AULA Espaços Vectoriais Estruturas Algébricas.

Tamanho: px
Começar a partir da página:

Download "AULA Espaços Vectoriais Estruturas Algébricas."

Transcrição

1 Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os problemas apresentados na bblografa, sem consulta préva das soluções propostas, análse comparatva entre as suas resposta e a respostas propostas, e posteror exposção junto do docente de todas as dúvdas assocadas. TÓPICOS Estruturas algébrcas. Espaço vectoral. Combnação lnear. Independênca lnear. AULA Espaços Vectoras Estruturas Algébrcas. Na generaldade, uma estrutura algébrca é consttuída por um ou mas conjuntos (suportes da estrutura), mundos de uma ou mas operações (les de composção nterna ou externa, operações unáras, etc.) envolvendo elementos daquele(s) conjuntos e satsfazendo certas propredades formas. Caso não exsta ambgudade, pode dentfcar-se um dos conjuntos suporte com a estrutura algébrca. Por exemplo, o corpo ( R, +, ) refere-se, geralmente, apenas como o corpo R (o corpo dos reas). Algumas estruturas algébrcas envolvem mas de um conjunto. Por exemplo, um espaço vectoral tem nerentes dos conjuntos: um conjunto de vectores e outro de escalares (um corpo), uma le de composção nterna (adção vectoral) e outra externa (multplcação de escalar por vector). Prof. Isabel Matos & José Amaral ALGA A

2 Grupóde Todo par ( A, ) consttuído por um conjunto A e uma operação bnára de A em A (le de composção nterna). Semgrupo Todo o grupóde ( A, ) em que a operação é assocatva. é assocatva a ( b = ( a b) c é comutatva a b = b a Monóde elemento neutro u a: a u = u a = a Todo o semgrupo ( A, ) com elemento neutro (que é únco). Grupo elemento oposto a a : a a = a a = u Grupo Comutatvo (Abelano) Todo o monóde em que todos os elementos têm oposto (que é únco). Todo o grupo ( A, ) em que é comutatva. Anel Todo o terno ( A, +, ) em que( A, + ) é um grupo comutatvo, ( A, ) é um semgrupo e é dstrbutva em relação a, ou seja, + à esquerda e à dreta. ( A, + ) ( A, ) + é assocatva. + é comutatva. neutro 0. oposto (smétrco) para todos os elementos é assocatva. ( a+ b) c = ( a + ( b a ( b + = ( a b) + ( a Corpo Todo o anel ( A, +, ) em que ( A, ) é um monóde e todos os elementos dferentes de 0 são nvertíves., ou seja, ( A, + ) + é assocatva. + é comutatva. neutro 0. oposto (smétrco) para todos os elementos ( A, ) é assocatva. é comutatva. neutro 1. oposto (nverso) para todos os elementos dferentes de 0. ( a+ b) c = ( a + ( b a ( b + = ( a b) + ( a Prof. Isabel Matos & José Amaral ALGA A

3 10.. Espaço Vectoral. Seja E um conjunto de elementos uv,,, w, chamados vectores, e K um corpo, de elementos αβ,,, γ, chamados escalares. Dz-se que E é um espaço vectoral (ou espaço lnear) sobre o corpo K sse: a. estver defnda em E a operação adção vectoral, +, que a u E e a v E assoca o elemento u + v E, tal que ( E, + ) é um grupo comutatvo, ou seja, uvw,, E : a1. u + v = v + u (+ é assocatva) a. ( u + v) + w = u + ( v + w ) (+ é comutatva) a E :( u + 0) + u = u (elemento neutro de +, desgnado por zero) a4. u 1 u E : u + ( u) (elemento oposto de u para a operação +, desgnado por smétrco de u ) m. estver defnda a operação multplcação de escalar por vector,, que a α K e a u E assoca o elemento α u E (ou, smplesmente αu ), que verfca: m1. α ( u + v) = α u + αv ( é dstrbutva em relação à adção dos elementos de E ) m. ( α + β) u = αu + βu ( é dstrbutva em relação à adção de elementos de K ) m3. α ( βu ) = ( αβ) u (assocatvdade msta) m4. 1 u = u (elemento neutro de à esquerda) A operação bnára + de E em E desgna-se por adção vectoral, e a operação bnára de E K em E desgna-se por multplcação de escalar por vector. Salente-se que um espaço vectoral é fechado relatvamente à adção vectoral. Quando K = R dz-se que E é um espaço vectoral real, e quando K = C dz-se que E é um espaço vectoral complexo. 1. São exemplos de espaços vectoras (ou seja, pode demonstrar-se que verfcam as 8 propredades acma enuncadas) os seguntes conjuntos, com a defnção habtual de adção entre os seus elementos, e de multplcação dos seus elementos por um escalar do corpo K ndcado: O conjunto n R, como temos vndo a consderar até aqu, com K = R. O conjunto dos segmento orentados, que apropradamente desgnámos por vectores, com K = R. O conjunto n C, com K = C (e também com K = R ). O conjunto das funções reas (ou complexas) de varável real num ntervalo I R, com as defnções habtuas de adção de funções e de multplcação de uma função por uma constante α R (ou α C ): ( f + g)( x) = f( x) + g( x) e Prof. Isabel Matos & José Amaral ALGA A

