AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de

Tamanho: px
Começar a partir da página:

Download "AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de"

Transcrição

1 Prof. Isabel Matos & José Amaral ALGA A Eercícios. DETERMINAR MA ASE DE M SESPAÇO... Determinar uma base do subespaço de R { } (,,, ) (,,, ) : ( ) ( ) L u u u u R W ma ve que qualquer conjunto de k vectores linearmente independentes pertencentes a W é uma base de W, sendo k a dimensão do subespaço, a solução particular encontrada depende do método utiliado na sua determinação. Dadas as restrições impostas, temos o sistemas de equações Faendo, o que corresponde a considerar e como variáveis livres, e e como variáveis principais, resulta que os vectores ),,, ( u pertencentes ao subespaço são da forma u TÓPICOS Eercícios. ALA Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realiar pelo aluno resolvendo os problemas apresentados na bibliografia, sem consulta prévia das soluções propostas, análise comparativa entre as suas resposta e a respostas propostas, e posterior eposição junto do docente de todas as dúvidas associadas.

2 Prof. José Amaral ALGA A Ou seja, são uma combinação linear dos vectores ) (,,, u e ) (,,, u. Dado que u e u são linearmente independentes fica assim determinada uma base de W. Se analisarmos formalmente o sistema, ou seja, na forma matricial >> A[ - ;- - ]; >> [ ]'; >> rref([a ]) ans - - -, concluímos que o sistema é possível e indeterminado, sendo e variáveis principais e e variáveis livres, as soluções do sistema são da forma ou seja u são portanto uma combinação linear dos vectores ) (,,, u e ),,, ( u. Dado que u e u são linearmente independentes, fica assim determinada uma outra base de W. Note-se que u u. O subespaço W tem dimensão ; quaisquer vectores linearmente independentes pertencentes W são uma base de W.

3 REPRESENTAR M VECTOR EM ASES DIFERENTES... Vimos num eemplo anterior que, em base {, } R, dadas a base canónica { e, e} e e E e a W, com e e e, sendo conhecida a representação de v na base W, v, podemos encontrar a representação de v na base E [ v] W [ v] E, atendendo ao conceito de matri de transição, [ v] E MW E [ v] W [[ ] [ ] ][] v E E W pelo que v [ e e ] e e Caso fosse conhecida a representação de v na base E, v e e, e se pretendesse encontrar a representação de v na base W [ v] E [ v] W, deveríamos ter em atenção que logo [ v] W M W E [ v] E Figura. [] v ou seja v. W....6 Prof. José Amaral ALGA A

4 E X E R C Í C I O S R, consideremos a base canónica { e, e} e e u e e, e o vector v e e.. Em E, a base { u, u }, com u e. Consideremos o problema de, sendo conhecida a representação de v na base E, encontrar a representação de v na base [ v] E [ v] Sendo conhecida a matri de transição da base para a base E, e dado que temos M E [[ u ] [ u ] ] E E M E M E Figura. [] v M [] v E, ou seja, v u u. E R, consideremos a base { u, u}, e e e e.. Em, com u e e e u e e, a base W { }, com e, e v. Pretendemos encontrar a representação de v na base [ v] W [ v] Com os dados do problema, é fácil determinar as matries de transição das base W e para a base canónica M M W E E Pelo que, considerando a representação intermédia de v na base canónica, sendo e [ v] W [ v] E [ v] [ v ] E M W E [ v] W [ v] M E [ v] E M E [ v] E Prof. José Amaral ALGA A

5 E X E R C Í C I O S resulta, ou seja, v u u. >> u[- ]'; >> u[ -]'; >> [ ]'; >> [ -]'; >> Me[ ]; >> Mue[u u]; >> v[ ]'; >> vuinv(mue)*me*v vu.. [] v M M [ v] E W E W ** INDEPENDÊNCIA LINEAR EM ESPAÇOS DE FNÇÕES..5. Verificar se r ( ). p( ) pertence ao subespaço de P gerado por q ( ) e Trata-se de verificar se o vector p( ) pertence ao espaço gerado pelos vectores q ( ) e r ( ), ou seja, verificar se eistem escalares k e k tais que p( ) kq( ) kr( ). Temos então, o que implica, ou seja, na forma matricial O sistema é possível e determinado p ( ) kq ( ) kr ( ) k ( ) k ( ) k k k k k k ( k k ) ( k k ) ( k k ) k k k k k k k k Prof. José Amaral ALGA A

6 ~, sendo, portanto, k e k. Ou seja, p( ) q( ) r( )..6. Verificar se os vectores, e, e e são linearmente independentes. Recorrendo ao Wronskiano dos vectores, temos e e det e e e e e e e Dado que o determinante não é nulo para todo o, os vectores são linearmente independentes. ** MDANÇA DE ASE EM ESPAÇOS DE FNÇÕES..7. Escrever o vector na base {,, } P. Temos, o que implica, ou seja, na forma matricial, e, dado que ( ) ( ) ( ) k k k k k k k k k ( k k ) ( k k ) ( k k ) k k k k k k k k k ~ temos ( ) ( ) ( ) Prof. José Amaral ALGA A

7 n.8. À semelhança de R podemos analisar o problema anterior recorrendo ao conceito de matri de mudança de base. Considerando a base canónica de P, {,, }, podemos escrever o vector p( ) na forma (,, ), isto é, eplicitando apenas as coordenadas do vector na base canónica. Por outro lado, dado que conhecemos as coordenadas dos P,, na base canónica, vectores da base { } P {(,, ),(,,),(,, ) }, a escrita da matri de mudança da base P para a base, M P, é imediata, dado ser a matri cujas colunas correspondem às coordenadas dos vectores p i na base Resulta então [ ] [ ] [ ] M p p p P [ p ( )] M [ p ( )] P M P P [ p( ) ], tal como tínhamos calculado no eemplo anterior. MISCELÂNEA..9. Para cada um dos conjuntos seguintes, averigue se são subespaços dos espaços vectoriais reais indicados. a) A { (, ) R : } R b) { (,,, ) R : } R a) A não é um subespaço de R. asta verificar que (, ) não pertence ao conjunto, dado que não verifica a condição,. Prof. José Amaral ALGA A

8 O conjunto de pontos (, ) R : constitui uma recta que não passa na origem. Qualquer recta que não passe na origem não constitui um subespaço vectorial de R. b) Dadas as restrições impostas, temos o sistemas de equações Faendo, o que corresponde a considerar e como variáveis livres, e e como variáveis principais, resulta que os vectores u (,,, ) pertencentes ao, eventual, subespaço são da forma u Ou seja, constituem o subespaço resultante da combinação linear dos vectores de R, u (,,,) e u (,,, ). é um subespaço de R de dimensão, constituindo u e u uma sua base... Considere o subespaço de R definido por { (,,, ) R : } W { T T T } e o conjunto [ ], [ ], [ ] de vectores de seja ainda G L( ) o subespaço gerado por. R, e a) Determine uma base e a dimensão de W. b) Construa uma base de R que contenha a base de W que indicou em a). c) Diga, justificando, se os vectores u [ ] T e v [ ] T pertencem a W e, em caso afirmativo, determine as suas coordenadas em relação à base de W que indicou na alínea anterior. d) Porque raão não pode ser uma base de R. e) Justifique se é linearmente independente. f) Indique uma base e a dimensão de G e caracterie os vectores de G por meio de uma condição nas suas coordenadas. g) Determine o subespaço H G W, indicando uma base e a dimensão de H. h) Será G W um subespaço de R? Justifique a resposta. Prof. José Amaral ALGA A

9 a) ma ve que qualquer conjunto de k vectores linearmente independentes pertencentes a W é uma base de W, sendo k a dimensão do subespaço, a solução particular encontrada depende do método utiliado na sua determinação. Dado que apenas é imposta uma restrição podemos escolher quaisquer das variáveis para variáveis livres. Por eemplo, faendo:, ou seja, escolhendo como variável principal, resulta que os vectores u (,,, ) pertencentes ao subespaço são da forma u Ou seja, são uma combinação linear dos vectores u (,,, ), u (,,, ) e u (,,,). Dado que u, u e u são linearmente independentes, ~, fica assim determinada uma base de W que é portanto um subespaço de R de dimensão. b) asta juntar a u, u e u um vector da base canónica de R que seja linearmente independente destes. Por eemplo, u (,,, ), é, como se pode ver por observação da matri escalonada acima, que não tem pivot na a coluna, linearmente independente de u, u e u, constituindo assim os vectores uma base de R. c) Se os vectores u [ ] T e [ ] v T pertencem a W podem ser escritos como combinação linear de uma sua base. Sendo a base constituída pelos vectores u (,,, ), u (,,, ) e u (,,,), temos u u u u Prof. José Amaral ALGA A

10 Escalonando a matri completa do sistema, temos: ~ ~ O sistema é possível e determinado tendo como solução, e. Portanto u [ ] T pertencem a W, u u u u u u, ou u T. seja, [ ] Procedendo de modo semelhante, temos para v [ ] v u u u Escalonando a matri completa do sistema, temos: O sistema é impossível, pelo que T ~ ~ v W. d) não pode ser uma base de R dado que toda a base de vectores e é constituído apenas por vectores. R é constituída por e) Dispondo os vectores de sobre as linhas de uma matri e procedendo ao seu escalonamento, temos:, pelo que é linear independente. A ~ ~ 5 f) Sendo os vectores de linearmente independentes constituem uma base do espaço G por eles gerado que tem, portanto, dimensão. Podemos assim escolher para base de G os vectores u [ ], u [ ] T e [ ] u T. Para caracteriar mais facilmente os vectores de G por meio de uma condição nas suas coordenadas, podemos continuar o escalonamento da matri A Prof. José Amaral ALGA A

11 A ~ ~ Assim, os vectores u (,,, ) G são tais que k u k k k k k Ficando assim determinada a condição: { (,,, ) R : } G Nota: O método de resolução acima é equivalente ao utiliado na aula. Teríamos: ~ ~ 5 Para que o sistema seja possível, ou seja, qualquer vector de G seja uma combinação linear de u, u, u, deverá ser, a mesma condição obtida acima. g) O subespaço H G W, tendo que verificar simultaneamente as condições a que cada um dos dois subespaço obedece é { (,,, ) R : } H Temos então que todos os vectores u (,,, ) pertencentes ao subespaço são da forma u Ou seja, são uma combinação linear dos vectores u (,,, ) e u (,,,). Dado que u, u e u são linearmente independentes, fica assim determinada uma base de H que é portanto um subespaço de R de dimensão. h) G W só seria um subespaço de R se G W ou G W, o que, como podemos concluir dos resultados obtidos na alínea g), não se verifica. Assim sendo, o espaço resultante da reunião não é fechado relativamente à adição vectorial, como podemos comprovar facilmente. Por eemplo, u (,,,) W, dado que, u (,,,) G, dado que, e portanto u, u G W, mas u u (,,,) G W, dado que não verifica nenhuma das condições. Prof. José Amaral ALGA A

12 .. Seja W um espaço vectorial real e { u, u, u } uma base de W. Diga, justificando, se cada uma dos conjuntos seguintes gera W. a) C { u u u, u u, u u} b) D { u u, u u u, u u u } a) W é um espaço de dimensão. C, constituído por vectores, c u u u, c u u e c u u, poderá gerar W, se os vectores forem linearmente independentes, e, se assim for, por serem em número igual à dimensão do espaço, c, c e c para além de gerar W constituem uma sua base. Temos: [ ] T [ ] T [ ] c u u u c u u c u u Para verificar se os vectores são linearmente independentes basta dispo-los sobre as linhas de uma mati e escaloná-la A ~ ~ Os vectores c, c e c não são linearmente independentes, c c c, logo não geram W. b) Procedendo de modo semelhante a a), temos T [ ] [ ] [ T ] c u u c u u u c u u u A ~ ~ ~ Neste caso os vectores c, c e c são linearmente independentes, logo geram W constituindo uma sua base. O enunciado dá-nos os vectores c escritos na base. Constituindo C uma base de W é imediato escrever a matri de mudança de base da base C para a base : [ v] M [ v] [ v] [ v] Por eemplo, o vector c escrito na base C é C C C T T, resultando na base [ ] c c c c T C Prof. José Amaral ALGA A

13 , ou seja, c u u. [ v] M [ v] C C C.. Sejam u, u, u e u vectores de um espaço vectorial real W tais que u o u u o u u u o u L( u, u, u ) Indique, justificando, uma base e a dimensão do subespaço G L( u, u, u, u) W gerado pelos quatro vectores. O vector u é linearmente dependente do vector u :, tal como o vector u : u u 5 u u u u u u Todos eles geram o mesmo espaço, um espaço de dimensão. Dado que u L( u, u, u ), logo é linearmente independente de u, então G L( u, u, u, u) L( u, u), ou seja, u e u constituem uma base de G que é um espaço de dimensão... Considere o subespaço de R definido por { (,, ) R : } W T { } e o conjunto [ ] T,[ ] de vectores de R, e seja ainda G L( ) o subespaço gerado por. a) Determine uma base e a dimensão de W. b) Diga, justificando, se os vectores u [ ] T e v [ ] T pertencem a W e, em caso afirmativo, determine as suas coordenadas em relação à base de W que indicou na alínea anterior. c) Construa uma base de R que contenha a base de W que indicou em a). d) Indique uma base e a dimensão de G e caracterie os vectores de G por meio de uma condição nas suas coordenadas. e) Será G W um subespaço de R? Justifique a resposta. Prof. José Amaral ALGA A

14 a) ma ve que qualquer conjunto de k vectores linearmente independentes pertencentes a W é uma base de W, sendo k a dimensão do subespaço, a solução particular encontrada depende do método utiliado na sua determinação. Dado que apenas é imposta uma restrição podemos escolher quaisquer das variáveis para variáveis livres. Por eemplo, faendo:, ou seja, escolhendo como variável principal, resulta que os vectores u (,, ) pertencentes ao subespaço são da forma u Ou seja, são uma combinação linear dos vectores u (,, ), u (,,). Dado que u e u são linearmente independentes,, fica assim determinada uma base de W que é portanto um subespaço de R de dimensão. b) Se os vectores u [ ] T e [ ] v T pertencem a W podem ser escritos como combinação linear de uma sua base. Sendo a base constituída pelos vectores u (,, ), u (,,), temos u u u Escalonando a matri completa do sistema, temos: ~ ~ O sistema é possível e determinado tendo como solução e. Portanto [ ] u T pertence a W, T. u u u, ou seja, u [ ] Procedendo de modo semelhante, temos para v [ ] T Prof. José Amaral ALGA A

15 v u u Escalonando a matri completa do sistema, temos: O sistema é impossível, pelo que ~ ~ v W. c) asta juntar a u e u um vector da base canónica de R que seja linearmente independente destes. Por eemplo, u (,,), é, como se pode ver por observação da matri acima, que não tem pivot na a coluna, linearmente independente de u e u, constituindo assim os vectores uma base de R. d) Dispondo os vectores de sobre as linhas de uma matri e procedendo ao seu escalonamento, temos: A ~ ~, pelo que não é linear independente. O vector u (,, ) constitui uma base do espaço G por eles gerado que tem, portanto, dimensão. Vamos agora caracteriar os vectores de G por meio de uma condição nas suas coordenadas. Temos que os vectores u (,, ) G são tais que Ficando assim determinadas as condições: h) G W só será um subespaço de k u k k { (,, ) R : } G R se G W ou G W. Sendo { (,, ) R : } W { (,, ) R : } G temos que, para, a condição resulta em, ou seja, G W. Assim sendo, G W é um subespaço de R Prof. José Amaral ALGA A

16 E X E R C Í C I O S R, considere as bases { u, u, u } W,,, com.. Em, com u e, u e e e u e e e { } e e, e e e e e. Sendo v determine a representação de v na base. Pretendemos encontrar a representação de v na base [ v] W [ v] Com os dados do problema, é fácil determinar as matries de transição das bases W e para a base canónica. Sendo e e, e e e e e temos M W E Sendo u e, u e e e u e e temos M E Pelo que, considerando a representação intermédia de v na base canónica, sendo e [ v] W [ v] E [ v] [ v ] E M W E [ v] W [ v] M E [ v] E M E [ v] E resulta [ v] M M [ v] E W E W, ou ainda, multiplicando à esquerda por M E, [ ] [ ] M v M v E W E [] v Escalonando a matri completa do sistema, resulta ~ ~ Pelo que [ v ] [ ] T u u u W Prof. José Amaral ALGA A

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de Prof. Isabel Matos & José Amaral ALGA A - 6--9. Eercícios. DETERMINAR MA ASE DE M SESPAÇO... Determinar uma base do subespaço de R { } (,,, ) (,,, ) : ( ) ( ) L u u u u R ma ve que qualquer conjunto de

Leia mais

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de

AULA 13 { } 13. Exercícios. DETERMINAR UMA BASE DE UM SUBESPAÇO Determinar uma base do subespaço de Prof Isabel Matos & José Amaral ALGA A3-7--8 3 ercícios DTRMINAR MA BAS D M SBSPAÇO 3 Determinar uma base do subespaço de 4 R { } 4 3 4 (,,, ) (,,, ) : ( ) ( ) L u u u u R ma ve que qualquer conjunto de

Leia mais

AULA Exercícios. VERIFICAR SE UM VECTOR É UMA COMBINAÇÃO LINEAR DE UM CONJUNTO DE VECTORES.

AULA Exercícios. VERIFICAR SE UM VECTOR É UMA COMBINAÇÃO LINEAR DE UM CONJUNTO DE VECTORES. Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

{ 1 2 3, 2 4 6, T

{ 1 2 3, 2 4 6, T Ficha de rabalho 0 e 05 Espaços Vectoriais. (Aulas 9 a 1). Vectores em n. Vectores livres. Vectores em 2 e. Vectores em n. Vectores iguais. Soma de vectores. Produto de um escalar por um vector. Notação

Leia mais

AULA Exercícios O sistema de equações lineares. tem a matriz completa. , pelo que

AULA Exercícios O sistema de equações lineares. tem a matriz completa. , pelo que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1 Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL REGIME NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA º FREQUÊNCIA de Janeiro de 8 Duração:

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,

Leia mais

TÓPICOS. Matriz escalonada. Pivot. Matriz equivalente por linhas. Característica.

TÓPICOS. Matriz escalonada. Pivot. Matriz equivalente por linhas. Característica. Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira TÓPICOS Matriz escalonada. AUA Chama-se a atenção para a importância do trabalho

Leia mais

TÓPICOS. Exercícios. Determinando a matriz escalonada reduzida equivalente

TÓPICOS. Exercícios. Determinando a matriz escalonada reduzida equivalente Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo

Leia mais

Ficha de Trabalho 09 e 10

Ficha de Trabalho 09 e 10 Ficha de Trabalho 09 e 0 Diagonalização. (Aulas a 6). Diagonalização. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -. Diagonalização

Leia mais

Tópicos para a resolução do exame de Álgebra de 11 de Janeiro de 2000 (1ª Chamada)

Tópicos para a resolução do exame de Álgebra de 11 de Janeiro de 2000 (1ª Chamada) 6 & ' 6 a Tópicos para a resolução do eame de Álgebra de de Janeiro de 000 (ª Chamada) Im z z - - z Re b c d ( artg ) ( artg ) ; 9 6 ; z e z e e z e 6 6 p e z e z z ( )e ( ) e ( ) ( ) i z z z z z 6 Re(

Leia mais

1 Espaços Vectoriais

1 Espaços Vectoriais Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um

Leia mais

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho Primeira prova de Álgebra Linear - 6/5/211 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2, pts)

Leia mais

w 1 = v 1 + v 2 + v 3 w 2 = 2v 2 + v 3 (1) w 3 = v 1 + 3v 2 + 3v 3 também são linearmente independentes. T =

w 1 = v 1 + v 2 + v 3 w 2 = 2v 2 + v 3 (1) w 3 = v 1 + 3v 2 + 3v 3 também são linearmente independentes. T = Independência e dependência linear ) a) Sejam v, v e v vectores linearmente independentes de um espaço linear S. Prove que os vectores também são linearmente independentes. Resolução Seja V a expansão

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução do 1º este 07 de Maio de 2012 Ano Lectivo: 2011-2012 Semestre: Verão ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear e Geometria Analítica - Resolução do

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 1º Teste ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução do 1º este 05 de Maio de 2014 Ano Lectivo: 2013-2014 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear e Geometria

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013 ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x

Leia mais

Álgebra Linear - Exercícios resolvidos

Álgebra Linear - Exercícios resolvidos Exercício 1: Álgebra Linear - Exercícios resolvidos Sejam E = L({(1, 1, 1), (1, 2, 2)}) e F = L({(, 1, 1), (1, 1, 2)}). a) Determine a dimensão de E + F. b) Determine a dimensão de E F. Resolução: a) Temos

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das

Leia mais

Indicação de uma possível resolução do exame

Indicação de uma possível resolução do exame Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere

Leia mais

ESPAÇOS LINEARES (ou vetoriais)

ESPAÇOS LINEARES (ou vetoriais) Álgebra Linear- 1 o Semestre 2018/19 Cursos: LEIC A Lista 3 (Espaços Lineares) ESPAÇOS LINEARES (ou vetoriais) Notações: Seja A uma matriz e S um conjunto de vetores Núcleo de A: N(A) Espaço das colunas

Leia mais

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais): a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre

Leia mais

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2014.2 OBS: Todas as alternativas corretas são as letras A. 1) Vamos falar um pouco de interseção, união e soma de subespaços.

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. mai/0 São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto

Leia mais

(2008/2009) Espaços vectoriais. Matemática 1º Ano - 1º Semestre 2008/2009. Mafalda Johannsen

(2008/2009) Espaços vectoriais. Matemática 1º Ano - 1º Semestre 2008/2009. Mafalda Johannsen Espaços vectoriais Matemática 1º Ano 1º Semestre 2008/2009 Capítulos Características de um Espaço Vectorial Dimensão do Espaço Subespaço Vectorial Combinação Linear de Vectores Representação de Vectores

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 1º Teste Realizado em 01 de Fevereiro de 2012 Ano Lectivo: 2011-2012 Semestre: Inverno ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo

Leia mais

Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos

Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 Expansão linear e geradores Se u 1 ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u 1 ; u ;

Leia mais

GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z.

GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z. GAAL - Primeira Prova - 06/abril/203 SOLUÇÕES Questão : Considere o seguinte sistema linear nas incógnitas x, y e z. x + ay z = x + y + 2z = 2 x y + az = a Determine todos os valores de a para os quais

Leia mais

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA REGIMES DIURNO/NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA EXAME DE ÉPOCA

Leia mais

ÁLGEBRA LINEAR. Exame Final

ÁLGEBRA LINEAR. Exame Final UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0

Leia mais

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 07h00-09h00

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 07h00-09h00 Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof Juliana Coelho - 07h00-09h00 QUESTÃO 1 (2,0 pts - Considere os seguintes vetores de R3 : u = (3, 2, 2, v = (1, 3, 1 e w = ( 1, 4, 4 Responda as

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução da Repetição do 1º este 04 de Fevereiro de 2015; 19:00 Ano Lectivo: 2014-2015 Semestre: Inverno Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

Dependência linear e bases

Dependência linear e bases Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência

Leia mais

Álgebra Linear e Geometria Analítica. 7ª aula

Álgebra Linear e Geometria Analítica. 7ª aula Álgebra Linear e Geometria Analítica 7ª aula ESPAÇOS VECTORIAIS O que é preciso para ter um espaço pç vectorial? Um conjunto não vazio V Uma operação de adição definida nesse conjunto Um produto de um

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do 1º Teste 29 de Abril de 2015; 18:30 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra Linear

Leia mais

Ficha de Exercícios nº 1

Ficha de Exercícios nº 1 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 1 Espaços Vectoriais 1 Qual das seguintes afirmações é verdadeira? a) Um espaço vectorial pode ter um número ímpar de elementos.

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

2 a. Lista de Exercícios

2 a. Lista de Exercícios Última atualização 16/09/007 FACULDADE Engenharia: Disciplina: Álgebra Linear Professor(a): Data / / Aluno(a): Turma a Lista de Exercícios A álgebra de vetores e a álgebra de matrizes são similares em

Leia mais

Álgebra Linear para MBiol MAmb

Álgebra Linear para MBiol MAmb Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Álgebra Linear para MBiol MAmb Teste 3 22 de Dezembro de 212 Duração: 9 minutos Resolução da versão A (1. val.) 1. Considere

Leia mais

Actividade Formativa 1

Actividade Formativa 1 Actividade Formativa 1 Resolução 1. a. Dada a função y 3+4x definida no conjunto A {x R: 2 x < 7} represente graficamente A e a sua imagem; exprima a imagem de A como um conjunto. b. Dada a função y 3

Leia mais

Nota de aula: Transformações Lineares

Nota de aula: Transformações Lineares Nota de aula: Transformações Lineares Prof. Rebello out/99 rev. out/ São aplicações entre espaços vetoriais, isto é, funções onde tanto o domínio como o contra domínio são espaços vetoriais, portanto todas

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

Ficha de Trabalho 06 e 07

Ficha de Trabalho 06 e 07 Ficha de rabalho 06 e 07 Produto Interno. (Aulas 1 a 18). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto interno. Norma. Desigualdade de

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento

Leia mais

Matemática. Lic. em Enologia, 2009/2010

Matemática. Lic. em Enologia, 2009/2010 Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v

Leia mais

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22).

Ficha de Trabalho 08 Transformações Lineares. (Aulas 19 a 22). F I C H A D E R A B A L H O 0 8 Ficha de rabalho 08 ransformações Lineares. (Aulas 19 a ). Produto interno em R n. Vectores livres: Ângulo de dois vectores. Vectores ortogonais. Vectores em R n : Produto

Leia mais

Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química

Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química Código do Teste: 105 Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química 1. Para as matrizes A = ( 1 0 3 1 ) B = ( 5 4 1 0 2 1 3 1 ) C = 1 1 1 0 5 1

Leia mais

1. Considere a seguinte matriz dos vértices dum triângulo D = 0 2 3

1. Considere a seguinte matriz dos vértices dum triângulo D = 0 2 3 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA 7 a LISTA DE PROBLEMAS E EXERCÍCIOS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2006/07 - aulas práticas de 2006-12-04 e 2006-12-06

Leia mais

ALGA I. Bases, coordenadas e dimensão

ALGA I. Bases, coordenadas e dimensão Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........

Leia mais

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018 GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente

Leia mais

Resolução do 1 o Teste - A (6 de Novembro de 2004)

Resolução do 1 o Teste - A (6 de Novembro de 2004) ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

Os Quatro Subespaços Fundamentais

Os Quatro Subespaços Fundamentais Álgebra Linear e Geometria Analítica Texto de apoio Professor João Soares 7 páginas Universidade de Coimbra 26 de Novembro de 29 Os Quatro Subespaços Fundamentais Seja A uma matriz m n de elementos reais.

Leia mais

Exercícios Resolvidos Variedades

Exercícios Resolvidos Variedades Instituto Superior Técnico Departamento de atemática Secção de Álgebra e Análise Eercícios Resolvidos Variedades Eercício 1 Considere o conjunto = {(,, ) R : + = 1 ; 0 < < 1}. ostre que é uma variedade,

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época de Recurso) 15 de Julho de 2015; 10:00 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç

Leia mais

Mensagem descodificada. Mensagem recebida. c + e

Mensagem descodificada. Mensagem recebida. c + e Suponhamos que, num determinado sistema de comunicação, necessitamos de um código com, no máximo, q k palavras. Poderemos então usar todas as palavras a a 2 a k F k q de comprimento k. Este código será

Leia mais

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2013.1 OBS: Todas as alternativas corretas são as letras A. 1) Para ter ao menos uma solução devemos escalonar para ver

Leia mais

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller ÁLGEBRA LINEAR Combinação Linear, Subespaços Gerados, Dependência e Prof. Susie C. Keller Combinação Linear Sejam os vetores v 1, v 2,..., v n do espaço vetorial V e os escalares a 1, a 2,..., a n. Qualquer

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 2º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 2º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 2º Teste 30 de Junho de 2014 Ano Lectivo: 2013-2014 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra

Leia mais

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07

Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

ALGA - Eng. Civil e Eng. Topográ ca - ISE / Geometria Analítica 89. Geometria Analítica

ALGA - Eng. Civil e Eng. Topográ ca - ISE / Geometria Analítica 89. Geometria Analítica ALGA - Eng. Civil e Eng. Topográ ca - ISE - 011/01 - Geometria Analítica 9 Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste

Leia mais

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência

Leia mais

Espaços Vectoriais. Espaços Vectoriais

Espaços Vectoriais. Espaços Vectoriais Espaços Vectoriais Espaço vectorial sobre um corpo V - conjunto não vazio de objectos, chamados vectores F - conjunto de escalares, com estrutura de corpo Em V definimos duas operações: - adição de elementos

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

Módulo de Matrizes e Sistemas Lineares. Sistemas Lineares

Módulo de Matrizes e Sistemas Lineares. Sistemas Lineares Módulo de Matrizes e Sistemas Lineares Sistemas Lineares Matrizes e Sistemas Lineares Sistemas Lineares Eercícios Introdutórios 9 3 5 7 = 4 5 Eercício. Determine quais das equações abaio são lineares +

Leia mais

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2 Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A

Leia mais

ALGA I. Representação matricial das aplicações lineares

ALGA I. Representação matricial das aplicações lineares Módulo 6 ALGA I Representação matricial das aplicações lineares Contents 61 Matriz de uma aplicação linear 76 62 Cálculo do núcleo e imagem 77 63 Matriz da composta 78 64 GL(n Pontos de vista passivo e

Leia mais

Resolução do efólio B

Resolução do efólio B Resolução do efólio B Álgebra Linear I Código: 21002 I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais Espaços Vectoriais - Matemática II - 2004/05 40 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o

Leia mais

ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral

ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral Módulo 9 ALGA I. Operadores auto-adjuntos (simétricos e hermitianos). Teorema espectral Contents 9.1 Operadores auto-adjuntos (simétricos e hermitianos) 136 9. Teorema espectral para operadores auto-adjuntos...........

Leia mais

Bases de subespaços. 5 a : aula prática (1.30h) e 08-04/2010 Bases de subespaços 5-1

Bases de subespaços. 5 a : aula prática (1.30h) e 08-04/2010 Bases de subespaços 5-1 a : aula prática (.h) - e 8-/ Bases de subespaços - Instituto Superior Técnico o semestre Álgebra Linear o ano da Lics.em Engenharia Informática e de Computadores e Engenharia Química Bases de subespaços

Leia mais

1 2 A, B 0 1. e C. 0 1

1 2 A, B 0 1. e C. 0 1 I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado respetivo. 1. No espaço vetorial R 4 considere

Leia mais

No eixo das ordenadas o ponto B tem abcissa nula (x 1 = 0) pelo que a equação se reduz a 20x 2 = 300. Madeira. C(10,10) não é admissível.

No eixo das ordenadas o ponto B tem abcissa nula (x 1 = 0) pelo que a equação se reduz a 20x 2 = 300. Madeira. C(10,10) não é admissível. IV. MÉTODO GRÁFICO O método gráfico só permite resolver problemas de PL de pequena dimensão (duas ou três variáveis) não sendo pois de considerar para resolução de problemas da vida real. Porque a determinação

Leia mais

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por:

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por: Lista de Exercícios - Espaços Vetoriais. Seja V o conjunto de todos os pares ordenados de números reais e considere as operações de adição e multiplicação por escalar definidas por: i. u + v (x y) + (s

Leia mais

Lista de exercícios 7 Independência Linear.

Lista de exercícios 7 Independência Linear. Universidade Federal do Paraná semestre 6. Algebra Linear Olivier Brahic Lista de exercícios 7 Independência Linear. Exercício : Determine se os seguintes vetores são linearmente independentes em R : (

Leia mais

ÍNDICE MATRIZES SISTEMAS DE EQUAÇÕES LINEARES ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ÍNDICE MATRIZES SISTEMAS DE EQUAÇÕES LINEARES ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA ÍNDICE MATRIZES Definição 1 Igualdade 2 Matrizes Especiais 2 Operações com Matrizes 3 Classificação de Matrizes Quadradas 9 Operações Elementares 11 Matriz Equivalente por Linha 11 Matriz na Forma Escalonada

Leia mais

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC Exercícios de Álgebra Linear o Semestre 008/009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC João Ferreira Alves/Ricardo Coutinho Sistemas de Equações Lineares e Matrizes Exercício Resolva por eliminação de Gauss

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Universidade Federal Fluminense - GAN

Universidade Federal Fluminense - GAN Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia

Leia mais

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 PROGRAMA 1. Sistemas de equações lineares e matrizes 1.1 Sistemas 1.2 Matrizes 1.3 Determinantes 2. Espaços vectoriais (ou espaços lineares) 2.1 Espaços e subespaços

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que:

Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: 21002 - Álgebra Linear I Ano lectivo 2015/16 Docente: António Araújo e-fólio A (20 a 30 de novembro) Para a resolução do e-fólio, aconselha-se que: Verifique se o ficheiro que recebeu está correcto. O

Leia mais

GAAL Exercícios 6: Umas soluções

GAAL Exercícios 6: Umas soluções GAAL Exercícios 6: Umas soluções. Quais dos seguintes vetores são combinação linear de u = (5, 3, ), v = (, 4, 3), w = (, 8, 7)? (a) (, 2, 5) (b) (, 2, 8) (c) ( 2, ) (d) (, 2, 3). O conjunto {u, v, w}

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof Álvaro Fernandes Serafim Última atualiação: //7 Esta apostila de Álgebra Linear foi elaborada pelos Professores Adelmo Ribeiro de Jesus Ilka

Leia mais