIÂNCIA E DESVIO-PADRÃO A medda de varação ou dperão, avalam a varabldade da

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

CARTA-CIRCULAR N.º 273. Ref.: Alterações decorrentes do Projeto de Padronização de Taxas

CARTA-CIRCULAR N.º 273. Ref.: Alterações decorrentes do Projeto de Padronização de Taxas CARTA-CIRCULAR N.º 273 Aos Partcpantes de Todos os Sstemas Ref.: Alterações decorrentes do Projeto de Padronzação de Taxas A Central de Custóda e de Lqudação Fnancera de Títulos - CETIP comunca que a partr

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

INTRODUÇÃO À ANÁLISE ESTATÍSTICA DE MEDIDAS14

INTRODUÇÃO À ANÁLISE ESTATÍSTICA DE MEDIDAS14 ITRODUÇÃO À AÁLISE ESTATÍSTICA DE MEDIDAS4 Sérgo Rcardo Munz Fundamentos da Matemátca II 3. Introdução: o que é estatístca e para que serve? 3. A estatístca no da-a-da 3.3 Eatdão, precsão, erros e ncertezas

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2)

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2) METODOLOGIA DO ÍNDICE CARBONO Abrl/2015 [data] METODOLOGIA DO ÍNDICE CARBONO O ICO2 é o resultado de uma cartera teórca de atvos, elaborada de acordo com os crtéros estabelecdos nesta metodologa. Os índces

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Apostila De Estatística

Apostila De Estatística Apostla De Estatístca Professores: Wanderley Akra Shgut Valéra da S. C. Shgut Brasíla 006 INTRODUÇÃO 1.1. PANORAMA HISTÓRICO Toda Cênca tem suas raízes na hstóra do homem; A Matemátca que é consderada

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

FACULDADE DE TECNOLOGIA TUPY CURITIBA

FACULDADE DE TECNOLOGIA TUPY CURITIBA FACULDADE DE TECNOLOGIA TUPY CURITIBA MÉTODOS QUANTITATIVOS ESTATÍSTICA APLICADA VAGNER J. NECKEL 2010 Rev. 00 SUMÁRIO 1. CONCEITOS GERAIS...3 1.1 PANORAMA HISTÓRICO...3 1.2 DEFINIÇÃO...3 1.3 A ESTATÍSTICA

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

INE 7001 ESTATÍSTICA PARA ADMINISTRADORES I NOTAS DE AULA PROF. MARCELO MENEZES REIS MANOEL DE OLIVEIRA LINO

INE 7001 ESTATÍSTICA PARA ADMINISTRADORES I NOTAS DE AULA PROF. MARCELO MENEZES REIS MANOEL DE OLIVEIRA LINO INE 7001 ESTATÍSTICA PARA ADMINISTRADORES I NOTAS DE AULA PROF. MARCELO MENEZES REIS MANOEL DE OLIVEIRA LINO INE 7001 Introdução e Análse Exploratóra de Dados 2 1 - INTRODUÇÃO 1.1 - O método centífco A

Leia mais

ESTATÍSTICA Medidas de Síntese

ESTATÍSTICA Medidas de Síntese 2.3 - Medidas de Síntese Além das tabelas e gráficos um conjunto de dados referente a uma variável QUANTITATIVA pode ser resumido (apresentado) através de Medidas de Síntese, também chamadas de Medidas

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Construção e aplicação de índices-padrão

Construção e aplicação de índices-padrão Construção e aplcação de índces-padrão Artgo Completo José Aparecdo Moura Aranha (Admnstrador e Contador, Professor Assstente do Curso de Admnstração da Unversdade Federal de Mato Grosso do Sul - Câmpus

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5.

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Correlação Frases Uma probabldade razoável é a únca certeza Samuel Howe A experênca não permte nunca atngr a certeza absoluta. Não devemos procurar obter mas que uma probabldade. Bertrand Russel Rotero

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais