R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais"

Transcrição

1 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S. Desgna-se (X,Y) por v.a. bdmensonal. S s X X(s) R X Y Y(s) R Y Se X 1 X 1 (s), X 2 X 2 (s),, X n X n (s) forem n funções, cada uma assocando um número real a cada resultado s S, então (X 1, X 2,, X n ) é uma v.a. n- dmensonal. R X Y : contradomíno de (X,Y), conunto de todos os valores possíves de (X,Y). De um modo análogo ao caso undmensonal poderemos ter uma v.a. bdmensonal dscreta ou contínua. Varáves aleatóras dscretas bdmensonas Se o número de valores possíves de (X,Y) for fnto ou nfnto numerável, sto é, se os valores de (X,Y) puderem

2 31 ser representados por (x, y ), 1,2,, n, ; 1, 2,, m,, então (X,Y) desgna-se como v.a. dscreta bdmensonal. Função de probabldade conunta p XY (x,y) P ( X x, Y y) p XY ( ) ( ) x, y pxy x, y se ( x, y) ( x, y) 0 se ( x, y) ( x, y) Propredades p XY (x, y ) 0,, n p ( x y ) XY m 1 1, 1 Função de dstrbução conunta (ou de probabldade acumulada de (X, Y) ) F XY (x,y) P(X x, Y y) p ( x, y ) Propredades xk x yk y F XY ( x, y ) é monótona crescente F XY ( -, y ) 0, y F XY ( x,- ) 0, x F XY ( +,+ ) 1 XY k k P(x 1 <X x 2, y 1 <Y y 2 ) F XY (x 2, y 2 ) - F XY (x 1,y 2 )- - F XY (x 2,y 1 ) + F XY (x 1,y 1 )

3 32 Funções de probabldade margnas Sea (X,Y) uma v. a. dscreta bdmensonal. Conhecda p XY (x, y), a função de probabldade conunta, podemos obter nformação relatvamente apenas a X ou a Y através das funções de probabldade margnas. Função de probabldade margnal da v. a. X p X ( x ) P ( X x ) m P ( X x, Y y ) Nota: 1 m p ( x, y ) 1 XY p X (x ) 0, n 1 px ( x) 1 Função de probabldade margnal da v. a. Y p Y ( y ) P ( Y y ) P ( X x, Y y ) Nota: p Y (y ) 0, m 1 py ( y) 1 n 1 n 1 pxy ( x, y ) Funções de probabldade condconadas Sea (X,Y) uma v. a. dscreta bdmensonal. O conceto de probabldade condconada aplca-se do segunte modo:

4 33 Função de probabldade da v. a. X condconada a um dado Y y P(X x Y y ) então temos que: (, ) P ( Y y ) P X x Y y se P (Yy ) > 0 ( ) p x y X Y y (, ) ( y ) p x y XY p Y se p Y ( y ) > 0 Função de probabldade da v. a. Y condconada a um dado X x P(Y y X x ) e portanto: (, ) P X x Y y ( x ) P X se P (Xx ) > 0 ( ) p Y X x y x (, ) pxy x y px ( x ) se p X ( x ) > 0

5 Nota: p ( x y X Y y ) e p Y X x ( y x ) satsfazem as duas condções de uma função de probabldade, sto é: p ( x y ) X Y y 0 p ( x y ) n n 1 X Y y 1 p XY p ( x,y ) ( y ) Y 1 34 Varáves aleatóras contínuas bdmensonas Sea (X,Y) uma v.a. contínua bdmensonal, então (X, Y) toma todos os valores em alguma regão R do plano eucldeano. Função densdade de probabldade conunta f XY (x,y) : P (a X b, c Y d) f ( ) Propredades 2 f XY ( x, y ) 0, (x, y) R + + fxy ( x, y) dydx 1 Função de dstrbução conunta a b c d XY, c d a b fxy, ( ) u v x y dy dx x y dxdy F XY (x,y) P(X x,y y) f (, ) XY u v dv du

6 35 Propredades F XY ( x, y ) é monótona crescente F XY ( -, y ) 0, y F XY ( x,- ) 0, x F XY ( +,+ ) 1 P(x 1 <X x 2, y 1 <Y y 2 ) F XY (x 2, y 2 ) - F XY (x 1,y 2 )- - F XY (x 2,y 1 ) + F XY (x 1,y 1 ) F XY (x, y) (, ) (, ) F a b + f x y dy dx XY a x b x XY a ] -, x ] e b ] -, y ] F XY (x, y) 0, (x, y) 2 F ( ) XY x, y fxy ( x, y) x y Funções de probabldade margnas Sea (X,Y) uma v. a. contínua bdmensonal. Conhecda f XY (x, y), a função densdade de probabldade conunta, podemos obter nformação relatvamente apenas a X ou a Y através das funções densdade de probabldade margnas. Função densdade de probabldade margnal da v. a. X f X ( x ) f ( ) Nota: + XY, x y dy

7 36 Deverá atender-se à eventual necessdade de auste dos lmtes de ntegração e à consderação de um ou mas ramos na obtenção de f X ( x ). f X (x) 0, x R + fx ( x ) dx 1 Função de probabldade margnal da v. a. Y + f Y ( y ) f ( ) XY, x y dx Nota: Auste dos lmtes de ntegração e consderação de um ou mas ramos na obtenção de f Y ( y ) se necessáro. f Y (y) 0, y R + f ( ) y dy 1 Y Funções de probabldade condconadas Sea (X,Y) uma v. a. contínua bdmensonal. O conceto de probabldade condconada aplca-se do segunte modo: Função densdade de probabldade da v. a. X condconada a um dado Y y f X Y y ( x y ) fxy fy ( x, y ) ( y ) se f Y ( y ) > 0

8 37 Função densdade de probabldade da v. a. Y condconada a um dado X x ( y x ) f Y X x fxy fx ( x, y ) ( x ) se f X ( x ) > 0 Nota: f ( x y ) e f ( y x ) X Y y Y X x satsfazem as condções mpostas a uma função densdade de probabldade, sto é: f ( x y ) X Y y 0 + X Y y x y dx + f ( ) fxy fy ( x, y ) ( y ) 1 Varáves aleatóras ndependentes v.a. dscreta Sea (X,Y) uma v.a. dscreta bdmensonal. Dz-se que X e Y são v.a. ndependentes sse: p XY ( x, y ) p X ( x ). p Y ( y ), Usando a noção de probabldade condconada podemos afrmar que X e Y são v.a. ndependentes sse:

9 38 ( ) ( ) p x y p x X Y y X, ou, de um modo equvalente ( ) ( ) p Y X x y x py y, v.a. contínua Sea (X,Y) uma v.a. contínua bdmensonal. Dz-se que X e Y são v.a. ndependentes sse: f XY ( x, y ) f X ( x ). f Y ( y ) ( x, y ) Usando a noção de probabldade condconada podemos afrmar que X e Y são v.a. ndependentes sse: ( ) ( ) f X Y y x y fx x ( x, y ) ou, de um modo equvalente ( ) ( ) f Y X x y x fy y ( x, y ) Varáves aleatóras n-dmensonas As noções expostas podem ser generalzadas a v.a. n- dmensonas. Assm se (X 1,X 2,,X n ) puder tomar todos os valores numa dada regão do espaço n-dmensonal, a respectva fdp conunta satsfará:

10 39 a) fx X X x x xn n 1, 2,..., ( n 1, 2,..., ) 0 ( x1, x2,..., xn ) R b) fx, X,..., X ( x, x,..., xn) dx... dx 1 2 n n 1 a partr desta fdp podemos defnr: P[(X 1,X 2,,X n ) C]... fx,..., X ( x,..., xn ) dx... dx 1 n 1 1 n C em que C é um subconunto do contradomíno de (X 1,X 2,,X n ). A cada uma das v.a. n-dmensonas podemos assocar v.a. de dmensão nferor. Assm, por exemplo, se n 3 então: + + f ( x, x, x ) dx dx f ( x ) X X X X em que fx 3 ( x3) é a fdp margnal da v.a. undmensonal X 3. Por outro lado: + f ( x, x, x ) dx f ( x, x ) X X X X X em que fx 1 X 2 ( x1, x2 )representa a fdp conunta da v.a. bdmensonal (X 1,X 2 ). O conceto de v.a. ndependentes é também faclmente generalzável. Assm, dada (X 1,X 2,..,X n ) dremos que X 1,X 2 e X n são v.a. ndependentes sse : fx,..., X ( x1,..., xn ) fx ( x1) fx ( x2 )... fx ( xn ) 1 n 1 2 n

11 40 VALOR ESPERADO E V. A. BIDIMENSIONAIS Sea (X,Y) uma varável aleatóra bdmensonal e h(x,y) uma função real de (X,Y), então temos que: a) Se (X,Y) for uma varável aleatóra dscreta com função de probabldade conunta p XY ( x, y ) P ( X x, Y y ) (, 1,2,... ) : E [ h ( X,Y) ] h ( x, y ) p ( x, y ) b) Se (X,Y) for uma varável aleatóra contínua com função f XY x,y : XY densdade de probabldade conunta ( ) + + [ h ( X, Y) ] h ( x, y ) f ( x, y) E XY dy dx Nota: Analogamente ao que fo referdo no caso undmensonal, também aqu a varável Z h(x,y) é uma varável aleatóra com uma determnada dstrbução de probabldades e poderemos calcular E(Z) do segunte modo: Se Z for uma varável aleatóra dscreta, então: ( Z) z p ( z ) E Z 1 Se Z for uma varável aleatóra contínua, então: E + ( Z) z f ( z)dz Z

12 41 sendo também neste caso necessáro obter prevamente a função de probabldade (caso dscreto) ou a função densdade de probabldade (caso contínuo) da v.a. Z. PROPRIEDADES Seam X e Y duas v.a. conuntamente dstrbuídas e seam Z H 1 (X,Y) e WH 2 (X,Y) duas funções reas de X e Y. Então: ) E (X + Y) E(X) + E(Y) ) E ( X + Y) E ( X ) + E ( Y ) + 2 E ( XY) ) Var ( X ± Y) Var ( X) + Var ( Y) ± 2 cov( X, Y) v) E (Z + W) E(Z) + E(W) Se X e Y forem v. a. ndependentes, temos que: v) E (XY) E(X). E(Y) v) Var ( X + Y) Var (X) + Var (Y) Estas propredades podem ser generalzadas para o caso de n varáves aleatóras X 1,X 2,...,X n conuntamente dstrbuídas obtendo-se: v) E (X 1 + X X n ) E (X 1 ) + E(X 2 ) E(X n ) 2 2 v) E ( X + X X ) E ( X ) + 2 E ( X ) 1 2 n X <

13 x) Var ( X ±... ± X ) Var ( X ) ± 2 cov( X, ) 1 n X Se X 1,X 2,...,X n forem v.a. ndependentes, então: x) E ( X 1 X 2...X n ) E(X 1 ) E(X 2 )... E(X n ) x) Var ( X + X X ) Var ( ) 1 2 n X < 42 COVARIÂNCIA E COEFICIENTE DE CORRELAÇÃO LINEAR Para estudar as relações entre duas varáves aleatóras X e Y pode-se analsar a covarânca e o coefcente de correlação lnear cuas defnções se apresentam a segur: Cov e portanto: ( X,Y) E[ ( X µ X ) ( Y µ Y )] σxy Varáves aleatóras dscretas: Cov ( X,Y) ( x µ ) ( y µ ) p ( x, y ) Varáves aleatóras contínuas: Cov X Y XY + + ( X,Y) ( x ) ( y µ ) f ( x, y) dy dx µ X Y XY

14 43 A covarânca é portanto uma medda da dstrbução conunta dos valores de X e Y, em termos dos desvos em relação às respectvas médas. A cov(x,y) descreve, a relação lnear entre duas varáves e a sua mútua dependênca. Uma covarânca postva mplca que, quando uma das varáves se desva sgnfcatvamente do seu valor esperado, a outra tenderá a desvar-se no mesmo sentdo. Isso mplcará um aumento da dspersão da soma das varáves X e Y. Se a covarânca for negatva, os desvos das duas varáves tenderão a ser de sentdo contráro, mplcando uma dmnução da varânca da soma. TEOREMA: Se X e Y forem v.a. ndependentes, então Cov(X,Y)0 A covarânca é expressa nas undades de X e nas de Y, smultaneamente, o que ntroduz algumas dfculdades quando se pretende fazer comparações. Para ultrapassar este nconvenente, pode calcular-se o coefcente de correlação lnear ( ρ XY ) : ρ XY Cov Var ( X, Y) ( X) Var ( Y) E [ ( X µ X ) ( Y µ Y )] σxy Var ( X) Var ( Y) σx σy O coefcente de correlação lnear toma valores no segunte ntervalo :

15 44 1 ρxy 1 Demonstração:... O valor do coefcente de correlação dependerá do grau de relaconamento lnear entre X e Y, verfcando-se que: ρ XY 1 quando há correlação lnear negatva perfeta entre X e Y ( Y a X + b, com a e b constantes e a < 0 ) ρ XY 1 quando há correlação lnear negatva perfeta entre X e Y ( Y a X + b, com a e b constantes e a > 0 ) ρ XY 0 quando o grau de relaconamento lnear entre X e Y é nulo ( poderá contudo exstr uma relação não lnear entre as duas varáves ) Quando 0< ρxy < 1, dz-se que exste correlação lnear postva entre X e Y menos forte do que quando ρ XY 1 e de modo análogo quando 1< ρxy < 0. Nota: Defne-se momento de ordem (r, s) da v.a. bdmensonal (X,Y) como: ' r s µ rs E ( X Y ) e momento central de ordem (r, s) do par (X,Y) como: µ rs [ r ( ) ( ) s ] X µ Y E µ X Y

16 45 ' com µ 10 µ 1 µ X, µ ' 01 µ 2 µ Y, 2 2 µ 02 σ2 σy. 2 2 µ 20 σ1 σ X e Atendendo à defnção de Cov(X,Y) vemos que corresponde ao momento central de ordem (1, 1) do par (X,Y).

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade Departaento de Inforátca Dscplna: do Desepenho de Ssteas de Coputação Medda de Probabldade Prof. Sérgo Colcher colcher@nf.puc-ro.br Teora da Probabldade Modelo ateátco que perte estudar, de fora abstrata,

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Mara Manuela Portela DECvl, IST, 0 PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Professor Assocado, Escola de Engenhara

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

Eletromagnetismo Indutores e Indutância

Eletromagnetismo Indutores e Indutância Eletromagnetsmo Indutores e Indutânca Eletromagnetsmo» Indutores e Indutânca Introdução Indutores são elementos muto útes, pos com eles podemos armazenar energa de natureza magnétca em um crcuto elétrco.

Leia mais

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade Controle Estatístco de Processos: a questão da autocorrelação, dos erros de mensuração e do montoramento de mas de uma característca de qualdade Docentes: Maysa S. de Magalhães; Lnda Lee Ho; Antono Fernando

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Momentos de uma variável aleatória

Momentos de uma variável aleatória Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEPENDENTE DA TEMPERATURA E GERAÇÃO DE CALOR

SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEPENDENTE DA TEMPERATURA E GERAÇÃO DE CALOR SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEENDENTE DA TEMERATURA E GERAÇÃO DE CALOR E. T. CABRAL,. A. ONTES, H. K. MIYAGAWA, E. N. MACÊDO 3 e J. N. N. QUARESMA 3

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO À AÁLISE DE DADOS AS MEDIDAS DE GRADEZAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...4

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Demanda por Saneamento no Brasil: uma aplicação do modelo logit multinomial

Demanda por Saneamento no Brasil: uma aplicação do modelo logit multinomial Demanda por Saneamento no Brasl: uma aplcação do modelo logt multnomal Abstract: Basc santary servces, ncludng waste dsposal, treated water supply and sewage servces, do have a strong effect on human health

Leia mais

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres Análse de Varânca Rejane Sobrno Pnhero Tana Gullén de Torres Análse de Varânca Introdução Modelos de análse de varânca consttuem uma classe de modelos que relaconam uma varável resposta contínua com varáves

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Manual dos Indicadores de Qualidade 2011

Manual dos Indicadores de Qualidade 2011 Manual dos Indcadores de Qualdade 2011 1 Dretora de Avalação da Educação Superor Clauda Maffn Grbosk Coordenação Geral de Controle de Qualdade da Educação Superor Stela Mara Meneghel Equpe Técnca: José

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções)

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções) QUESTÕES DISCURSIVAS Módulo 0 (com resoluções D (Fuvest-SP/00 Nos tens abaxo, denota um número complexo e a undade magnára ( Suponha a Para que valores de tem-se? b Determne o conjunto de todos os valores

Leia mais

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 6123. Forças devidas ao vento em edificações JUN 1988

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 6123. Forças devidas ao vento em edificações JUN 1988 ABNT-Assocação Braslera de Normas Técncas Sede: Ro de Janero Av. Treze de Mao, 13-28º andar CEP 20003 - Caxa Postal 1680 Ro de Janero - RJ Tel.: PABX (021) 210-3122 Telex: (021) 34333 ABNT - BR Endereço

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Método de Monte Carlo Aplicado às Finanças 1. Introdução 2. O Método de Monte Carlo 3. Inversão da Função de Distribuição 4. Algumas Aplicações 5.

Método de Monte Carlo Aplicado às Finanças 1. Introdução 2. O Método de Monte Carlo 3. Inversão da Função de Distribuição 4. Algumas Aplicações 5. Método de Monte Carlo Aplcado às Fnanças 1. Introdução. O Método de Monte Carlo 3. Inversão da Função de Dstrbução 4. Algumas Aplcações 5. Prncípos Báscos do Método de Monte Carlo 5.1 Introdução 5. Formulação

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1 Como aposentadoras e pensões afetam a educação e o trabalo de jovens do domcílo 1 Rodolfo Hoffmann 2 Resumo A questão central é saber como o valor da parcela do rendmento domclar formada por aposentadoras

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

ÍNDICE NOTA INTRODUTÓRIA

ÍNDICE NOTA INTRODUTÓRIA OGC00 05-0-06 ÍDICE. Introdução. Âmbto e defnções 3. Avalação da ncerteza de medção de estmatvas das grandezas de entrada 4. Cálculo da ncerteza-padrão da estmatva da grandeza 5 de saída 5. Incerteza de

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS

CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS Nos capítulos anterores analsaram-se város modelos usados na avalação de manancas, tendo-se defndo os respectvos parâmetros. Nas correspondentes fchas de exercícos

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

O MODELO IS/LM: PEQUENA ECONOMIA ABERTA COM MOEDA PRÓPRIA

O MODELO IS/LM: PEQUENA ECONOMIA ABERTA COM MOEDA PRÓPRIA O MODELO IS/LM: PEQUENA ECONOMIA ABERTA COM MOEDA PRÓPRIA Vtor Manuel Carvalho 1G202 Macroeconoma I Ano lectvo 2008/09 Uma pequena economa aberta é uma economa para a qual o mercado externo, tanto a nível

Leia mais

ESTATÍSTICA. na Contabilidade Revisão - Parte 2. Medidas Estatísticas

ESTATÍSTICA. na Contabilidade Revisão - Parte 2. Medidas Estatísticas 01/09/01 ESTATÍSTICA na Contabldade Revsão - Parte Luz A. Bertolo Meddas Estatístcas A dstrbução de frequêncas permte-nos descrever, de modo geral, os grupos de valores (classes) assumdos por uma varável.

Leia mais

WORKING PAPERS IN APPLIED ECONOMICS

WORKING PAPERS IN APPLIED ECONOMICS Unversdade Federal de Vçosa Departamento de Economa Rural WORKING PAPERS IN APPLIED ECONOMICS Efetos redstrbutvos e determnantes de recebmento do ICMS Ecológco pelos muncípos mneros Lucany L. Fernandes,

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO UNIVERSIDADE FEDERAL DE SANA CAARINA CENRO ECNOLÓGICO DEPARAMENO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL RANSFERÊNCIA DE CALOR NA ENVOLVENE DA EDIFICAÇÃO ELABORADO POR: Martn

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

A ESTIMATIVA DA INCERTEZA DE MEDIÇÃO PELOS MÉTODOS DO ISO GUM 95 E DE SIMULAÇÃO DE MONTE CARLO

A ESTIMATIVA DA INCERTEZA DE MEDIÇÃO PELOS MÉTODOS DO ISO GUM 95 E DE SIMULAÇÃO DE MONTE CARLO A ESTIMATIVA DA INCERTEZA DE MEDIÇÃO PELOS MÉTODOS DO ISO GUM 95 E DE SIMULAÇÃO DE MONTE CARLO Paulo Roberto Gumarães Couto INMETRO-DIMCI-DIMEC-LAPRE prcouto@nmetro.gov.br INTRODUÇÃO 3 ISO GUM 95 4. Estmatva

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs.

Curso de especialização em Finanças e Economia Disciplina: Incerteza e Risco Prof: Sabino da Silva Porto Júnior Sabino@ppge.ufrgs. Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br Introdução Até agora: conseqüêncas das escolhas dos consumdores

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010 Proposta de resolução da Prova de Matemátca A (códgo 6 Como A e B são acontecmentos ncompatíves, 0 e Ou seja, de acordo com os dados do enuncado, 0% 0% 0% Versão : B Versão : C Como se trata de uma únca

Leia mais

Determinantes da adoção da tecnologia de despolpamento na cafeicultura: estudo de uma região produtora da Zona da Mata de Minas Gerais 1

Determinantes da adoção da tecnologia de despolpamento na cafeicultura: estudo de uma região produtora da Zona da Mata de Minas Gerais 1 DETERMINANTES DA ADOÇÃO DA TECNOLOGIA DE DESPOLPAMENTO NA CAFEICULTURA: ESTUDO DE UMA REGIÃO PRODUTORA DA ZONA DA MATA DE MINAS GERAIS govanblas@yahoo.com.br Apresentação Oral-Cênca, Pesqusa e Transferênca

Leia mais

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello Aula 03 Erros epermentas Incerteza Aula 03 Prof. Valner Brusamarello Incerteza Combnada Efeto da Incerteza sobre = f ± u, ± u, L, ± u, L ( ) 1 1 Epansão em Sére de Talor: k k L f = f 1,, 3, + ± uk + L,,,

Leia mais

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC) PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos

Leia mais

MÉTODOS ESTATÍSTICOS E DELINEAMENTO EXPERIMENTAL TESTES NÃO PARAMÉTRICOS. Armando Mateus Ferreira

MÉTODOS ESTATÍSTICOS E DELINEAMENTO EXPERIMENTAL TESTES NÃO PARAMÉTRICOS. Armando Mateus Ferreira MÉTODOS ESTATÍSTICOS E DELIEAMETO EXPERIMETAL TESTES ÃO PARAMÉTRICOS Armando Mateus Ferrera Índce Introdução... Testes de Aleatoredade... 3. Teste das sequêncas (runs)... 3 3 Testes de localzação... 7

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

CAPÍTULO 5 Exercícios Resolvidos

CAPÍTULO 5 Exercícios Resolvidos CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

UNIVERSIDADE TÉCNICA DE LISBOA

UNIVERSIDADE TÉCNICA DE LISBOA UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO MESTRADO EM: Cêncas Actuaras SISTEMA DE BONUS-MALUS PARA FROTAS DE VEÍCULOS Elsabete da Conceção Pres de Almeda Nora Orentação: Doutor

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW username@f.uncamp.br F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =

Leia mais

ESTATÍSTICAS E INDICADORES DE COMÉRCIO EXTERNO

ESTATÍSTICAS E INDICADORES DE COMÉRCIO EXTERNO ESTATÍSTICAS E INDICADORES DE COÉRCIO ETERNO Nota préva: O texto que se segue tem por únco obectvo servr de apoo às aulas das dscplnas de Economa Internaconal na Faculdade de Economa da Unversdade do Porto.

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

EST 220 ESTATÍSTICA EXPERIMENTAL

EST 220 ESTATÍSTICA EXPERIMENTAL UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ESTATÍSTICA EST 0 ESTATÍSTICA EXPERIMENTAL Vçosa Mnas Geras 00 / II UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de

Leia mais

PRODUTIVIDADE DO CAFÉ EM MINAS GERAIS: UMA ANÁLISE ESPACIAL

PRODUTIVIDADE DO CAFÉ EM MINAS GERAIS: UMA ANÁLISE ESPACIAL PRODUTIVIDADE DO CAFÉ EM MINAS GERAIS: UMA ANÁLISE ESPACIAL EDUARDO SIMÕES DE ALMEIDA; GISLENE DE OLIVEIRA PACHECO; ANA PAULA BENTO PATROCÍNIO; SIMONE MOURA DIAS; FEA/UFJF JUIZ DE FORA - MG - BRASIL edu_smoes@hotmal.com

Leia mais

EFEITO SOBRE A EQUIDADE DE UM AUMENTO DO IMPOSTO SOBRE O VALOR ACRESCENTADO*

EFEITO SOBRE A EQUIDADE DE UM AUMENTO DO IMPOSTO SOBRE O VALOR ACRESCENTADO* Artgos Prmavera 2007 EFEITO SOBRE A EQUIDADE DE UM AUMENTO DO IMPOSTO SOBRE O VALOR ACRESCENTADO* Isabel Correa**. INTRODUÇÃO Apesar das reformas fscas serem um fenómeno recorrente nas últmas décadas em

Leia mais