ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

Tamanho: px
Começar a partir da página:

Download "ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com."

Transcrição

1 ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar

2 MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos em m lnhas e n colunas. Representação Genérca Cada elemento de uma matrz é localzado por dos índces: a. O prmero ndca a lnha, e o segundo, a coluna. matrz pode ser representada abrevadamente por uma sentença matemátca que ndca a le de formação para seus elementos. (a)mxn le de formação. Ex.: (a)x a. CLSSIFICÇÃO DS MTRIZES Em função dos valores de m e n, classfca-se a matrz (a)mxn em: Matrz retangular, se m n. Ex.: Matrz lnha, se m. Ex.: x [ -] Matrz coluna, se n. Ex.: Matrz quadrada, se m n. Ex.: blog.portalpostvo.com.br/captcar

3 Ex.: é uma matrz quadrada de ordem. Numa matrz (a)mxn quadrada de ordem n, os elementos a com consttuem a dagonal prncpal. Os elementos a com n formam a dagonal secundára. Ex.: TIPOS DE MTRIZES Matrz Nula É a matrz onde todos os elementos são nulos. Ex.: Matrz Oposta Matrz oposta de uma matrz (a)mxn é a matrz B (b)mxn tal que b -a. Ex.: Produto de um Número Real por uma Matrz Se é um número real, o produto desse número por uma matrz (a)mxn é uma matrz B (b)mxn tal que b. a Ex.: Sendo Propredades do Produto de um Número por uma Matrz Se e B são matrzes de mesma ordem e seguntes propredades: e são números reas, valem as a) b). ( B) B c). (b. ) (. b). d) ( b).. b. e) (. ) T. T blog.portalpostvo.com.br/captcar

4 Produto de Matrzes Dadas duas matrzes (a)mxn e B (b)mxn, o produto da matrz pela matrz B, nesta ordem, somente será possível quando o número de colunas da matrz for gual ao número de lnhas da matrz B. Então: matrz produto ( x B)mxn terá número de lnhas de e número de colunas de B. Os elementos da matrz produto são obtdos multplcando-se cada elemento das lnhas da matrz pelo correspondente elemento das colunas da matrz B e adconando os produtos obtdos. Propredades do Produto de Matrzes Sendo, B, C matrzes, e a um número real, e supondo as operações abaxo possíves, temos que: a).(b.c) (.B).C (SSOCITIV) b).(bc).b.c (DISTRIBUTIV À DIREIT) c) (B).C.CB.C (DISTRIBUTIV À ESQUERD) d) I É IDENTIDDE e) (. B). ( B). (. B) f) (. B) T B T. T Observações Importantes:.ª multplcação de matrzes não é comutatva, sto é, exstem matrzes e B tas que B B..ª Na multplcação de matrzes não vale o anulamento do produto, sto é, podemos ter. B mesmo com e B..ª Não vale também a smplfcação, sto é, podemos ter B C, mesmo com e B C. blog.portalpostvo.com.br/captcar

5 blog.portalpostvo.com.br/captcar Matrz Inversa Uma matrz quadrada de ordem n dz-se nversível ou não sngular se, e somente se, exstr uma matrz que ndcamos por -, denomnada nversa de, tal que: In Ex.: matrz é a nversa de pos I. EXERCÍCIOS PROPOSTOS ) che os elementos da matrz (a) de ordem, em que a Resp.: 8 8 ) Escreva os elementos da matrz (a) de ordem, defnda por ( ) se se a,, Resp.: ) Escreva os elementos da matrz (a)x, defnda por > se se a,, Resp.: ) Determne x e y, sabendo que 6 7 y x y x Resp: x e y - ) Determne a, b, x e y, sabendo que 7 b a y x b a y x Resp: x, y, a e b -

6 blog.portalpostvo.com.br/captcar 6 6) Dada as matrzes z x B e y 8 6 6, calcule x, y e z para que B t. Resp: x, y 8 e z 7) Dada a matrz, obtenha a matrz X tal que t X. Resp: 6 8) Sendo (a)x tal que a e B (b)x tal que b, calcule B. Resp: [ ] 9) Calcule a matrz X, sabendo que ( ) B X e B T,. Resp: ) Dadas as matrzes e B. Resolva B X Resp: 9 6 ) Efetue: a) Resp: b) [ ] Resp: [7] c) Resp:

7 blog.portalpostvo.com.br/captcar 7 ) Dada a matrz, calcule. Resp: ) Determne a nversa da matrz. Resp: EXERCÍCIOS DE FIXÇÃO D PRENDIZGEM ) Construa as matrzes: a) (a ) x tal que a () resp: b) B(b ) x tal que b se se...,..., resp: B ) Quantos elementos possu uma matrz de ordem x. resp: ) Se uma matrz é do tpo m x n. Qual a ordem de t? resp: n x m ) Dadas as matrzes 7 e B, calcule: a) (Bt ) resp: / / / / b) t -( t B) rep: 6 ) Determne a matrz X, tal que XB, para e B resp: X 6) Sendo e B, determne a matrzes X e Y, tal que B Y X B Y X

8 resp: X / / 6 / e Y / / / 7) Calcule os produtos: a). resp: b). resp: ) Sendo, calcule -I. resp: 8 9 9) Sendo e B, determne a matrz X tal que.xb. 7 resp: X ) Encontre se exstr a nversa da matrz: a) resp: - / / / / b) B resp: ) (Unesp) Determne os valores de x, y e z na gualdade a segur, envolvendo matrzes reas : resp:. x, y e z blog.portalpostvo.com.br/captcar 8

9 ) (Unesp) Sea (a ) a matrz x real defnda por a se e a - se >. Calcule. resp: ) (Fe) Se as matrzes (a ) e B (b ) estão assm defndas: a a, se, se b, se e b, se onde,, então a matrz B é: resp: d ) (Fe) Dadas as matrzes e B, a matrz de x de a ordem que é solução da equação matrcal x B, onde representa a matrz nula de ordem é: resp: a blog.portalpostvo.com.br/captcar 9

10 ) (Uel) Consdere as matrzes M e M representadas a segur. Conclu-se que o número real a pode ser : a) b) c) d) - e) - resp: b 6) (Uel) Seam as matrzes e B, respectvamente, x e p x q. Se a matrz.b é x, então é verdade que: resp: b a) p e q b) p e q c) p e q d) p e q e) p e q 7) (Unro) Consdere as matrzes, B e C na fgura adante: adção da transposta de com o produto de B por C é: resp: d a) mpossível de se efetuar, pos não exste o produto de B por C. b) mpossível de se efetuar, pos as matrzes são todas de tpos dferentes. c) mpossível de se efetuar, pos não exste a soma da transposta de com o produto de B por C. d) possível de se efetuar e o seu resultado é do tpo x. e) possível de se efetuar e o seu resultado é do tpo x. 8) (Uel) Sobre as sentenças: I. O produto de matrzes x.b x é uma matrz x. II. O produto de matrzes x.b x é uma matrz x. III. O produto de matrzes x.b x é uma matrz quadrada x. blog.portalpostvo.com.br/captcar

11 é verdade que: a) somente I é falsa. b) somente II é falsa. c) somente III é falsa. d) somente I e III são falsas. e) I, II e III são falsas. resp: b 9) (Cesgranro) Cláudo anotou suas médas bmestras de matemátca, português, cêncas e estudos socas em uma tabela com quatro lnhas e quatro colunas, formando uma matrz, como mostra a fgura. Sabe-se que as notas de todos os bmestres têm o mesmo peso, sto é, para calcular a méda anual do aluno em cada matéra basta fazer a méda artmétca de suas médas bmestras. Para gerar uma nova matrz cuos elementos representem as médas anuas de Cláudo, na mesma ordem da matrz apresentada, bastará multplcar essa matrz por: resp: e ) (Ufr) ntôno, Bernardo e Cláudo saíram para tomar chope, de bar em bar, tanto no sábado quanto no domngo. s matrzes a segur resumem quantos chopes cada um consumu e como a despesa fo dvdda: blog.portalpostvo.com.br/captcar

12 S refere-se às despesas de sábado e D às de domngo. Cada elemento a nos dá o número de chopes que pagou para, sendo ntôno o número, Bernardo o número e Cláudo o número (a representa o elemento da lnha, coluna de cada matrz). ssm, no sábado ntôno pagou chopes que ele própro bebeu, chope de Bernardo e de Cláudo (prmera lnha da matrz S). a) Quem bebeu mas chope no fm de semana? resp: Cláudo b) Quantos chopes Cláudo fcou devendo para ntôno? resp: Bblografa: Curso de Matemátca Volume Únco utores: Banchn&Paccola Ed. Moderna Matemátca Fundamental - Volume Únco utores: Govann/Bonorno&Gvann Jr. Ed. FTD Contexto&plcações Volume Únco blog.portalpostvo.com.br/captcar

Exercícios de Matemática Matrizes

Exercícios de Matemática Matrizes Exercícios de Matemática Matrizes 4. (Unesp) Determine os valores de x, y e z na igualdade a seguir, envolvendo matrizes reais 2 2: 1. (Fuvest) a) Dada a matriz A, calcule a sua inversa A. b) A relação

Leia mais

Lista de matemática. professor Habib

Lista de matemática. professor Habib Lista de 4 a avaliação (Orientação de estudo) 1. (Ufpe) Nos quilômetros 31 e 229 de uma rodovia estão instalados telefones de emergência. Ao longo da mesma rodovia e entre estes quilômetros, pretende-se

Leia mais

Números Complexos na Forma Algébrica

Números Complexos na Forma Algébrica Colégo Adventsta Portão EIEFM MATEMÁTICA Números Complexos º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardm Dscplna: Matemátca Lsta º Bmestre Aluno(a): Número: Turma: Números Complexos na Forma Algébrca

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Exercício 1: Matriz identidade. Exercício 3: Exercício 2: Exemplo: Igualdade entre matrizes 13/05/2017. Obtenha a matriz, em que.

Exercício 1: Matriz identidade. Exercício 3: Exercício 2: Exemplo: Igualdade entre matrizes 13/05/2017. Obtenha a matriz, em que. Conceito de matriz Matrizes Matrizes são tabelas retangulares utilizadas para organizar dados numéricos. Nas matrizes, cada número é chamado de elemento da matriz, as filas horizontais são chamadas linhas

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro? Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x

Leia mais

Lista de Atividades - semana 1. 4a Avaliação

Lista de Atividades - semana 1. 4a Avaliação Lista de Atividades - semana 1 4a Avaliação 1. (Ufrj) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes

Leia mais

MATRIZES E DETERMINANTES. a, com índices duplos, onde

MATRIZES E DETERMINANTES. a, com índices duplos, onde MATRIZES E DETERMINANTES Para designar com clareza situações que apresentam um grupo ordenado de números dispostos em tabelas com linhas e colunas, introduziremos o conceito de matriz. Nesse sentido, matrizes

Leia mais

EXERCÍCIOS DE MATEMÁTICA Prof. Mário

EXERCÍCIOS DE MATEMÁTICA Prof. Mário EXERCÍCIOS DE MATEMÁTICA Prof. Máro e-mal: maroffer@yahoo.com.br 0 Conjuntos dos Números Complexos 0. Undade magnára º) Determne as raíes magnáras da equação x + 75 = 0 º) Encontre as raíes magnáras da

Leia mais

Números Complexos na Forma Algébrica

Números Complexos na Forma Algébrica Colégo Adventsta Portão EIEFM MATEMÁTICA Números Complexos º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardm Dscplna: Matemátca Lsta º Bmestre/0 Aluno(a): Número: Turma: Números Complexos na Forma Algébrca

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

a) 3 c) 5 d) 6 b) i d) i

a) 3 c) 5 d) 6 b) i d) i Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Matemática. Exercícios de Revisão II

Matemática. Exercícios de Revisão II Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 2 a Matemática Exercícios de Revisão II 1) (Unifesp-2009) Sob determinadas condições, o antibiótico gentamicina, quando ingerido, é eliminado

Leia mais

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A NOTAÇÕES N = f1; ; ; g C conjunto dos números comlexos R conjunto dos números reas undade magnára = 1 [a; b] = fx R; a x bg jzj módulo do número z C [a; b[ = fx R; a x < bg z conjugado do número z C ]a;

Leia mais

1. (Unirio) Dada a matriz representada na figura adiante. 4. (Ufes) Considere a matriz mostrada na figura a. seguir. Determine o valor de A + A - I.

1. (Unirio) Dada a matriz representada na figura adiante. 4. (Ufes) Considere a matriz mostrada na figura a. seguir. Determine o valor de A + A - I. COLÉGIO ADVENTISTA DE SÃO JOSÉ DO RIO PRETO NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B BIMESTRE: 1º PROFESSOR: Alexandre da Silva Bairrada 1. (Unirio) Dada

Leia mais

Equipe de Matemática MATEMÁTICA. Matrizes

Equipe de Matemática MATEMÁTICA. Matrizes Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais

Leia mais

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS COMÉRCIO EXTERIOR - REGULAR TERCEIRA SÉRIE NOME: EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS TESTES 1) Cnjunt sluçã da equaçã z z 0, n cnjunt ds númers cmplexs, é: a), 0, - c) d) e) 0 5 ) O cnjugad d númer

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

LISTA DE EXERCÍCIOS 2017

LISTA DE EXERCÍCIOS 2017 CURSO LISTA DE EXERCÍCIOS 2017 DISCIPLINA ESTUDANTE PROFESSOR (A) DATA Questão 1) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas

Leia mais

F-128 Física Geral I. Aula Exploratória Cap. 3.

F-128 Física Geral I. Aula Exploratória Cap. 3. F-128 Físca Geral I ula Eploratóra Cap. 3 username@f.uncamp.br Soma de vetores usando componentes cartesanas Se, o vetor C será dado em componentes cartesanas por: C ( î ĵ)( î ĵ) ( )î ( )ĵ C C î C ĵ onde:

Leia mais

C são matrizes que satisfazem

C são matrizes que satisfazem Eercícos de Álgebra Lnear Prof: José ndré UNIPLI - 9 () Construa as guntes matrzes: a) tal que por a b) tal que < > a a a. () Consdere a rede de telecomuncações com nós e coneões reprentada abao: a) Escreva

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações.

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Números Complexos Conceto, formas algébrca e trgonométrca e operações. Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos: Qual o resultado da

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Álgebra ( ) ( ) Números complexos.

Álgebra ( ) ( ) Números complexos. Números complexos Resolva as equações no campo dos a) x² 49 = 0 x² - x = 0 x² - x = 0 d) x² - x = 0 Dado = (4a ) - (a - ) determne o número real a tal que seja: a) magnáro puro real Sendo = (4m -) (n -),

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenhara Cvl ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mal: rcardo.henrques@ufjf.edu.br Aula Número: 19 Importante... Crcutos com a corrente

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

MATRIZES. Conceitos e Operações

MATRIZES. Conceitos e Operações MATRIZES Conceitos e Operações As matrizes são tabelas de números reais utilizadas em quase todos os ramos da ciência e da engenharia. Várias operações realizadas por computadores são através de matrizes.

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS.

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS. I 1. Demonstre que o crcuto da Fg. 1 é um half-adder (semsomador), em que A e B são os bts que se pretendem somar, S é o bt soma e C out é o bt de transporte (carry out). Fg. 1 2. (Taub_5.4-1) O full-adder

Leia mais

COLÉGIO SHALOM Ensino MÉDIO 2º ANO Profº:RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA Aluno (a):. No.

COLÉGIO SHALOM Ensino MÉDIO 2º ANO Profº:RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA Aluno (a):. No. COLÉGIO SHALOM Ensino MÉDIO º ANO Profº:RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA Aluno (a): No TRABALHO DE RECUPERAÇÃO VALOR, INSTRUÇÕES: LEIA com atenção cada questão; PROCURE compreender o que

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

NÚMEROS COMPLEXOS. Prof.ª Mª João Mendes Vieira

NÚMEROS COMPLEXOS. Prof.ª Mª João Mendes Vieira Prof.ª Mª João Mendes Vera Os Bablónos em 1700 AC já conhecam regras para resolver Equações do º grau. Os Gregos demonstraram essas regras e conseguram, por processos geométrcos, obter raízes rraconas.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM112 - Introdução à Álgebra Linear - Turmas 81, 82 e 84 Lista 1 - Tiago de Oliveira Universidade Federal de Ouro Preto Departamento de Matemática MTM2 - Introdução à Álgebra Linear - Turmas 8, 82 e 84 Lista - Tiago de Oliveira Reveja a teoria e os exercícios feitos em sala. 2 3 2 0. Sejam

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 20 MATRIZES

MATEMÁTICA - 3 o ANO MÓDULO 20 MATRIZES MATEMÁTICA - 3 o ANO MÓDULO 20 MATRIZES Como pode cair no enem Uma empresa possui 3 filiais: a filial 2 e a filial 3. Ela comprou camisas para o uniforme de seus funcionários nos tamanhos P, M e G. Se

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Matrizes. 2 e satisfaz a identidade matricial. = 2 2, então, o valor. sen cos. 4) Seja a matriz M = (mij)2x3, tal que mij = j 2 - i 2.

Matrizes. 2 e satisfaz a identidade matricial. = 2 2, então, o valor. sen cos. 4) Seja a matriz M = (mij)2x3, tal que mij = j 2 - i 2. Matrizes ) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes cada um consumiu e como a despesa foi dividida:

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Roteiro-Relatório da Experiência N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR

Roteiro-Relatório da Experiência N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR PROF.: Joaqum Rangel Codeço Rotero-Relatóro da Experênca N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR 1. COMPONENTES DA EQUIPE: ALUNOS 1 2 NOTA Prof.: Joaqum Rangel Codeço Data: / / : hs 2. OBJETIVOS: 2.1.

Leia mais

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2.

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2. setor 0 00408 Aula NÚMEROS COMPLEXOS: PLANO DE ARGAND-GAUSS Até este ponto, usamos, para representar um número complexo a expressão a + b i, em que a e b são números reais e i é a unidade imaginária Com

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Índice. Exemplo de minimização de estados mais complexo. estados

Índice. Exemplo de minimização de estados mais complexo. estados Sumáro Método da tabela de mplcações para mnmzar estados. Atrbução de códgos aos estados: métodos baseados em heurístcas. Índce Exemplo de mnmzação de estados mas complexo Método da tabela de mplcações

Leia mais

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4?

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4? Segmento: ENSINO MÉDIO Dscplna: MATEMÁTICA Tpo de Atvdade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/2016 Turma: 3 A PROBABILIDADE 1) No lançamento de um dado, determnar a probabldade de se obter: a) o número

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Cálculo de Índices de Preços do Setor Sucroalcooleiro

Cálculo de Índices de Preços do Setor Sucroalcooleiro Cálculo de Índces de reços do Setor Sucroalcoolero Introdução O projeto tem como objetvo desenvolver uma metodologa que mensure a nflação mensal dos processos de produção de cana-deaçúcar, açúcar e etanol.

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é: APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado

Leia mais

Instituto Latino-Americano de Ciências da Vida e Da Natureza Curso 6 + B 1 ALUNO: 5. Se mnp1 = 3 2mnp, calcule m + n + p.

Instituto Latino-Americano de Ciências da Vida e Da Natureza Curso 6 + B 1 ALUNO: 5. Se mnp1 = 3 2mnp, calcule m + n + p. os esportes? três esportes, quantos pratcam só dos o total de esportstas é 76 e 10 deles pratcam posconados nos círculos pntados 8 pratcam Encontre ofutebol, valor de 3Sbasquete na segunte e 40expressão:

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

tal que = +3 tal que 2+, > em que / 01 =2 3) ( > seja igual à matriz identidade. 3(+4 1

tal que = +3 tal que 2+, > em que / 01 =2 3) ( > seja igual à matriz identidade. 3(+4 1 " COLÉGIO ODELO LUIZ EDUARDO AGALHÃES ATEÁTICA LISTA : ATRIZES E DETERINANTES 2ª SÉRIE TURA: II UNIDADE PROFESSOR: HENRIQUE PLÍNIO DATA: / /206 CAAÇARI - BA ALUNO(A): Nenhum obstáculo é tão grande se a

Leia mais

Exercícios de CPM e PERT Enunciados

Exercícios de CPM e PERT Enunciados Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

MATEMÁTICA. Aula 14 Matrizes. Prof. Anderson

MATEMÁTICA. Aula 14 Matrizes. Prof. Anderson MATEMÁTICA Aula Matrizes Prof. Anderson Assuntos Conceito Matrizes com Nomes Especiais Igualdade de Matrizes Operações com Matrizes Matriz Inversa Conceito As matrizes são quantidades de dados passíveis

Leia mais

AULA 8- ÁLGEBRA MATRICIAL VERSÃO: OUTUBRO DE 2016

AULA 8- ÁLGEBRA MATRICIAL VERSÃO: OUTUBRO DE 2016 CURSO DE ADMINISTRAÇÃO CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA 01 AULA 8- ÁLGEBRA MATRICIAL VERSÃO: 0.1 - OUTUBRO DE 2016 Professor: Luís Rodrigo E-mail: luis.goncalves@ucp.br

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x):

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x): POLINÔMIO INTERPOLAOR E NEWTON ) IFERENÇAS IVIIAS.) IFERENÇAS IVIIAS ORINÁRIAS () Sejam n pontos de uma função f():... n f( )... n - ferença dvdda de ordem zero: n n M - ferença dvdda de ordem um: M M

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC) PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos

Leia mais

Indique, NÃO CALCULE, as operações necessárias COM AS MATRIZES A, B, C, para obter a matriz custo da salada de frutas em cada supermercado.

Indique, NÃO CALCULE, as operações necessárias COM AS MATRIZES A, B, C, para obter a matriz custo da salada de frutas em cada supermercado. . 16. Situação Problema: operações com matrizes. Problema da salada de frutas: João comeu uma salada de frutas com a, m e p porções de 100g de abacaxi, manga e pera, respectivamente, conforme a matriz

Leia mais