4 ( α f)( x) = α f( x) ), com K = R (ou K = C ). O vector nulo é a função f 0 tal que f 0 ( x), x I. É mportante pensar em cada uma das funções como um vector, ou seja, smplesmente como um elemento do espaço vectoral. Para apenas duas funções podemos fazer a analoga com os segmentos orentados em R. Sendo um espaço vectoral consttuído por funções, é desgnado por espaço de funções, F = F () I. Tem especal nteresse, como verá nas caderas da especaldade, o espaço de snas que é, exactamente, um espaço de funções que contém nformação sobre um determnado fenómeno físco relevante para as aplcações Combnação Lnear. Seja E um espaço vectoral sobre um corpo K. Dz-se que um vector u E é combnação lnear dos vectores u 1, u,, u n E, se exstrem escalares k1, k,, kn K, desgnados por coefcentes da combnação lnear, tas que u = k1u1 + ku + + knun n = k u. O vector de 4 = 1 R, u = ( 1,, 3, 4) é combnação lnear dos vectores u 1 = (,0, 1,0), u = ( 1,,0,0 ), u 3 = (0, 0, 1,) e u 4 = (,0,0, 1), dado que exstem escalares, k =, k = 1, k = 1, k =, tas que u = k u = 1 Com efeto k1u1 + ku + k3u3 + k4u4 = u1 u + u3 u4 = (, 0, 1, 0) ( 1,, 0, 0) + (0, 0, 1, ) (, 0, 0, 1) = (4, 0,, 0) + (1,, 0, 0) + (0, 0, 1, ) + ( 4, 0, 0, ) = (1,, 3, 4) = u 3. A função real de varável real lnear das funções (vectores) f 1 ( x ) = 1, f ( x) ou, smplesmente, jx 3 fx ( ) = x+ x pode ser descrta como combnação = x, f 3 ( x) fx ( ) f( x) + 1 f( x) + 0 f( x) + f( x) fx ( ) = [ ] = x, e f x x 3 4 ( ) = : 4. A função fx ( ) = e, com x R, é uma função complexa de varável real desgnada por exponencal complexa. A fórmula de Euler estabelece a relação entre a função exponencal complexa e as funções trgonométrcas seno e co-seno : jx e = cos( x) + jsen( x) Prof. Isabel Matos & José Amaral ALGA A

5 Nas expressões acma e é a base do logartmo natural ( e.7183 ) e assume-se que x é expresso em radanos e não em graus. Fgura 10.1 A função cos( ω 0t) pode ser expressa como combnação j lnear das funções 0t e ω e j 0t e ω 0 jω0t jω0t cos( ω t).5e + 0.5e A função cos( ω 0t) pode ser nterpretada como um vector pertencente ao subespaço das funções contínuas (complexas j de varável real) gerado pelos vectores 0t e ω j e 0t e ω, e, nesse subespaço, pode ser descrto apenas pelas suas coordenadas 0 [ ] cos( ω t) Também a função sen( ω 0t) pode ser expressa como combnação lnear das funções j t j t e ω e ω 0 e 0 jω0t jω0t sen( ω 0t) = 0.5je + 0.5je = [ 0.5j 0.5j] Note que, agora, o espaço vectoral é necessaramente defndo sobre o corpo dos complexos e não sobre o corpo dos reas, uma vez que os escalares da combnação lnear obtda são complexos Independênca lnear. O conjunto de vectores { u u u ndependente sse a equação só possu a solução trval V = 1,,, n E, dz-se lnearmente ku + k u + + k u 1 1 n n k k k n 1 = = = Ou, o que é equvalente, nenhum dos vectores pode ser expresso como combnação lnear dos restantes. Caso contráro, sto é, se a equação possu uma solução não trval, dzemos que os vectores de V são lnearmente dependentes. Equvalentemente, V é lnearmente dependente sse um dos seus elementos é combnação lnear dos restantes. 5. O conjunto de vectores = { u, u, u, u V, com u = (,0, 1,0), = (,0,0, 1 1 u = ( 1,,0,0), u 3 = (0, 0, 1,) e u ), é lnearmente ndependente dado que Prof. Isabel Matos & José Amaral ALGA A

6 k1u1 + ku + k3u3 + k4u4 k1(, 0, 1, 0) + k( 1,, 0, 0) + k3(0, 0, 1, ) + k4(, 0, 0, 1) ( k1,0, k1,0) + ( k, k,0,0) + (0, 0, k3, k3) + ( k4, 0, 0, k4) (k1 k + k4, k, k1 k3, k3 k4) k1 k + k4 k k1 k3 k3 k4 Resolvendo o sstema podemos verfcar que só exste a solução trval k = k k k = 6. O conjunto de vectores V { 3 x,1 x x, x x dependente, dado que = + + P é lnearmente 3x = (1 x + x ) ( x + x ) 7. O conjunto de vectores = { sen ( x),cos ( x),cos( x) dado que V é lnearmente dependente, cos( x) = cos ( x) sen ( x) 3 8. O conjunto de vectores = { 1, xx,, x P é lnearmente ndependente. Nenhum dos seus vectores pode exprmr-se como combnação lnear dos outros. 9. O conjunto de vectores = { 1 + xx, + x,1+ x vez que mplca que, ou seja, e anda, na forma matrcal,, pelo que, sendo P é lnearmente ndependente, uma 1 3 k (1 + x) + k ( x + x ) + k (1 + x ) k1 k1x kx kx k3 k3x ( k + k ) + ( k + k ) x + ( k + k ) x k1 + k3 k1 + k k + k k k 0 = 0 1 1k ~ Prof. Isabel Matos & José Amaral ALGA A

7 , o sstema só possu a solução trval, k 1 = k = k 3, pelo que os vectores 1 + x, x + x, e 1 + x, são lnearmente ndependentes Wronskano. Não exste nenhum método geral para demonstrar que um conjunto de n vectores de um espaço de funções é lnearmente ndependente. No caso dos n vectores n 1 pertencerem a C (o conjunto das funções n 1 vezes contnuamente dferencáves), a ndependênca lnear pode ser demonstrada verfcando que o determnante f1( x) f( x) fn ( x) f 1( x) f ( x) f n ( x) Wx ( ) = det ( n 1) ( n 1) ( n 1) f1 ( x) f ( x) fn ( x), desgnado por Wronskano dos n vectores, é não nulo pelo menos para um valor de x R. 10. Para o conjunto de vectores = { sen( x),cos( x),1 V temos sen( x) cos( x) 1 Wx ( ) = det cos( x) sen( x) 0 sen( x) cos( x) 0 = 1( cos ( x) sen ( x)) = 1 O determnante nunca é nulo (bastara que fosse não nulo para apenas um valor de x ) pelo que V é lnearmente ndependente. 11. Para o conjunto de vectores P = { 1 + xx, + x,1+ x, temos 1+ x x + x 1+ x det x x = (1 + x)(+ 4x 4 x) (x + x x ) 0 = + x x + = 4 O determnante nunca é nulo (bastara que não fosse nulo para apenas um valor de x ), pelo que os vectores são lnearmente ndependentes. Prof. Isabel Matos & José Amaral ALGA A

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resolvedo os problemas

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenhara Cvl ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mal: rcardo.henrques@ufjf.edu.br Aula Número: 19 Importante... Crcutos com a corrente

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO

4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO 4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO Na Estátca, estuda-se o equlíbro dos corpos sob ação de esforços nvarantes com o tempo. Em cursos ntrodutóros de Mecânca, esse é, va de regra,

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

CARGA MÓVEL. Conjunto de cargas moveis que mantêm uma posição relativa constante.

CARGA MÓVEL. Conjunto de cargas moveis que mantêm uma posição relativa constante. CARGA MÓVEL Força generalsada com ntensdade, drecção e sentdo fxos, mas com uma posção varável na estrutura. COMBOIO DE CARGAS Conjunto de cargas moves que mantêm uma posção relatva constante. CARGA DISTRIBUIDA

Leia mais

58 Textos de Apoio de Análise Matemática IV 2003/2004. Tem-se assim uma decomposição da região rectangular R em mk rectângulos

58 Textos de Apoio de Análise Matemática IV 2003/2004. Tem-se assim uma decomposição da região rectangular R em mk rectângulos 58 Textos de Apoo de Análse Matemátca IV 3/4.3 Integral duplo.3.1 efnção Seja um rectângulo fechado de, sto é, [a, b] [c, d] {(x, y) : a x b e c y d}, com a < b e c < d. Consdere-se uma partção do ntervalo

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00.

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00. Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Slva - Ensno Médo - 3º ano Lsta de Revsão 1. (Upe-ssa 017) Márca e Marta juntas pesam 115 kg; Marta e Mônca pesam juntas 113 kg; e Márca e Mônca pesam

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações.

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Números Complexos Conceto, formas algébrca e trgonométrca e operações. Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos: Qual o resultado da

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

Álgebra ( ) ( ) Números complexos.

Álgebra ( ) ( ) Números complexos. Números complexos Resolva as equações no campo dos a) x² 49 = 0 x² - x = 0 x² - x = 0 d) x² - x = 0 Dado = (4a ) - (a - ) determne o número real a tal que seja: a) magnáro puro real Sendo = (4m -) (n -),

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Esp. Vet. I. Espaços Vetoriais. Espaço Vetorial. Combinações Lineares. Espaços Vetoriais. Espaço Vetorial Combinações Lineares. Esp. Vet.

Esp. Vet. I. Espaços Vetoriais. Espaço Vetorial. Combinações Lineares. Espaços Vetoriais. Espaço Vetorial Combinações Lineares. Esp. Vet. Definição (R n 1 a Parte R n é o conjunto das n-uplas ordenadas de números reais. (1,, R Paulo Goldfeld Marco Cabral (1, (, 1 R Departamento de Matemática Aplicada Universidade Federal do Rio de Janeiro

Leia mais

HOMOTETIAS, COMPOSIÇÃO DE HOMOTETIAS E O PROBLEMA 6 DA IMO 2008 Carlos Yuzo Shine Nível Avançado

HOMOTETIAS, COMPOSIÇÃO DE HOMOTETIAS E O PROBLEMA 6 DA IMO 2008 Carlos Yuzo Shine Nível Avançado HMTETIS, MPSIÇÃ DE HMTETIS E PREM 6 D IM 008 arlos Yuzo Shne Nível vançado ntes de começar a dscussão, vamos enuncar o problema 6 da IM 008, que é a motvação prncpal desse artgo. Problema 6, IM 008. Seja

Leia mais

A ; (1) A z. A A y

A ; (1) A z. A A y 1 Prmera aula Thals Grard thalsjg@gmal.com Sumáro 1. Introdução da notação ndcal 2. O produto escalar e o de Kronecker 3. Rotações 4. O produto vetoral e o " de Lev-Cvta 5. Trplo produto escalar e determnantes

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

NÚMEROS COMPLEXOS. Prof.ª Mª João Mendes Vieira

NÚMEROS COMPLEXOS. Prof.ª Mª João Mendes Vieira Prof.ª Mª João Mendes Vera Os Bablónos em 1700 AC já conhecam regras para resolver Equações do º grau. Os Gregos demonstraram essas regras e conseguram, por processos geométrcos, obter raízes rraconas.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto Números Complexos Conceto, formas algébrca e trgonométrca e operações. Autor: Glmar Bornatto Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos:

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS TE0 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS Números Complexos Introdução hstórca. Os números naturas, nteros, raconas, rraconas e reas. A necessdade dos números complexos. Sua relação com o mundo

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria.

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria. Elementos de Engenhara Químca I Apêndce B Apêndce B Frações másscas, molares e volúmcas. Estequometra. O engenhero químco lda constantemente com msturas de compostos químcos em stuações que mporta caracterzar

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres Análse de Varânca Rejane Sobrno Pnhero Tana Gullén de Torres Análse de Varânca Introdução Modelos de análse de varânca consttuem uma classe de modelos que relaconam uma varável resposta contínua com varáves

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

[T ] Subespaços Invariantes

[T ] Subespaços Invariantes Subespaços Inarantes Sea um R-espaço etoral n dmensonal e T : um operador lnear O subespaço etoral S é denomnado subespaço etoral narante pelo operador T ou subespaço etoral T-narante quando T ( S S, sendo

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

ESTUDO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

ESTUDO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO ESTUDO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches (Bolssta UEMS), Adrana Betâna de Paula Molgora Unversdade Estadual de Mato Grosso do Sul Cdade Unverstára de Dourados, Caxa

Leia mais

Números Complexos Sumário

Números Complexos Sumário Números Complexos Sumáro. FORMA ALGÉBRICA DOS NÚMEROS COMPLEXOS.. Adção de úmeros complexos... Propredades da operação de adção.. Multplcação de úmeros complexos... Propredades da operação de multplcação..

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

EXERCÍCIOS DE MATEMÁTICA Prof. Mário

EXERCÍCIOS DE MATEMÁTICA Prof. Mário EXERCÍCIOS DE MATEMÁTICA Prof. Máro e-mal: maroffer@yahoo.com.br 0 Conjuntos dos Números Complexos 0. Undade magnára º) Determne as raíes magnáras da equação x + 75 = 0 º) Encontre as raíes magnáras da

Leia mais

Espaços Vetoriais. () Espaços Vetoriais 1 / 17

Espaços Vetoriais. () Espaços Vetoriais 1 / 17 Espaços Vetoriais () Espaços Vetoriais 1 / 17 Espaços Vetoriais Definição Seja um conjunto V, não vazio. i. Uma adição em V é uma operação que a cada par de elementos (u, v) V V associa um elemento u +

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

Cristina Caldeira 97. Tem-se assim uma decomposição da região Q em mkq paralelipípedos rectangulares

Cristina Caldeira 97. Tem-se assim uma decomposição da região Q em mkq paralelipípedos rectangulares Crstna Caldera 97 (c) T {(x, y) R : y a x } (a R + ) e ρ(x, y) é a dstânca de (x, y) ao ponto (, ); (d) T [, 3] [, ] e ρ(x, y) xy..4 Integral trplo.4.1 efnção e propredades Seja Q um paralelpípedo rectangular

Leia mais

Transistores Bipolares de Junção Parte I Transistores Bipolares de Junção (TBJs) Parte I

Transistores Bipolares de Junção Parte I Transistores Bipolares de Junção (TBJs) Parte I Transstores Bpolares de Junção (TBJs) Parte I apítulo 4 de (SEDRA e SMITH, 1996). SUMÁRIO Introdução 4.1. Estrutura Físca e Modos de Operação 4.2. Operação do Transstor npn no Modo Atvo 4.3. O Transstor

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág. ísca Setor Prof.: Índce-controle de Estudo ula 37 (pág. 88) D TM TC ula 38 (pág. 88) D TM TC ula 39 (pág. 88) D TM TC ula 40 (pág. 91) D TM TC ula 41 (pág. 94) D TM TC ula 42 (pág. 94) D TM TC ula 43 (pág.

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Se considerarmos, por exemplo, uma função f real de variável real,

Se considerarmos, por exemplo, uma função f real de variável real, 107 5 Gráfcos 5.1 Introdução Dada uma função real de varável real 16 f, o gráfco desta função é o conjunto de pontos ( x, y), onde x pertence ao domíno da função e f ( x) y =, ou seja, {( x y) x D y f

Leia mais

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências.

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências. 1 Fltros são dspostvos seletvos em freqüênca usados para lmtar o espectro de um snal a um determnado ntervalo de freqüêncas. A resposta em freqüênca de um fltro é caracterzada por uma faxa de passagem

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais Espaços Vectoriais - Matemática II - 2004/05 40 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais