Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores."

Transcrição

1 MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP Resende - RJ Brasl Professor e Doutorando de Engenhara Resumo Serão apresentados neste trabalho os Métodos Iteratvos da Potênca e Inverso, que são utlzados para encontrar os autovalores mámo e mínmo, assm como os autovetores respectvos, de uma matrz real e smétrca Paralelamente, será desenvolvdo um programa em Matlab para a mplementação computaconal do método, assm como a resolução de um sstema proposto. O método da Potênca não é um método geral, mas é útl em um grande número de stuações mutas vezes, satsfatóro quando o problema envolve matrzes esparsas grandes; outras, quando outros métodos, desenvolvdos mas recentemente, não podem ser utlzados devdo às lmtações de tamanho de memóra dos computadores (tknson, 978). É, portanto, um método de dfícl mplementação de programas de computador para stuações mas generalzadas; sendo, porém, fácl, quando se trata de classes mas especas de matrzes. Vale ressaltar que o Método da Iteração Inversa utlza um procedmento smlar ao método da Potênca, usado para determnar o autovalor mínmo de uma matrz. Palavras-Chave Métodos Interatvos da Potênca e Inverso, Sstemas Lneares, utovetores e utovalores. INTRODUÇÃO O método da Potênca não é um método geral, mas é útl em um grande número de stuações. Por eemplo, é mutas vezes satsfatóro quando o problema envolve matrzes esparsas grandes, onde outros métodos desenvolvdos mas recentemente, não podem ser usados devdo às lmtações de tamanho de memóra dos computadores (tknson, 978). É, portanto, um método de dfícl mplementação de programas de computador, para stuações mas generalzadas; sendo, porém, fácl, quando se trata de classes mas especas de matrzes. O Método da Iteração Inversa utlza um procedmento smlar ao método da Potênca, usado para determnar o autovalor mínmo de uma matrz. OBJETIVO Entender o desenvolvmento teórco do método da Potênca e também entender o desenvolvmento teórco do método da Iteração Inversa, a fm de construr um programa para mplementação dos mesmos, através do Matlab. DESENVOLVIMENTO do Método da Potênca bordaremos lgeramente o problema da determnação de valores e vetores própros de uma matrz, ou seja, estamos nteressados em achar os valores de λ ( valores própros ) para os quas estem não nulos ( vetores própros ) tas que λ () Isto corresponde a encontrar as soluções da equação polnomal II Smpóso de Ecelênca em Gestão e Tecnologa SEGeT 5 59

2 já que ( λ) λ I () p λ I defne um polnômo denomnado polnômo característco. Se tratar de uma matrz nn, então p é um polnômo de grau n e há n raízes, ou seja, n valores própros, que desgnaremos de λ, λ,..., λ. lguns valores podem ser guas, n correspondendo a raízes múltplas. cada valor própro está assocado um vetor própro, consttundo assm, um subespaço lnear, desgnado subespaço própro. Consderaremos apenas o caso mas favorável, ou seja, o caso em que as matrzes são dagonalzáves. T n T X dag ( λ ) X Xdag ( λ ) Y λ y (3) onde as colunas de X e as lnhas y T de Y T são os autovetores à dreta e à esquerda de normalzado afm de que y T I. s s s Dsto X dag ( λ ) Y λ y e se T n T λ λ λ > n λ r+ λ n n s T λ y pelos termos a epressão no lado dreto s é defntvamente domnada. Este é o resultado fundamental no qual este método é baseado. Relembramos anda que no caso em que as matrzes são smétrcas os seus autovalores são números reas; e que o determnante da matrz é gual ao produto dos seus autovalores, o que nos afrma que a nversbldade de uma matrz não ocorre se tvermos um autovalor nulo (lmeda, 4). Iremos referr aos autovalores λ, λ,..., λ como domnantes e aos autovetores r correspondentes também domnantes. Comumente r e neste caso s é fnalmente domnado s T por λ y. Método das Potêncas aplcação mas smples do método da potênca é o segunte. Deemos u ser um vetor arbtráro e deemos as seqüêncas v s e u s serem defndas pelas equações v u, u v / ma( v ), s+ s s+ s+ s+ onde usamos a notação ma() para representar o elemento de maor módulo do vetor. s s Claramente teremos u u / ma( u ) s e se escrevermos u α, então ndependentemente do fator de normalzação, u s é dado por α λ λ α α ( λ / λ ) s +. (4) n n s s n Se λ > λ λ λ 3 n, então fornece α teremos /ma( ) ma( ) u e v λ s s. Este método permte obter de forma smples uma apromação do autovalor domnante, ou seja, aquele que tem o maor módulo, por um processo teratvo, desde que seja real. II Smpóso de Ecelênca em Gestão e Tecnologa SEGeT 5 6

3 Lembramos que assummos que a matrz é dagonalzável e que este um únco autovalor domnante. Determna-se então uma apromação do autovetor assocado e a partr dessa apromação do autovetor podemos calcular uma apromação do autovalor. O método consste em escolhermos um vetor ncal u, aleatoramente. Tendo como únca egênca que este vetor seja não nulo. EXEMPLO RESOLVIDO Seja e ε <.. Por ser uma matrz é fácl, algebrcamente encontrarmos os autovalores e autovetores. λ ( λ) λ λ 4λ + 3 λ 3 Resolvendo λ Calculemos agora os autovetor assocado ao maor λ, que é 3 + y y 3y y y y Podemos dzer que o vetor assocado é [ ] T. Vamos verfcar agora, através do método da Potênca, se os resultado vão convergr para os valores encontrados algebrcamente. T Como vetor ncal temos{ } [. 9.8]. Normalzando. { }.9 /.9 y.8 / Procedemos, agora o cálculo da equação (4) Fazendo o teste de convergênca { } Normalzando { } > ε II Smpóso de Ecelênca em Gestão e Tecnologa SEGeT 5 6

4 Calculando { } Fazendo o teste de convergênca.8889 / { y }.7778 / { } Normalzando { } Calculando { } Fazendo o teste de convergênca > ε.965 /.965 { y }.93 / { } Cálculo de λ < ε λ O autovalor que nos dá a precsão desejada ( ε <. ) é λ.987 e o autovetor assocado a este autovalor é [.9957], após 3(três) terações. Isto nos dá a efcênca de convergênca do método em questão, pos vemos que os valores realmente se apromam, cada vez mas, dos valores encontrados algebrcamente. CONCLUSÃO O método da Potênca é um método de fácl compreensão e smples mplementação computaconal, nos fornecendo o autovalor mámo, ou seja, o últmo autovalor de uma matrz, e seu respectvo autovetor. Método da Iteração Inversa Este método permte obter de forma smples uma apromação do autovalor mínmo, ou seja, aquele que tem o menor módulo, por um processo teratvo, desde que seja real. Lembramos que assummos que a matrz é dagonalzável e que este um únco autovalor mínmo. Determna-se então uma apromação do autovetor assocado e a partr dessa apromação do autovetor podemos calcular uma apromação do autovalor., aleatoramente. Tendo como O método consste em escolhermos um vetor ncal { } únca egênca que este vetor seja não nulo. II Smpóso de Ecelênca em Gestão e Tecnologa SEGeT 5 6

5 sendo Procedemos, então a normalzação deste vetor, ou seja { λ. } má { } { y} (5) { } pós sso procedemos a multplcação matrcal [ ]{ } { y} (6) Procedemos, então a normalzação do novo vetor { } { y} (7) { } Fazemos [ ]{ } { y}. E assm sucessvamente, achando quantos autovetores forem necessáros. Paramos com os cálculos acma, quando o erro verfcado no teste de convergênca for menor do que o erro pretenddo por nós. O teste de convergênca para este método consste em calcularmos { } + { } { } + < ε Calculamos, fnalmente, o autovalor correspondente λ sn al * { } má + ou O snal da razão acma é o snal da componente com maor módulo. O vetor ncal é aleatóro, embora esta uma probabldade (que podemos consderar nula) de que para certos vetores ncas o método não convrja. Isto apenas acontece quando { } tem componente nula segundo o autovetor mínmo, o que é altamente mprovável. De qualquer forma, e como convém que todo método que o método convrja mas rapdamente é habtualmente aconselhável começar com um vetor ncal que sera autovetor para o maor elemento (em módulo) da matrz formada apenas pela dagonal. EXEMPLO RESOLVIDO Seja e ε <,5. Por ser uma matrz é fácl, algebrcamente encontrarmos os autovalores e autovetores. λ λ (8) (9) Resolvendo ( λ) λ 4λ + 3 II Smpóso de Ecelênca em Gestão e Tecnologa SEGeT 5 63

6 λ 3 λ Calculemos agora os autovetor assocado ao maor λ, que é 3 3 y y + y 3 + y 3y y. Vamos verfcar agora, através do método da Potênca, se os resultado vão convergr para os valores encontrados algebrcamente. Como vetor ncal escolhemos Podemos dzer que o vetor assocado é [ ] T Normalzando { } { } [,9 ;, 8] T,9 /,9,8 /,9,888 { y } Procedemos, agora o cálculo da equação (8) Fazendo o teste de convergênca Normalzando { },888 3,73 6,47 { } { } 3,73,9,759 > ε 3,73 Calculando { } 3,73/ 3,73 6,47 / 3,73,75 { y } Fazendo o teste de convergênca Normalzando { },75,4,48 { } { },4 3,73,8 > ε,4,4 /,4,48 /,4 { y },9 II Smpóso de Ecelênca em Gestão e Tecnologa SEGeT 5 64

7 Calculando { } 3 Fazendo o teste de convergênca Normalzando { } 3,9,6, { } { } 3,6,4,698 > ε,6 3 Calculando { } 4,6 /,6, /,6,6 { y } 3 Fazendo o teste de convergênca Normalzando { } 4,6,,4 { } { } 4,,6,39 > ε, 4 Calculando { } 5, /,,4 /,, { y } 4 Fazendo o teste de convergênca Normalzando { } 5,,7,4 { } { } 5,7,,3 > ε,7 5 Calculando { } 6,7 /,7,4 /,7,7 { y } 5 Fazendo o teste de convergênca,,3,46 { } { } 6 6 Cálculo de λ,3,7,3,47 < ε II Smpóso de Ecelênca em Gestão e Tecnologa SEGeT 5 65

8 λ,3 O autovalor que nos dá a precsão desejada é λ, 3 e o autovetor assocado a este autovalor é [,46]. Isto nos dá a efcênca de convergênca do método em questão, pos vemos que os valores realmente se apromam, cada vez mas, dos valores encontrados algebrcamente. CONCLUSÃO Os métodos da Potênca e da Iteração Inversa são métodos de fácl compreensão e smples mplementação computaconal, nos fornecendo o autovalor mámo e mínmo e seus respectvos autovetores. BIBLIOGRFI TKINSON, Kendall, 978 n Introducton to Numercal nalyss, John Wley & Sons, Iowa, 587p. LMEID, R., Departamento de Matemátca, Unversdade da Bera Interor, http// WILKINSON, J. H., 965 The lgebrac Egenvalue Problem, Clarendon Press - Oford, London, 66p II Smpóso de Ecelênca em Gestão e Tecnologa SEGeT 5 66

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Problema Real (avião, carro,...) Validação

Problema Real (avião, carro,...) Validação Modelo Físco/ (EFD)? Problema Real? (avão, carro,...) Modelo Matemátco (CFD) Túnel de Vento Modelo Condções de Frontera Escala Approx. nas eqs., (ν t ) Equações (modelo de turbulênca) Instrumentos de Medda

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR - Mecânca Computaconal para Mecatrônca CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problema de derencação numérca aparentemente é semelante ao de ntegração numérca ou seja obtendo-se um polnômo nterpolador

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Palavras-Chave: Autovalores, Matriz, Método de Jacobi. (1)

Palavras-Chave: Autovalores, Matriz, Método de Jacobi. (1) MSc Alexandre stácio Féo Associação ducacional Dom Bosco - Faculdade de ngenharia de Resende Caixa Postal: 8.698/87 - CP: 75-97 - Resende - RJ Brasil Professor e Doutorando de ngenharia aefeo@yahoo.com.br

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

Programação Não Linear. Programação Não-Linear 1

Programação Não Linear. Programação Não-Linear 1 Proramação Não Lnear Proramação Não-Lnear Os modelos empreados em Proramação Lnear são, como o própro nome dz, lneares (tanto a unção-obetvo quanto as restrções). Este ato é, sem dúvda, a maor das restrções

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais

Elaboração de um Código Computacional para Resolução de Sistemas Lineares de Grande Porte

Elaboração de um Código Computacional para Resolução de Sistemas Lineares de Grande Porte COMAT Coordenadora do Curso de Lcencatura em Matemátca TCC Trabalho de Conclusão de Curso Elaboração de um Códgo Computaconal para Resolução de Sstemas Lneares de Grande Porte Trabalho de Conclusão de

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA Pedro Luz Rocha Evandro Parente Junor pedroluzrr04@gmal.com evandroparentejr@gmal.com Laboratóro de Mecânca Computaconal e Vsualzação, Unversdade

Leia mais

3 Subtração de Fundo Segmentação por Subtração de Fundo

3 Subtração de Fundo Segmentação por Subtração de Fundo 3 Subtração de Fundo Este capítulo apresenta um estudo sobre algortmos para a detecção de objetos em movmento em uma cena com fundo estátco. Normalmente, estas cenas estão sob a nfluênca de mudanças na

Leia mais

CEL033 Circuitos Lineares I

CEL033 Circuitos Lineares I // CEL Crcutos Lneares I NR- Prof.: Io Chaes da Sla Junor o.junor@ufjf.edu.br Métodos de Análses de Crcutos Análse Nodal Le de Krchhoff das Correntes Método de análse de crcutos elétrcos no qual se escolhe

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Unversdade de São Paulo Escola Superor de Agrcultura Luz de Queroz Departamento de Cêncas Exatas Prova escrta de seleção para DOUTORADO em Estatístca e Expermentação Agronômca Nome do canddato (a): Questão

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

6 Revisão Bibliográfica

6 Revisão Bibliográfica 45 6 Revsão Bblográfca 6. Métrcas Espacas A defnção da localzação dos pontos que formam uma cadea de suprmentos é um dos aspectos mas mportantes no planejamento de um sstema logístco. ormalmente estes

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

ESTUDO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

ESTUDO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO ESTUDO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches (Bolssta UEMS), Adrana Betâna de Paula Molgora Unversdade Estadual de Mato Grosso do Sul Cdade Unverstára de Dourados, Caxa

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

ELE0317 Eletrônica Digital II

ELE0317 Eletrônica Digital II 2. ELEMENTOS DE MEMÓRIA 2.1. A Lnha de Retardo A lnha de retardo é o elemento mas smples de memóra. Sua capacdade de armazenamento é devda ao fato de que o snal leva um certo tempo fnto e não nulo para

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Fenômenos de Transporte, Calor e Massa - FTCM - Rotero Epermental - Relatóro Prof.: Dr. Cláudo S. Sartor - EXPERIMETO Dlatação Térmca ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com

Leia mais

SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO IV GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA GAT

SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO IV GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA GAT SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GAT 0 4 a 7 de Outubro de 007 Ro de Janero - RJ GRUPO IV GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA GAT OBTENÇÃO

Leia mais

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO. ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada

Leia mais

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson Trabalho apresentado no III CMAC - SE, Vtóra-ES, 015. Proceedng Seres of the Brazlan Socety of Computatonal and Appled Mathematcs Procedmento Recursvo do Método dos Elementos de Contorno Aplcado em Problemas

Leia mais

EXERCÍCIOS DE MATEMÁTICA Prof. Mário

EXERCÍCIOS DE MATEMÁTICA Prof. Mário EXERCÍCIOS DE MATEMÁTICA Prof. Máro e-mal: maroffer@yahoo.com.br 0 Conjuntos dos Números Complexos 0. Undade magnára º) Determne as raíes magnáras da equação x + 75 = 0 º) Encontre as raíes magnáras da

