CAPÍTULO IV PROPRIEDADES GEOMÉTRICAS DA SEÇÃO TRANSVERSAL

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO IV PROPRIEDADES GEOMÉTRICAS DA SEÇÃO TRANSVERSAL"

Transcrição

1 CPÍTULO IV PROPRIEDDES GEOMÉTRICS D SEÇÃO TRNSVERSL

2 Propredades Geométrcas da Seção Transversal 4. Propredades Geométrcas da Seção Transversal 4.. Introdução O presente trabalho é desenvolvdo paralelamente ao desenvolvmento de um programa de computador para cálculo de plares solctados à flexão oblqua composta. Esse programa está sendo desenvolvdo para seção transversal constante ao longo do comprmento do plar, mas qualquer. seção transversal pode ser defnda como retangular, em L ou genérca. Neste últmo caso, ela será descrta por até quatro polgonas, sendo que cada polgonal será defnda pelos seus vértces numerados seqüencalmente no sentdo horáro. polgonal que representar uma regão vazada da seção, deve ser numerada no sentdo ant-horáro. Os vértces da seção serão caracterzados pelas suas coordenadas no sstema global (X,) Seção Retangular seção retangular pode ter seus dados fornecdos smplfcadamente por: h x = dmensão da seção paralela ao exo X (base) h = dmensão da seção paralela ao exo Y (altura) Os vértces e lados não numerados nternamente pelo programa conforme é ndcado na fgura Seção em L s seções em L podem ser descrtas smplfcadamente pelas dmensões de seus lados, conforme é ndcado na fgura 4., onde: h x = comprmento da aba paralela ao exo X (base) h = comprmento da aba paralela ao exo Y (altura) b x = espessura, na dreção X, da aba paralela ao exo b = espessura, na dreção, da aba paralela ao exo X IV -

3 Propredades Geométrcas da Seção Transversal b x h h b O = 4 4 X O = 6 6 X h x h x Fgura 4. Seção retangular e em L. Numeração dos vértces e dos lados 4.4. Seção genérca s polgonas em geral são descrtas pelas coordenadas (x, ) dos seus vértces. numeração dos lados é feta nternamente pelo programa, sendo que o lado é o lado entre os vértces e +. fgura 4.2 lustra o caso geral de uma seção descrta por duas polgonas, onde a polgonal 2, numerada no sentdo ant-horáro, representa uma regão vazada. cada polgonal será atrbuído um materal (índce do materal = IM) lados vértces materal polgonal materal 2 polgonal barra da armadura O Fgura Seção genérca. Numeração dos vértces e dos lados X IV - 2

4 Propredades Geométrcas da Seção Transversal 4.5. rmadura Introdução armadura da seção será descrta por barras assocadas aos vértces e barras assocadas aos lados de uma polgonal. cada polgonal será atrbuída uma armadura consttuída por um conunto de barras. s barras serão locadas pelo programa sempre ao lado dreto da lnha da polgonal, a uma dstânca gual a c + 0,5.F, onde c é o cobrmento e F o dâmetro da barra. Dessa forma nas regões vazadas as barras da armadura estarão locadas no nteror da seção e não na regão vazada. s barras assocadas a cada lado da polgonal serão todas da mesma btola, mas a cada lado da polgonal se pode atrbur uma btola dferente. Pode-se atrbur uma btola dferente ou não para cada vértce da polgonal Barras assocadas aos vértces da polgonal s coordenadas dos vértces de uma polgonal são dadas por: Vértce = (x ; ) Vértce = (x ; ) onde é o vértce segunte ao vértce. Se + > número de vértces da polgonal então = se não = + equação da reta paralela ao lado, que passa pelos centros das barras assocadas aos vértces da polgonal é: = m.x + b (4.) com m = (4.2) x x c + 0,5. φ b = m. x cosα (4.) a = arc tg m (4.4) IV -

5 Propredades Geométrcas da Seção Transversal barra assocada ao vértce está no cruzamento das retas paralelas aos lados e (-) da polgonal, assm bv = m -.x bv + b - = m.x bv + b (4.5) donde resulta: x b b = (4.6) bv m m bv = m.x bv + b (4.7) onde x bv = abscssa da barra assocada ao vértce bv = ordenada da barra assocada ao vértce c+0,5. φ Reta paralela ao lado m.x Barra assocada ao vértce c + 0,5. φ cos α a b O x x X Fgura 4. Localzação da barra assocada ao vértce Barras assocadas aos lados da polgonal cada lado da polgonal estarão assocadas N bl barras. Cada barra k, assocada ao lado, terá suas coordenadas dadas por: x bv x bv x bl, k = x bv + k. (4.8) N + bl bv bv bl, k = bv + k. (4.9) N + bl IV - 4

6 Propredades Geométrcas da Seção Transversal onde: k = índce da barra N bl = número de barras assocadas ao lado Propredades geométrcas da seção Representação da seção transversal seção transversal é defnda em relação ao sstema de exos (X,). Internamente o programa faz uma translação de exos para o sstema (X, Y), paralelo ao anteror mas com orgem no centro de gravdade da seção. Z (com orgem na L.N.) V (com orgem no C.G.) Y a ES? v LN CG a X LN CG U//LN O x CG X CG = Centro de Gravdade da seção ES = Exo de Solctação (traço do plano de atuação do momento no plano da seção) Fgura 4.4 Defnção dos exos barcentras de coordenadas para uma seção genérca. IV - 5

7 Propredades Geométrcas da Seção Transversal Área da seção transversal Na fgura 4.5 está destacado um lado genérco de uma polgonal, onde, é o vértce ncal do lado e é o vértce fnal (o lado tem o mesmo índce do vértce ncal). Cada lado de cada polgonal é assocado a um trapézo conforme a fgura 4.5, e a área da seção é calculada pelas expressões: x + x =. (4.0) 2 =. (4.) np nl n p= l= h = nl nl Nbl. sbl, k = = = = (4.2) l k np n + ( ns ). sbv + p onde:?x = x x? = = Área do trapézo assocado ao lado ; = Área da seção; h = Área da seção homogenezada; p = índce relatvo às polgonas que consttuem a seção; Ep n = módulo de deformação relatvo da polgonal p; E c E s n s = módulo de deformação relatvo da armadura; Ec E p = módulo de deformação do materal correspondente à polgonal p; E s = módulo de deformação da armadura; E c = módulo de deformação do concreto; n p = número de polgonas que consttuem a seção; n lp = número de lados da polgonal p; IV - 6

8 Propredades Geométrcas da Seção Transversal N blp = número de barras assocadas ao lado da polgonal p; bvp = área da barra assocada ao vértce da polgonal p; blp,k = área da barra k assocada ao lado da polgonal p;? x?x X x Fgura 4.5 Defnção de um trapézo assocado a um dos lados de uma polgonal para o cálculo das propredades geométrcas da seção Momentos estátcos em relação aos exos X e Os momentos estátcos da seção são calculados pelo programa computaconal consderando também um trapézo assocado a cada lado de cada polgonal conforme a fgura 4.5, e são calculados pelas expressões: S x = np n p= = nl x + x... g (4.) 2 com o centro de gravdade do trapézo dado por g ( 2x + x ). ( x + x ) = + (4.4) S = np n nl 2. 0,5. x. + 0,5. x.. x + x (4.5) p= = IV - 7

9 Propredades Geométrcas da Seção Transversal Para a seção consderada homogenezada se desconta a área de concreto ocupada pela armadura e maora-se a área da armadura pela relação, n s, entre os módulos de elastcdade do aço e do concreto, assm np nl Nbl S xs = sbvp. bvp + sblp, k. blp, k (4.6) p= = k= np nl Nbl S s = sbvp. x bvp + sblpk,. x blp, k (4.7) p= = k = S xh = S + ( n ). S (4.8) x s xs S h = S + ( n ). S (4.9) s s onde: S x = momento estátco da seção de concreto em relação ao exo x S = momento estátco da seção de concreto em relação ao exo S xs = momento estátco da armadura S s = momento estátco da armadura S xh = momento estátco da seção homogenezada em relação ao exo x S h = momento estátco da seção homogenezada em relação ao exo 4.8. Centro de gravdade da seção Para a seção de concreto: x = cg S S x cg = (4.20) Para a seção homogenezada: x = cgh S h h S xh cgh = (4.2) h Para a seção consderada consttuída exclusvamente pelas barras da armadura: IV - 8

10 Propredades Geométrcas da Seção Transversal x = cgs S s s S xs cgs = (4.22) s Nota: Como esses três centros não concdem, a escolha de se consderar a seção bruta de concreto sem levar em conta as barras da armadura (como normalmente se faz) na determnação do centro de gravdade, leva a momentos fletores resstentes dferentes dos que se obtém consderando a seção homogenezada. nda, quando se consdera a peça trabalhando totalmente traconada (domíno de deformações), com toda armadura em escoamento (tensões todas guas a fd), mas com alguma curvatura, só se obterá momentos nulos quando se estver consderando como centro de gravdade da seção, aquele determnado exclusvamente pelas barras da armadura Translação de exos translação do sstema de exos (X, ) para os exos barcentras (X, Y) paralelos aos prmeros se faz consderando que: x = x cg + x e = cg + (4.2) portanto: x = x x cg e = cg (4.24) 4.0. Rotação de exos de (X, Y) para (U,V) Sea a o ângulo de rotação, postvo no sentdo horáro,. s relações entre as coordenadas nos dos sstemas são: x = u.cos a + v.sen a (4.25) = -u.sen a + v.cos a (4.26) donde resultam as coordenadas para o novo sstema de exos (U,V). u = x.cos a -.sen a (4.27) v = x.sen a + cos a (4.28) IV - 9

11 Propredades Geométrcas da Seção Transversal Z (com orgem em O ) V (com orgem em O) Y v.sen a u.cos a u.sen a x u P a v.cos a O v O X a v LN U = LN a postvo no sentdo horáro U // LN Fgura 4.4 Ilustração da rotação de exos. 4.. Consderação do sstema (U, Z) Para a consderação das deformações e tensões é nteressante consderar para as ordenadas, as dstâncas a partr da lnha neutra (LN). ssm, o exo das abscssas contnuará a ser chamado de U, porém para as ordenadas se fará uma translação de exos tal que: z = v - v LN (4.29) onde v LN é a ordenada da lnha neutra no sstema (U, V). Com sso, as deformações serão lnearmente proporconas às ordenadas z (dstâncas da lnha neutra). IV - 0

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

Isostática 2. Noções Básicas da Estática

Isostática 2. Noções Básicas da Estática Isostátca. Noções Báscas da Estátca Rogéro de Olvera Rodrgues .1. Força Força desgna um agente capa de modfcar o estado de repouso ou de movmento de um determnado corpo. É uma grandea vetoral e, como tal,

Leia mais

2 Análise de Campos Modais em Guias de Onda Arbitrários

2 Análise de Campos Modais em Guias de Onda Arbitrários Análse de Campos Modas em Guas de Onda Arbtráros Neste capítulo serão analsados os campos modas em guas de onda de seção arbtrára. A seção transversal do gua é apromada por um polígono conveo descrto por

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Gabarito para a prova de 1º Ano e 8ª serie (atual 9º Ano)

Gabarito para a prova de 1º Ano e 8ª serie (atual 9º Ano) Gabarto para a prova de 1º Ano e 8ª sere (atual 9º Ano) 1. t t c F 5 3 9 ; t c 451 3 5 9 o ; tc 33 C ΔS. a) Δ t 5 s V 4, 1 mnuto possu 6 s, portanto, dos 5 s temos: 8 mnutos (equvale a 48 s) e sobram segundos.

Leia mais

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite

5 Relação entre Análise Limite e Programação Linear 5.1. Modelo Matemático para Análise Limite 5 Relação entre Análse Lmte e Programação Lnear 5.. Modelo Matemátco para Análse Lmte Como fo explcado anterormente, a análse lmte oferece a facldade para o cálculo da carga de ruptura pelo fato de utlzar

Leia mais

Ângulo de Inclinação (rad) [α min α max ] 1 a Camada [360,0 520,0] 2000 X:[-0,2065 0,2065] Velocidade da Onda P (m/s)

Ângulo de Inclinação (rad) [α min α max ] 1 a Camada [360,0 520,0] 2000 X:[-0,2065 0,2065] Velocidade da Onda P (m/s) 4 Estudo de Caso O estudo de caso, para avalar o método de estmação de parâmetros trdmensonal fo realzado em um modelo de referênca de três camadas, e foram realzados os seguntes passos: Descrção do modelo

Leia mais

Radiação Térmica Processos, Propriedades e Troca de Radiação entre Superfícies (Parte 2)

Radiação Térmica Processos, Propriedades e Troca de Radiação entre Superfícies (Parte 2) Radação Térmca Processos, Propredades e Troca de Radação entre Superfíces (Parte ) Obetvo: calcular a troca por radação entre duas ou mas superfíces. Essa troca depende das geometras e orentações das superfíces,

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL. Waldson Takeo Watanabe

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL. Waldson Takeo Watanabe UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL Waldson Takeo Watanabe VERIFICAÇÃO DA ESTABILIDADE DE PILARES ESBELTOS DE CONCRETO ARMADO SUBMETIDOS À FLEXO-COMPRESSÃO

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1 SC de Físca I - 2017-2 Nota Q1 88888 Nota Q2 Nota Q3 NOME: DRE Teste 1 Assnatura: Questão 1 - [3,5 pontos] Uma partícula de massa m se move sobre uma calha horzontal lsa com velocdade constante de módulo

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL

LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL LISTA DE REVISÃO DE MATEMÁTICA º ANO 2º TRIMESTRE PROF. JADIEL 1) O valor de z sabendo que 6 z é: z A) 6 B) 6 C) 8 + D) 8 E) 8 2) Qual o valor de z para que z z 2? A) z 2 B) z 1 2 C) z D) z E) z 1 ) Consdere

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

PROGRAMA COMPUTACIONAL PARA PROJETO DE PILARES DE CONCRETO ARMADO SEGUNDO A NBR 6118:2007

PROGRAMA COMPUTACIONAL PARA PROJETO DE PILARES DE CONCRETO ARMADO SEGUNDO A NBR 6118:2007 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL Lucas Almeda Gabnesk PROGRAMA COMPUTACIONAL PARA PROJETO DE PILARES DE CONCRETO ARMADO SEGUNDO A NBR 6118:007

Leia mais

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2.

01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2. Lsta 8 Números complexos Resoluções Prof Ewerton Números Complexos (concetos báscos, adção, subtração, multplcação, gualdade e conjugado) 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja

Leia mais

Método do limite superior

Método do limite superior Introdução O método do lmte superor é uma alternata analítca apromada aos métodos completos (e: método das lnhas de escorregamento) que possu um domíno de aplcabldade muto asto e que permte obter alores

Leia mais

Sistemas Reticulados

Sistemas Reticulados 7/0/06 PEF60 PEF60 Estruturas na rqutetura I I - Sstemas Retculados Estruturas na rqutetura I I Sstemas Retculados EP-USP FU-USP Estruturas Estaadas Sstemas Retculados (ula 8 7/0/06) Professores Ruy Marcelo

Leia mais

Sistemas Reticulados 17/10/2016 ESTRUTURAS ESTAIADAS. Estruturas Estaiadas

Sistemas Reticulados 17/10/2016 ESTRUTURAS ESTAIADAS. Estruturas Estaiadas 7// ESTRUTURS ESTIS EP-USP PEF PEF Estruturas na rqutetura I I - Sstemas Retculados Estruturas na rqutetura I I Sstemas Retculados FU-USP Estruturas compostas de elementos rígdos resstentes à flexocompressão

Leia mais

Professor: Murillo Nascente Disciplina: Física Plantão

Professor: Murillo Nascente Disciplina: Física Plantão Professor: Murllo Nascente Dscplna: Físca Plantão Data: 22/08/18 Fontes de Campo Magnétco 1. Experênca de Oersted Ao aproxmarmos um ímã de uma agulha magnétca, esta sofre um desvo. Dzemos que o ímã gera

Leia mais

Curso Técnico em Informática. Eletricidade

Curso Técnico em Informática. Eletricidade Curso Técnco em Informátca Eletrcdade Eletrcdade Aula_0 segundo Bmestre Intensdade do Vetor B Condutor Retlíneo A ntensdade do vetor B, produzdo por um condutor retlíneo pode ser determnada pela Le de

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (2 ạ fase) GRUPO I (Versão 1) Assim, 2! 3! 4 = 48 é a resposta pedida.

Proposta de resolução do Exame Nacional de Matemática A 2017 (2 ạ fase) GRUPO I (Versão 1) Assim, 2! 3! 4 = 48 é a resposta pedida. Proosta de resolução do Eame Naconal de Matemátca A 7 ( ạ fase) GRUPO I (Versão ) P P I I I. 3 3! 3! = 6 = 8 Estem quatro maneras dstntas de os algarsmos ares estarem um a segur ao outro (PPIII ou IPPII

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase Soluções Nível Unverstáro XXVII Olmpíada Braslera de Matemátca GABARITO Prmera Fase SOLUÇÃO DO PROBLEMA : Pelo enuncado, temos f(x) = (x )(x + )(x c) = x 3 cx x + c, f'(x) = 3x cx, f '( ) = ( + c) e f

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Unversdade Estadual do Sudoeste da Baha Departamento de Cêncas Exatas e Naturas 5 - Rotações, Centro de Massa, Momento, Colsões, Impulso e Torque Físca I Ferrera Índce 1. Movmento Crcular Unformemente

Leia mais

3 Método Numérico. 3.1 Discretização da Equação Diferencial

3 Método Numérico. 3.1 Discretização da Equação Diferencial 3 Método Numérco O presente capítulo apresenta a dscretação da equação dferencal para o campo de pressão e a ntegração numérca da expressão obtda anterormente para a Vscosdade Newtonana Equvalente possbltando

Leia mais

Sistemas Equivalentes de Forças

Sistemas Equivalentes de Forças Nona E 3 Corpos CÍTULO ECÂNIC VETORIL R ENGENHEIROS: ESTÁTIC Ferdnand. Beer E. Russell Johnston, Jr. Notas de ula: J. Walt Oler Teas Tech Unverst Rígdos: Sstemas Equvalentes de Forças 2010 The cgraw-hll

Leia mais

06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i

06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i concetos báscos, adção, subtração, multplcação, gualdade e conjugado 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja soma é:. b). c) 0.. e). 0) (Mack) O conjunto solução da equação + 3 =

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

Eletrotécnica AULA Nº 1 Introdução

Eletrotécnica AULA Nº 1 Introdução Eletrotécnca UL Nº Introdução INTRODUÇÃO PRODUÇÃO DE ENERGI ELÉTRIC GERDOR ESTÇÃO ELEVDOR Lnha de Transmssão ESTÇÃO IXDOR Equpamentos Elétrcos Crcuto Elétrco: camnho percorrdo por uma corrente elétrca

Leia mais

F-128 Física Geral I. Aula Exploratória Cap. 3.

F-128 Física Geral I. Aula Exploratória Cap. 3. F-128 Físca Geral I ula Eploratóra Cap. 3 username@f.uncamp.br Soma de vetores usando componentes cartesanas Se, o vetor C será dado em componentes cartesanas por: C ( î ĵ)( î ĵ) ( )î ( )ĵ C C î C ĵ onde:

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Sistemas Reticulados

Sistemas Reticulados 9//6 EF6 EF6 Estruturas na rqutetura I I - Sstemas Retculados Estruturas na rqutetura I Sstemas Retculados E-US FU-US Estruturas Hperestátcas Sstemas Retculados & ão-lneardade do omportamento Estrutural

Leia mais

Laboratório de Mecânica Aplicada I Determinação de Centros de Gravidade

Laboratório de Mecânica Aplicada I Determinação de Centros de Gravidade Laboratóro de Mecânca Aplcada I Determnação de Centros de Gravdade Em mutos problemas de mecânca o efeto do peso dos corpos é representado por um únco vector, aplcado num ponto denomnado centro de gravdade.

Leia mais

58 Textos de Apoio de Análise Matemática IV 2003/2004. Tem-se assim uma decomposição da região rectangular R em mk rectângulos

58 Textos de Apoio de Análise Matemática IV 2003/2004. Tem-se assim uma decomposição da região rectangular R em mk rectângulos 58 Textos de Apoo de Análse Matemátca IV 3/4.3 Integral duplo.3.1 efnção Seja um rectângulo fechado de, sto é, [a, b] [c, d] {(x, y) : a x b e c y d}, com a < b e c < d. Consdere-se uma partção do ntervalo

Leia mais

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e)

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e) Resolução da Frequênca de Mecânca Clássca I/Mecânca Clássca 2003/2004 I Consdere um sstema de N partículas de massas m, =,..., N. a Demonstre que, se a força nterna exercda sobre a partícula pela partícula

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Indutores ou bobinas: criam campos magnéticos numa dada região do circuito.

Indutores ou bobinas: criam campos magnéticos numa dada região do circuito. Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III - Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 33-2, 33-3, 33-4, 33-5, 33-6 S. 31-3, 31-4, 31-5 T. 26-7, 26-8,

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

Leis de conservação em forma integral

Leis de conservação em forma integral Les de conservação em forma ntegral J. L. Balño Departamento de Engenhara Mecânca Escola Poltécnca - Unversdade de São Paulo Apostla de aula Rev. 10/08/2017 Les de conservação em forma ntegral 1 / 26 Sumáro

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

Análise Variacional de Segunda Ordem Não-Linear em Pilares de Concreto Armado com Uso de Relação Momento-Curvatura Analiticamente Ajustada

Análise Variacional de Segunda Ordem Não-Linear em Pilares de Concreto Armado com Uso de Relação Momento-Curvatura Analiticamente Ajustada Análse Varaconal de Segunda Ordem Não-Lnear em Plares de Concreto Armado com Uso de Relação Momento-Curvatura Analtcamente Ajustada Felpe Mranda da Slva Resumo Nesse trabalho, estudaremos os efetos de

Leia mais

4 Discretização e Linearização

4 Discretização e Linearização 4 Dscretzação e Lnearzação Uma vez defndas as equações dferencas do problema, o passo segunte consste no processo de dscretzação e lnearzação das mesmas para que seja montado um sstema de equações algébrcas

Leia mais

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel Prof. Henrque arbosa Edfíco asílo Jafet - Sala 00 Tel. 309-6647 hbarbosa@f.usp.br http://www.fap.f.usp.br/~hbarbosa Faraday e Maxwell 79-867 O potencal elétrco Defnção de potencal: para um deslocamento

Leia mais

CAPÍTULO V CÁLCULO DOS ESFORÇOS INTERNOS RESISTENTES DADOS a, 1/R a E e O

CAPÍTULO V CÁLCULO DOS ESFORÇOS INTERNOS RESISTENTES DADOS a, 1/R a E e O CAPÍTULO V CÁLCULO DOS ESFOÇOS ITEOS ESISTETES DADOS a / a E e O Cálculo os Esforços Internos esstentes Daos /r e εo 5 Cálculo os Esforços Internos esstentes Daos a /r a e e o 5 Introução A etermnação

Leia mais

ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS

ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO MÉTODO DE CROSS DECvl ANÁLISE DE ESTRUTURAS I INTRODUÇÃO AO ÉTODO DE CROSS Orlando J. B. A. Perera 20 de ao de 206 2 . Introdução O método teratvo ntroduzdo por Hardy Cross (Analyss of Contnuous Frames by Dstrbutng Fxed-End

Leia mais

Introdução ao comportamento não linear de estruturas

Introdução ao comportamento não linear de estruturas Introdução ao comportamento não lnear de estruturas Conteúdo 1 Introdução 1.1 orquê estudar o comportamento não lnear das estruturas?............ 1. Análse lnear versus análse não lnear........................

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua Módulo I Ondas Planas Reflexão e Transmssão com ncdênca normal Reflexão e Transmssão com ncdênca oblíqua Equações de Maxwell Teorema de Poyntng Reflexão e Transmssão com ncdênca normal Temos consderado

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Exercícios de cisalhamento puro e flexão simples - prof. Valério SA Universidade de São Paulo - USP

Exercícios de cisalhamento puro e flexão simples - prof. Valério SA Universidade de São Paulo - USP Exercíco de calhamento puro e flexão mple - prof. Valéro S Unverdade de São Paulo - USP São Paulo, dezembro de 05.. etrutura de contenção eta ubmetda a uma ação de empuxo do olo, onde a dtrbução é lnear

Leia mais

11. Indutância (baseado no Halliday, 4 a edição)

11. Indutância (baseado no Halliday, 4 a edição) 11. Indutânca Capítulo 11 11. Indutânca (baseado no Hallday, 4 a edção) Capactores e Indutores Capactores Capactor: dspostvo que podemos usar para produzr um determnado campo elétrco numa certa regão do

Leia mais

COMBUSTÍVEIS E COMBUSTÃO

COMBUSTÍVEIS E COMBUSTÃO COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenhara de Energa Dourados MS - 2013 CHAMAS DIFUSIVAS 2 INTRODUÇÃO Chamas de dfusão turbulentas tpo jato de gás são bastante comuns em aplcações ndustras. Há

Leia mais

Capítulo 30: Indução e Indutância

Capítulo 30: Indução e Indutância Capítulo 3: Indução e Indutânca Índce Fatos xpermentas; A e de Faraday; A e de enz; Indução e Tranferênca de nerga; Campos létrcos Induzdos; Indutores e Indutânca; Auto-ndução; Crcuto ; nerga Armazenada

Leia mais

Lei dos transformadores e seu princípio de funcionamento

Lei dos transformadores e seu princípio de funcionamento Le dos transformadores e seu prncípo de funconamento Os transformadores operam segundo a le de Faraday ou prmera le do eletromagnetsmo. Prmera le do eletromagnetsmo Uma corrente elétrca é nduzda em um

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Psicologia Conexionista Antonio Roque Aula 8 Modelos Conexionistas com tempo contínuo

Psicologia Conexionista Antonio Roque Aula 8 Modelos Conexionistas com tempo contínuo Modelos Conexonstas com tempo contínuo Mutos fenômenos de aprendzado assocatvo podem ser explcados por modelos em que o tempo é uma varável dscreta como nos casos vstos nas aulas anterores. Tas modelos

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D.

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D. Unversdade Federal do Paraná Departamento de Informátca Reconhecmento de Padrões Classfcadores Lneares Luz Eduardo S. Olvera, Ph.D. http://lesolvera.net Objetvos Introduzr os o conceto de classfcação lnear.

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

1º Exame de Mecânica Aplicada II

1º Exame de Mecânica Aplicada II 1º Exame de Mecânca Aplcada II Este exame é consttuído por 4 perguntas e tem a duração de três horas. Justfque convenentemente todas as respostas apresentando cálculos ntermédos. Responda a cada pergunta

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III ula Exploratóra Cap. 26-27 UNICMP IFGW F328 1S2014 1 Densdade de corrente! = J nˆ d Se a densdade for unforme através da superfíce e paralela a, teremos: d! J! v! d E! J! = Jd = J

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

HOMOTETIAS, COMPOSIÇÃO DE HOMOTETIAS E O PROBLEMA 6 DA IMO 2008 Carlos Yuzo Shine Nível Avançado

HOMOTETIAS, COMPOSIÇÃO DE HOMOTETIAS E O PROBLEMA 6 DA IMO 2008 Carlos Yuzo Shine Nível Avançado HMTETIS, MPSIÇÃ DE HMTETIS E PREM 6 D IM 008 arlos Yuzo Shne Nível vançado ntes de começar a dscussão, vamos enuncar o problema 6 da IM 008, que é a motvação prncpal desse artgo. Problema 6, IM 008. Seja

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Matemática A. Previsão 1. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013

Matemática A. Previsão 1. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013 Prevsão Exame Naconal de Matemátca A 01 Prevsão 1 1ª fase Matemátca A Prevsão 1 Duração do teste: 180 mnutos 7.06.01 1.º Ano de Escolardade Resoluções em vídeo em www.explcamat.pt Prevsão de Exame págna1/8

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTO DE ROBÓTI Modeo nemátco de Robôs Manpuadores Modeo nemátco de Robôs Manpuadores Introdução Modeo nemátco Dreto Modeo nemátco de um Robô de GDL Representação de Denavt-Hartenberg Exempos de pcação

Leia mais

3 Método dos Elementos Discretos (DEM)

3 Método dos Elementos Discretos (DEM) 3 Método dos Elementos Dscretos (DEM) O método dos elementos dscretos fo ncalmente ntroduzdo por Cundall [19]; nsprado na solução de problemas geomecâncos como geotécncos Este método tem a capacdade de

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

/augustofisicamelo. Menu. 01 Gerador elétrico (Introdução) 12 Associação de geradores em série

/augustofisicamelo. Menu. 01 Gerador elétrico (Introdução) 12 Associação de geradores em série Menu 01 Gerador elétrco (Introdução) 12 Assocação de geradores em sére 02 Equação do gerador 13 Assocação de geradores em paralelo 03 Gráfco característco dos geradores 14 Receptores elétrcos (Introdução)

Leia mais

5 Formulação para Problemas de Potencial

5 Formulação para Problemas de Potencial 48 Formulação para Problemas de Potencal O prncpal objetvo do presente capítulo é valdar a função de tensão do tpo Westergaard obtda para uma trnca com abertura polnomal (como mostrado na Fgura 9a) quando

Leia mais

ACOPLAMENTO MAGNÉTICO DE CIRCUITOS

ACOPLAMENTO MAGNÉTICO DE CIRCUITOS Consderações geras Uma corrente aráel no tempo produz um campo magnétco aráel no tempo. Um campo magnétco aráel nduz, por sua ez, uma tensão num qualquer condutor colocado na zona de sua nfluênca. A relação

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 010 13/1/009 INSTRUÇÕES 1. Confra, abaxo, o seu número de nscrção, turma e nome. Assne no local ndcado. Conhecmentos Específcos. Aguarde autorzação para abrr o caderno de prova. Antes

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA RETA FINAL (LPM) INSTRUÇÕES

INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA RETA FINAL (LPM) INSTRUÇÕES INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA RETA FINAL (LPM) INSTRUÇÕES. Esta prova tem duração de quatro horas.. Não é permtdo dear o local de eame antes de decorrdos duas horas do níco da

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Centro de massa - Movimento de um sistema de partículas

Centro de massa - Movimento de um sistema de partículas Centro de massa - Movmento de um sstema de partículas Centro de Massa Há um ponto especal num sstema ou objeto, chamado de centro de massa, que se move como se toda a massa do sstema estvesse concentrada

Leia mais

ESTUDO DA MÁQUINA SIMÉTRICA TRIFÁSICA

ESTUDO DA MÁQUINA SIMÉTRICA TRIFÁSICA CAPÍTUO ETUDO DA ÁQUINA IÉTICA TIFÁICA. INTODUÇÃO A máquna de ndução trfásca com rotor bobnado é smétrca. Apresenta estruturas magnétcas clíndrcas tanto no rotor quanto no estator. Os enrolamentos, tanto

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teora Elementar da Probabldade MODELOS MATEMÁTICOS DETERMINÍSTICOS PROBABILÍSTICOS PROCESSO (FENÓMENO) ALEATÓRIO - Quando o acaso nterfere na ocorrênca de um ou mas dos resultados nos quas tal processo

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág. ísca Setor Prof.: Índce-controle de Estudo ula 37 (pág. 88) D TM TC ula 38 (pág. 88) D TM TC ula 39 (pág. 88) D TM TC ula 40 (pág. 91) D TM TC ula 41 (pág. 94) D TM TC ula 42 (pág. 94) D TM TC ula 43 (pág.

Leia mais

6 Análises de probabilidade de ruptura de um talude

6 Análises de probabilidade de ruptura de um talude 6 Análses de probabldade de ruptura de um talude 6.. Introdução No presente capítulo, apresentam-se prevsões de probabldades de ruptura para o talude de jusante da Barragem de Benguê mostrada na fgura

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. Tarefa nº 3 do plano de trabalho nº 2

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. Tarefa nº 3 do plano de trabalho nº 2 scola Secundára com 3º cclo. ns º no de Matemátca Tema III Trgonometra e Números ompleos Tarefa nº 3 do plano de trabalho nº. Represente rgorosamente no plano compleo os seguntes números: a. e b. + e c.

Leia mais

Proposta de método para alocação de perdas em redes eléctricas de distribuição com Produção em Regime Especial

Proposta de método para alocação de perdas em redes eléctricas de distribuição com Produção em Regime Especial Capítulo 5 Proposta de método para alocação de perdas em redes eléctrcas de dstrbução com Produção em Regme Especal Neste capítulo propõe-se uma metodologa para efectuar a alocação das perdas de uma rede

Leia mais