Dependência linear e bases

Tamanho: px
Começar a partir da página:

Download "Dependência linear e bases"

Transcrição

1 Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência linear Dado uma sequencia de vetores { v 1,, v n }, a soma dos múltiplos α 1 v α n v n é denominado de combinação linear O conjunto de vetores gerados pela combinação linear dos elementos de S será denotados por [S] Exemplo 11 O conjunto gerado por {(1, 0), (1, 1)} é todo plano De fato, { queremos que todo x α + β vetor (x, y) é escrito na forma (x, y) α(1, 0) + β(1, 1) Então temos de modo y β que basta escolher β y e α x β x y Denição 12 Dado uma sequência de vetores { v 1,, v n }, é dito linearmente independente (abreviadamente li), se α 1 v α n v n 0 implica em α 1 α n 0 Isto é, se a combinação linear for nula, seus coecientes devem ser nulos Como o vetor nulo pode ser obtido como a combinação linear com coecientes nulos, ser li signica que só tem uma forma de escrever o vetor nulo como combinação linear dos vetores dados Esta unicidade da representação como combinação linear pode ser generalizado como segue Proposição 13 Um conjunto { v 1,, v n } é li, se, e somente se, a combinação linear é única, isto é, li se, e somente se, α 1 v 1 + α n v n β 1 v β n v n implica α i β i Demonstração ( ) Suponha que é li Então α 1 v 1 + α n v n β 1 v β n v n implica que (α 1 β 1 ) v 1 + (α n β n ) v n 0 e consequentemente, α i β i 0 para todo i Logo, α i β i ( ) Seja α 1 v α n v n 0 então α 1 v 1 + α n v n 0 v v n implica α i 0 Denição 14 O conjunto que não é linearmente independentes é dito linearmente dependentes (abreviadamente, ld) 1

2 Exemplo 15 {(1, 2, 1), ( 1, 1, 2), (0, 3, 3)} é ld, pois α 1 (1, 2, 1) + α 2 ( 1, 1, 2) + α 3 (0, 3, 3) α 1 α (0, 0, 0) implica que 2α 1 + α 3 + 3α 3 0 na qual a matriz do sistema é cuja α 1 + 2α 2 + 3α determinante é nulo Então o sistema tem innitas soluções ou não tem solução Como ele tem pelo menos uma solução que é a solução nula, terá innitas soluções e tem solução não nula Assim, ele será ld (nem todos α i 's são nulas) Observando que no sistema acima, o número de variáveis é igual ao número de vetores dados e o número de equações é igual ao número de coordenadas, podemos concluir que Proposição 16 { v 1,, v n } com n maior que o número de coordenadas do vetor é ld Por exemplo, {(1, 1), ( 1, 2), (3, 1)} é ld Proposição 17 No caso de { v 1,, v n } com n igual ao número de coordenadas, é li se, e somente se, determinante da matriz formado pelos vetores forem não nulas Por exemplo, {(1, 1), ( 1, 2)} é li por ter determinante igual a 3 Teorema 18 O conjunto { v 1,, v n } é ld se, e somente se, algum dos vetores é combinação linear dos restantes Demonstração ( ) Suponha α 1 v α n v n 0 de modo que α i 0 para algum i Então temos α i v i α 1 v 1 α i v i α n v n onde α i v i signica que é para omitir α i v i nesta soma Como α i 0, podemos dividir por ele e obter v i α 1 α i v 1 α i α i v i αn α i v n o que conclui que v i é uma combinação linear dos restantes ( ) Se v i β 1 v β i v i + +β n v n, podemos escrever β 1 v 1 + +( 1) v i + +β n v n 0 que é uma combinação linear na qual coeciente de v i não é nula Corolário 19 Dois vetores não nulos é ld se, e somente se, um for múltiplo do outro Exercício 110 Mostre que {(1, 2, 1), (2, 1, 3)} é li Exercício 111 Mostre que {(2, 4, 2), (3, 6, 3)} é ld Exercício 112 Mostre que { 0, v 2,, v n } é ld Quando o vetor esta escrito em coordenadas, a forma rápida de descobrir se é li ou ld é através do escalonamento Pelo Teorema 18, um conjunto de vetores é ld se tiver pelo algum vetor escrito como combinação linear dos restantes Se montar uma matriz cuja linhas são vetores dados, isto signica que alguma linha é combinação linear das outras linhas Assim, se efetuar escalonamento nestas matrizes, aparecerá a linha nula Isto ajuda na determinação da dependência linear com vetores de mais de 3 coordenadas (que não será estudado na geometria analítica) ou determinar qual vetores está sobrando no conjunto para ser conjunto li Exercício 113 Através do processo de escalonamento, verique que {(2, 1, 1), (3, 0, 1), (1, 1, 0)} é ld Exemplo 114 Determine um subconjunto li de {(2, 1, 1), (3, 2, 1), (1, 1, 2), ( 1, 0, 2)} com maior número de vetores Como tem mais vetores que número de coordenadas, é ld, mas precisamos saber quais vetores estão sobrando, ou seja, quem vai anular pelo escalonamento Colocando os vetores nas linhas e montando a matriz, temos 2

3 Escalonando A matriz do sistema é 1a 2a 3a 4a L 2 2L 2 3L 1 L 3 2L 3 L 1 L 4 2L 4 + L 1 2L 2 : L 1 : ( ) 1a 2a 3a 4a 1a 2a 3a 4a 1a 2a 4a 3a L 3 : L 1 : ( ) 2L 4 : L 1 : (+) L 3 L 3 L 2 L 4 L 4 L 2 L 3 L A linha que anulou corresponde ao terceiro vetor Logo, 3o vetor que está sobrando Então o gerador li é {(2, 1, 1), (3, 2, 1), ( 1, 0, 2)} que é o maior subconjunto li 2 ases e coordenadas Um conjunto li de vetores que gera todo plano ou espaço é chamado de base do plano ou do espaço Proposição 21 Dois vetores li gera o plano Demonstração Considere os vetores{ v 1, v 2 } Sejam v 1 (a 1, b 1 ) e v 2 (a 2, b 2 ) Dado (x, y) R 2, queremos que (x, y) { α v 1 + β v 2 α(a 1, b 1 ) + β(a 2, b 2 ) para algum a, b Isto signica que a 1 α + a 2 β x queremos que o sistema tenha pelo menos uma solução Como o conjunto é b 1 α + b 2 β y li, o matriz do sistema tem determinante não nula e consequentemente, tem uma única solução (logo, tem solução) Teorema 22 { v 1,, v n } no R n for li, então é uma base 3

4 Demonstração Considere o vetor v (x 1,, x n ) R n Queremos que v α 1 v α n v n para algum α i Isto signica que o sistema [[v 1 ] [ v n ]] α 1 α n [ v] tenha uma solução Como o conjunto é li, o matriz do sistema que é matriz formado pelos vetores tem o determinante diferente de zero Logo, tem pelo menos uma solução (logo, tem solução) Proposição 23 Um único vetor não gera o plano { x λa Demonstração Seja dado um vetor v (a, b) e (x, y) λ(a, b) Então implica que y λb ay bx Como existem pontos do plano que não satisfaz a equação ay bx que é equação da reta Os pontos que são soluções da equação ay bx + 1 não é gerado pelo vetor v Assim, um único vetor não deve gerar o plano todo Assim, a base do plano é composta exatamente de 2 vetores li coordenadas Isto acontece para n Teorema 24 Se um conjunto S { v 1,, v n } gera R m, então qualquer conjunto com mais de n vetores é ld Demonstração Considere S { w 1,, w p } com p > n e queremos mostrar que S é ld, isto é, se α 1 w 1 + α p w p 0 tendo algum α i diferente de zero Como S gera R m, podemos escrever w 1 w p a 11 v a n1 v n a 1p v a np v n Assim, α 1 (a 11 v a n1 v n ) + + α p (a 1p v a np v n ) 0 de onde (α 1 a α p a 1p ) v (α 1 a n1 + + α p a np ) v n 0 Para isso, basta que α 1 a α p a 1p 0 na qual tem pelo menos uma solução (solução nula) Como α 1 a n1 + + α p a np 0 p > n, tem mais equações do que incógnitas e consequentemente tem innitas soluções Consequentemente, tem a solução não nula para α i e portanto S é ld Com isso, temos que Corolário 25 A base de R n tem exatamente n vetores li Em particular, a base de espaço é composta de exatamente três vetores li Em virtude da Proposição 13, os vetores é escrito unicamente como combinação linear dos elementos da base Denição 26 Seja { v 1,, v n }, uma base Se v a 1 v a n v n então ( v) (a 1,, a n ) é denominado de coordenada do vetor v na base e escrevemos v (a 1,, a n ) O vetor em coordenadas também pode ser denotado como sendo matriz coluna [ v] a 1 a n 4

5 a 1 ou v a n Quando a base estiver evidente, podemos abreviar o e escrever simplesmente como sendo v (a 1,, a n ) a 1 a n Exemplo 27 Seja {(1, 1), (1, 1)} Escreva { o vetor (2, 3) em coordenadas da base 2 a + b Queremos que (2, 3) a(1, 1) + b(1, 1) então 3 a b Assim, 5 2a a 5 2 Daí, b 2 a Portanto, v ( [ 5, ) 5 ] e sua forma matricial é v Matriz mudança de base Para calcular as coordenadas de um vetor, costumamos usar a matriz mudança de base Considere a base A {v 1,, v n } e {w 1,, w n }, bases de R n Então podemos escrever os vetores de como sendo combinação linear dos elementos de A w 1 a 11 v a n1 v n w n a 1n v a nn v n Dado um vetor v (b 1,, b n ), temos que v b 1 w 1 + +b n w n b 1 (a 11 v 1 + +a n1 v n )+ + b n (a 1n v a nn v n ) Fatorando em v i 's, temos que v (b 1 a b n a 1n )v b 1 a b n a 1n (b n a n1 + + b n a nn )v n e as coordenadas de v na base A será [ v] A b n a 1n + + b n a nn a 11 a 1n b 1 a 11 a 1n MA [ v] onde MA [[ w 1 ] A [ w n ] A ] é chamado a n1 a nn b n a n1 a nn de matriz mudança de base de base para A, pois a multiplicação deste matriz nas coordenadas escrito na base fornece as coordenadas escrito na base A Note que existem autores que invertem esta nomenclatura, denominando MA de matriz mudança de base de A para, o que requer cuidados No entanto, independente do nome dado, [ v] A MA [ v] Observação ( 31 A matriz mudança de base é inversível (exercício) e como [ v] A MA [ v] implica que MA) 1 [ v]a [ v] de modo que M A ( 1 MA) Também temos que, se A, e C são bases, então MC A M C M A Caso particular da mudança de base quando uma das bases é base canônica tem interesse especial Dado uma base { v 1,, v n }, então M β [[ v 1 ][ v n ]] é a matriz mudança de base de para canônica, tendo a propriedade de [v] M [v] Pela observação anterior, também [v], o que permite obter rapidamente as coordenadas do vetor na base M 1 M A temos que [v] M 1 dada Também podemos obter a mudança de base A para por M A Exemplo 32 Obtenha a matriz mudança de base de A {(1, 1), (1, 1)} para [ ] 1 1 {( 1, 1), (1, 1)} Colocando os vetores da base nas colunas, temos que M A 1 1 [ ] [ ] e M Como M 1 1 A M 1 M A, calculemos o M 1 M

6 [ 1 1 det M [ ] 1 ] [ ] 1 1 Logo, M 1 1 A M 1 M A 1 2 [ ] [ ] [ ] Dado uma base { v 1,, v n },dizemos que ele é uma base ortonormal se v i v j 0 para i j (vetores da base são ortogonais entre si) e v i 1 (todos são versores) Uma base no plano é de orientação positiva se a rotação do primeiro vetor para o segundo for no sentido anti-horário (para esquerda) e no espaço, uma base é positiva quando satisfaz a regra da mão direita Para R n, considera-se que a base canônica tem a orientação positiva e é positiva se det M > 0 Apesar da fórmula da soma e do produto por escalar em coordenadas funcionar em qualquer base, a fórmula de cálculo das normas ( (x 1,, x n ) x x 2 n ) e do produto escalar ( (x 1,, x n ) (y 1,, y n ) x 1 y x n y n ) requer que as coordenadas estejam na base ortonormal e a fórmula do cálculo do produto vetorial como determinante requer que a base seja ortonormal positiva Quando está escrito na base qualquer, podemos obter a coordenada na base canônica através da mudança de base e efetuar cálculos Exemplo 33 Seja {(1, 1), (1, 1)} uma base Obtenha (1, 2) (2, 1) Temos que (1, 2) (1, 1)+2(1, 1) (3, 1) e (2, 1) 2(1, 1)+(1, 1) (3, 1) Logo, (1, 2) (2, 1) (3, 1) (3, 1) Exercício 34 Considere a base {(1, 1, 1), (1, 0, 1), (0, 1, 1)} uma base (1, 2, 1) (0, 2, 1) escrito como coordenadas na base Obtenha Referências [1] oldrini, José L et al, "Álgebra Linear", Editora Harbra Ldta, 1986 [2] Santos, Reginaldo J, "Matrizes, Vetores e Geometria Analítica", Imprensa Universitária da UFMG, 2010 [3] oulos, Paulo e Camargo, Ivan de, "Geometria Analítica, um tratamento vetorial", McGraw-Hill, 1987 [4] aldin, Yuriko Y e Furuya, Yolanda, Geometria Analítica para Todos e Atividades com Octave e GeoGebra, EdUFSCar,

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R:

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R: MAT3457 ÁLGEBRA LINEAR I 3 a Lista de Exercícios 1 o semestre de 2018 1. Verique se V = {(x, y) : x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação por escalar dadas por:

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores

(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty

Leia mais

Parte 2 - Espaços Vetoriais

Parte 2 - Espaços Vetoriais Espaço Vetorial: Parte 2 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

Soluções dos trabalhos de 1 a 7

Soluções dos trabalhos de 1 a 7 Universidade Federal Rural do Semiárido-UFERSA Departamento de Ciências Exatas e Naturais Curso: Bacharelado em Ciência e Tecnologia e Computação Disciplina: Álgebra Linear Aluno(a): Soluções dos trabalhos

Leia mais

Espaço Dual, Transposta e Adjunta (nota da álgebra linear 2)

Espaço Dual, Transposta e Adjunta (nota da álgebra linear 2) Espaço Dual, Transposta e Adjunta nota da álgebra linear 2) Sadao Massago Outubro de 2009 1 Espaço Dual Dado um espaço vetorial V sobre o corpo F, o espaço dual V é o espaço de todas transformações lineares

Leia mais

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1 Escalonamento Sadao Massago 2011-05-05 a 2014-03-14 Sumário 1 Pré-requisitos 1 2 Sistema Linear e forma matricial 1 3 Forma escalonada 3 4 Método de eliminação de Gauss (escalonamento) 5 5 A matriz inversa

Leia mais

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):

6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais): a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre

Leia mais

Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 7 - Bases e dimensão. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 7 - Bases e dimensão A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Nesta unidade introduziremos dois conceitos

Leia mais

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R

ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).

Leia mais

Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019

Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019 Álgebra Linear ECT2202 Prof. Ronaldo Carlotto Batista 20 de março de 2019 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser entendidos como referência

Leia mais

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 07h00-09h00

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 07h00-09h00 Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof Juliana Coelho - 07h00-09h00 QUESTÃO 1 (2,0 pts - Considere os seguintes vetores de R3 : u = (3, 2, 2, v = (1, 3, 1 e w = ( 1, 4, 4 Responda as

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

Roteiros e Exercícios - Álgebra Linear v1.0

Roteiros e Exercícios - Álgebra Linear v1.0 Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência

Leia mais

GAAL Exercícios 6: Umas soluções

GAAL Exercícios 6: Umas soluções GAAL Exercícios 6: Umas soluções. Quais dos seguintes vetores são combinação linear de u = (5, 3, ), v = (, 4, 3), w = (, 8, 7)? (a) (, 2, 5) (b) (, 2, 8) (c) ( 2, ) (d) (, 2, 3). O conjunto {u, v, w}

Leia mais

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

Lista de exercícios para entregar

Lista de exercícios para entregar Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para

Leia mais

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores

Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência

Leia mais

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho

Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho Primeira prova de Álgebra Linear - 6/5/211 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2, pts)

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

MA71B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto. LISTA 5 - Espaços Vetoriais

MA71B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto. LISTA 5 - Espaços Vetoriais Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA7B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto LISTA 5 - Espaços Vetoriais Desenvolvidas

Leia mais

Universidade Federal Fluminense - GAN

Universidade Federal Fluminense - GAN Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia

Leia mais

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny 1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

Questão 1: Seja V o conjunto de todos os pares ordenados de números reais. Denamos a adição e a multiplicação por escalar em V por

Questão 1: Seja V o conjunto de todos os pares ordenados de números reais. Denamos a adição e a multiplicação por escalar em V por Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA7B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto LISTA 4 - Espaços Vetoriais Desenvolvidas

Leia mais

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período Temos que combinar linearmente os vetores e encontrando o vetor (5,1,-1,0).

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período Temos que combinar linearmente os vetores e encontrando o vetor (5,1,-1,0). www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2014.1 OBS: Todas as alternativas corretas são as letras A. 1) Bem! Ele nos pede os valores de a partir de uma combinação

Leia mais

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller ÁLGEBRA LINEAR Combinação Linear, Subespaços Gerados, Dependência e Prof. Susie C. Keller Combinação Linear Sejam os vetores v 1, v 2,..., v n do espaço vetorial V e os escalares a 1, a 2,..., a n. Qualquer

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal

Leia mais

23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário

23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário 23 e 24 Forma Quadrática e Equação do Segundo Grau em R 3 Sumário 23.1 Introdução....................... 2 23.2 Autovalores e Autovetores de uma matriz 3 3.. 2 23.3 Mudança de Coordenadas no Espaço........

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Revisão Básica de Prof. Dr. José Carlos de Souza Junior Universidade Federal de Alfenas 26 de novembro de 2014 Revisão de Definição 1 (Espaço Vetorial) Um conjunto V é um espaço vetorial sobre R, se em

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Produto interno e produto vetorial no espaço

Produto interno e produto vetorial no espaço 14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................

Leia mais

Exercícios sobre Espaços Vetoriais II

Exercícios sobre Espaços Vetoriais II Exercícios sobre Espaços Vetoriais II Prof.: Alonso Sepúlveda Castellanos Sala 1F 104 1. Seja V um espaço vetorial não trivial sobre um corpo infinito. Mostre que V contém infinitos elementos. 2. Sejam

Leia mais

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1 n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos

Leia mais

Álgebra Linear I. Resumo e Exercícios P3

Álgebra Linear I. Resumo e Exercícios P3 Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v

Leia mais

1 Subespaços Associados a uma Matriz

1 Subespaços Associados a uma Matriz 1 Subespaços Associados a uma Matriz Seja V = R n e para quaisquer u, v, e w em V e quaisquer escalares r,s em R 1, 1. u + v é um elemento de V sempre que u e v são elementos de V a adição é fechada, 2.

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios 1 Espaços vetoriais Primeira Lista de Exercícios {( ) } a b Exercício 1.1. Considere M 2 := : a, b, c, d R, : M c d 2 M 2 M 2 dada por e : R M 2 M 2 dada por ( ) ( ) ( ) a1 b 1 a2 b 2 a1 + a := 2 b 1 +

Leia mais

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por:

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por: Lista de Exercícios - Espaços Vetoriais. Seja V o conjunto de todos os pares ordenados de números reais e considere as operações de adição e multiplicação por escalar definidas por: i. u + v (x y) + (s

Leia mais

Notas de Aula. Gustavo Henrique Silva Sarturi. i Z (1 i m) a j1 a j2

Notas de Aula. Gustavo Henrique Silva Sarturi. i Z (1 i m) a j1 a j2 Notas de Aula Gustavo Henrique Silva Sarturi Matemática B - Em Ação gustavo.sarturi@ufpr.br 1 Matrizes Definição 1.1. Uma matriz A m n é um arranjo retangular de m n números reais (ou complexos) organizados

Leia mais

(d) Seja W um espaço vetorial de dimensão 4 e sejam U e V subespaços de W tais que U V = 0. Assinale. Gabarito Pág. 1

(d) Seja W um espaço vetorial de dimensão 4 e sejam U e V subespaços de W tais que U V = 0. Assinale. Gabarito Pág. 1 UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 15 de maio de 2013 Primeira Prova 1. Os valores de (a,

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G de Álgebra Linear I 7. Gabarito ) Considere o conjunto de vetores W = {(,, ); (, 5, ); (,, ); (3,, ); (, 3, ); (,, )}. (a) Determine a equação cartesiana do sub-espaço vetorial V gerado pelos vetores

Leia mais

u = ± v. Daí, u v v u = v u e v têm sentidos contrários Por outro lado, suponhamos que podemos escrever u como combinação linear de v

u = ± v. Daí, u v v u = v u e v têm sentidos contrários Por outro lado, suponhamos que podemos escrever u como combinação linear de v 0 u o e v o Como u // v o o u = ± v Daí, o v u u u = ± u, ou seja, u = ± v ssim, se u e v têm mesmo v v u sentido podemos escrever u = v u e v têm sentidos contrários v u temos u = v v Por outro lado,

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

Legenda. Questões. 2ª Lista de Exercícios (ALI0001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria

Legenda. Questões. 2ª Lista de Exercícios (ALI0001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria 2ª Lista de Exercícios (ALI0001) Prof. Helder G. G. de Lima 1 Legenda Cálculos Conceitos Teoria Questões 1. Revise todos os axiomas da definição de espaço vetorial V sobre o corpo de escalares R, verificando

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Aula 3 A Reta e a Dependência Linear

Aula 3 A Reta e a Dependência Linear MÓDULO 1 - AULA 3 Aula 3 A Reta e a Dependência Linear Objetivos Determinar a equação paramétrica de uma reta no plano. Compreender o paralelismo entre retas e vetores. Entender a noção de dependência

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3 Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,

Leia mais

INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano

INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano 1 INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano Exercícios - transformações lineares determinante e

Leia mais

II Lista de Álgebra Linear /02 Espaços Vetoriais Prof. Iva Zuchi Siple

II Lista de Álgebra Linear /02 Espaços Vetoriais Prof. Iva Zuchi Siple . Verique se R com as operações denidas por: II Lista de Álgebra Linear - / Espaços Vetoriais Prof. Iva Zuchi Siple i. (x y) + (s t) (s y + t) onde u (x y) e v (s t) pertencem a R ii. α(x y) (αx y) onde

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores

Leia mais

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 11h00-13h00

Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 11h00-13h00 Segunda prova de Álgebra Linear Aplicada - 20/02/2013 Prof. Juliana Coelho - 11h00-13h00 QUESTÃO 1 (1,2 pts) - Determine os valores de a R para os quais os vetores u = (1, 0, a), v = ( 2, 1, 0) e w = (a,

Leia mais

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2

Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2 Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

Álgebra Linear

Álgebra Linear Álgebra Linear - 0191 Lista 3 - Dependência e Independência Linear Bases e Soma Direta 1) Exiba três vetores u v w R 3 com as seguintes propriedades: nenhum deles é múltiplo do outro nenhuma das coordenadas

Leia mais

Unicidade da Forma Escalonada Reduzida de uma Matriz

Unicidade da Forma Escalonada Reduzida de uma Matriz 1 Unicidade da Forma Escalonada Reduzida de uma Matriz Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 1 de maio de 24 Definição 1 Uma

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

Curso de Álgebra Linear

Curso de Álgebra Linear Curso de Álgebra Linear Fundamentos e Aplicações Terceira Edição 25 de Outubro de 2012 Marco Cabral PhD Indiana University, EUA Paulo Goldfeld PhD Courant Institute, EUA Departamento de Matemática Aplicada

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04 Assunto:Produto escalar, bases canônicas do R 2 e R 3, produto vetorial, produto misto, equação da reta no R 2 Palavras-chaves: Produto

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

MAT Resumo Teórico e Lista de

MAT Resumo Teórico e Lista de MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

Geometria Analítica - Sistemas de Coordenadas no Plano

Geometria Analítica - Sistemas de Coordenadas no Plano Geometria Analítica - Sistemas de Coordenadas no Plano Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Retas e Elipses Turmas E1 e E3 1 / 1 Para denir um sistema de coordenadas no

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

Primeira Lista de Álgebra Linear

Primeira Lista de Álgebra Linear Serviço Público Federal Ministério da Educação Universidade Federal Rural do Semi-Árido UFERSA Departamento de Ciências Ambientais DCA Prof. D. Sc. Antonio Ronaldo Gomes Garcia a a Mossoró-RN 18 de agosto

Leia mais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro

Leia mais

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade

Leia mais

Universidade Federal Fluminense - GAN

Universidade Federal Fluminense - GAN Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de y + az = a (a 2)x + y + 3z = 0 (a 1)y = 1 a

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de y + az = a (a 2)x + y + 3z = 0 (a 1)y = 1 a MAT457 ÁLGEBRA LINEAR PARA ENGENHARIA I 1 a Prova - 1 o semestre de 018 Questão 1. Se a R, é correto afirmar que o sistema linear y + az = a (a x + y + 3z = 0 (a 1y = 1 a é: (a possível e indeterminado

Leia mais

P4 de Álgebra Linear I

P4 de Álgebra Linear I P4 de Álgebra Linear I 2008.2 Data: 28 de Novembro de 2008. Gabarito. 1) (Enunciado da prova tipo A) a) Considere o plano π: x + 2 y + z = 0. Determine a equação cartesiana de um plano ρ tal que a distância

Leia mais

3 - Subespaços Vetoriais

3 - Subespaços Vetoriais 3 - Subespaços Vetoriais Laura Goulart UESB 16 de Agosto de 2018 Laura Goulart (UESB) 3 - Subespaços Vetoriais 16 de Agosto de 2018 1 / 10 Denição Um subespaço vetorial é um subconjunto de um e.v.r. que

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

Sistemas de equações lineares com três variáveis

Sistemas de equações lineares com três variáveis 18 Sistemas de equações lineares com três variáveis Sumário 18.1 Introdução....................... 18. Sistemas de duas equações lineares........... 18. Sistemas de três equações lineares........... 8

Leia mais

Lista de exercícios 7 Independência Linear.

Lista de exercícios 7 Independência Linear. Universidade Federal do Paraná semestre 6. Algebra Linear Olivier Brahic Lista de exercícios 7 Independência Linear. Exercício : Determine se os seguintes vetores são linearmente independentes em R : (

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B = 3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao

Leia mais