Leia mais

ANÁLISE DINÂMICA DE SISTEMAS CONTÍNUOS

ANÁLISE DINÂMICA DE SISTEMAS CONTÍNUOS ANÁISE DINÂMICA DE SISTEMAS CONTÍNUOS INTRODUÇÃO Sstemas dscretos e sstemas contínuos representam modelos matemátcos dstntos de sstemas fsícos semelhantes, com característcas dnâmcas semelhantes Os sstemas

Leia mais

Programação Linear 1

Programação Linear 1 Programação Lnear 1 Programação Lnear Mutos dos problemas algortmcos são problemas de otmzação: encontrar o menor camnho, o maor fluxo a árvore geradora de menor custo Programação lnear rovê um framework

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro? Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x

Leia mais

MODELAGEM COMPUTACIONAL DA DIFUSÃO DE NÊUTRONS EM GEOMETRIA UNIDIMENSIONAL CARTESIANA

MODELAGEM COMPUTACIONAL DA DIFUSÃO DE NÊUTRONS EM GEOMETRIA UNIDIMENSIONAL CARTESIANA 27 Internatonal Nuclear tlantc Conference - INC 27 antos, P, razl, eptember 3 to October 5, 27 OCIÇÃO RILEIR DE ENERGI NUCLER - EN IN: 978-85-99141-2-1 MODELGEM COMPUTCIONL D DIFUÃO DE NÊUTRON EM GEOMETRI

Leia mais

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria.

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria. Elementos de Engenhara Químca I Apêndce B Apêndce B Frações másscas, molares e volúmcas. Estequometra. O engenhero químco lda constantemente com msturas de compostos químcos em stuações que mporta caracterzar

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 77 Intelgênca Artfcal Aula 8 Redes Neuras Edrle Soares de Lma Formas de Aprendzado Aprendzado Supervsonado Árvores de decsão. K-Nearest Neghbor (KNN). Support Vector Machnes (SVM).

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

CEL033 Circuitos Lineares I

CEL033 Circuitos Lineares I 24/4/22 CEL33 Crcutos Lneares I N- Prof.: Ivo Chaves da Slva Junor vo.junor@ufjf.edu.br Análse de Malha MATLAB N- Banco de Dados Análse de Malha MATLAB Informações necessáras: - Valores das resstêncas

Leia mais

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS.

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS. I 1. Demonstre que o crcuto da Fg. 1 é um half-adder (semsomador), em que A e B são os bts que se pretendem somar, S é o bt soma e C out é o bt de transporte (carry out). Fg. 1 2. (Taub_5.4-1) O full-adder

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Sumarização dos dados

Sumarização dos dados Inferênca e Decsão I Soluções da Colectânea de Exercícos 22/3 LMAC Capítulo 2 Sumarzação dos dados Nota: neste capítulo é apresentada a resolução apenas de alguns exercícos e a título ndcatvo. Exercíco

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Breve Introdução aos Modelos Pontuais de Distribuição em Visão por Computador

Breve Introdução aos Modelos Pontuais de Distribuição em Visão por Computador Relatóro Interno Breve Introdução aos Modelos Pontuas de Dstrbução em Vsão por Computador Mara João Vasconcelos Aluna de Mestrado em Estatístca Aplcada e Modelação Unversdade do Porto, Faculdade de Engenhara

Leia mais

Uma comparação entre algoritmos de projeção para restauração de imagens do satélite CBERS-1

Uma comparação entre algoritmos de projeção para restauração de imagens do satélite CBERS-1 Uma comparação entre algortmos de projeção para restauração de magens do satélte CBERS- João P. Papa Nelson D. A. Mascarenhas Lela M.G. Fonseca 2 Unversdade Federal de São Carlos - UFSCAR Caxa Postal 676-3565-905

Leia mais

GeM UM PROGRAMA DE CÁLCULO PARA VERIFICAÇÃO DA RESISTÊNCIA DE ELEMENTOS EM AÇO NÃO UNIFORMES DE ACORDO COM O MÉTODO GERAL DO EC3

GeM UM PROGRAMA DE CÁLCULO PARA VERIFICAÇÃO DA RESISTÊNCIA DE ELEMENTOS EM AÇO NÃO UNIFORMES DE ACORDO COM O MÉTODO GERAL DO EC3 5as Jornadas Portuguesas de Engenhara de Estruturas Ge U PROGRAA DE CÁLCULO PARA VERIFICAÇÃO DA RESISTÊCIA DE ELEETOS E AÇO ÃO UIFORES DE ACORDO CO O ÉTODO GERAL DO EC3 João Ferrera* Bolsero de Investgação

Leia mais

3. CIRCUITOS COM AMPOP S UTILIZADOS NOS SAPS

3. CIRCUITOS COM AMPOP S UTILIZADOS NOS SAPS 3 CICUITOS COM AMPOP S UTILIZADOS NOS SAPS 3. CICUITOS COM AMPOP S UTILIZADOS NOS SAPS - 3. - 3. Introdução Numa prmera fase, apresenta-se os crcutos somadores e subtractores utlzados nos blocos de entrada

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

3 O Problema de Fluxo de Potência Ótimo

3 O Problema de Fluxo de Potência Ótimo 3 O Problema de Fluxo de Potênca Ótmo 3.. Introdução Como fo vsto no capítulo anteror, para realzar uma repartção de custos ou benefícos, é necessáro determnar a função de custo do servço que será utlzado

Leia mais

CARGAS MÓVEIS. Faculdade de Engenharia São Paulo FESP Engenharia Civil CE2 Estabilidade das Construções II

CARGAS MÓVEIS. Faculdade de Engenharia São Paulo FESP Engenharia Civil CE2 Estabilidade das Construções II Faculdade de Engenhara São Paulo FESP Engenhara Cvl CE2 Establdade das Construções II CARGAS MÓVEIS Autor: Prof. Dr. Alfonso Pappalardo Jr. Coord. Geral: Prof. Dr. Antono R. Martns São Paulo 20 SUMÁRIO

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Teoria da Resposta ao Item: Conceitos e Aplicações

Teoria da Resposta ao Item: Conceitos e Aplicações Teora da Resposta ao Item: Concetos e Aplcações Dalton Francsco de Andrade 1 Helton Rbero Tavares 2 Raquel da Cunha Valle 3 1 Professor Ttular do Departamento de Estatístca e Matemátca Aplcada da Unversdade

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo.

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo. .4 Árvores Geradoras Em mutas aplcações estamos nteressados em subgrafos especas de um determnado grafo. Defnção Árvore Geradora - uma árvore T é chamada de árvore geradora de um grafo G se T é um subgrafo

Leia mais

EDUCAÇÃO O AJUSTE DE FUNÇÕES MATEMÁTICAS A DADOS EXPERIMENTAIS

EDUCAÇÃO O AJUSTE DE FUNÇÕES MATEMÁTICAS A DADOS EXPERIMENTAIS EDUCAÇÃO O AJUSTE DE FUÇÕES ATEÁTICAS A DADOS EXPERIETAIS Rogéro Custodo, João Carlos de Andrade e Fábo Augusto Insttuto de Químca - Unversdade Estadual de Campnas - UICAP - 13083-970 - Campnas - SP Recebdo

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Artigo Original. Introdução

Artigo Original. Introdução OI: 0.5935/809-2667.2040020 Artgo Orgnal esenvolvmento de uma estrutura de controle de posção aplcada ao Manpulador Robótco R5N evelopment of a poston control structure appled to the R5N Robotc Manpulator

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

CIRCUITOS RESISTIVOS

CIRCUITOS RESISTIVOS Temátca Crctos Eléctrcos Capítlo nálse de Crctos Lneares CICITOS ESISTIVOS INTODÇÃO Nesta secção apresentamse dversas metodologas para resolção de crctos lneares tas como o método geral, a smplfcação do

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais