2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

Tamanho: px
Começar a partir da página:

Download "2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho"

Transcrição

1 rof.: nastáco nto Gonçalves lho

2 Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele atuam devem ser consderados. Supõe-se que a maora dos corpos consderados em mecânca elementar são rígdos, sto é, as deformações reas são pequenas e não afetam as condções de equlíbro ou de movmento do corpo. Este capítulo descreve o efeto de forças eercdas em um corpo rígdo e como substtur um dado sstema de forças por um sstema equvalente mas smples. ara tanto, são mportantes os seguntes concetos: momento de uma força em relação a um ponto momento de uma força em relação a um eo momento devdo a um bnáro ualquer sstema de forças atuando em um corpo rígdo pode ser substtuído por um sstema equvalente composto por uma únca força atuando em um dado ponto e um bnáro. 3-2

3 orças Eternas e orças Internas orças atuando em corpos rígdos são dvddas em dos grupos: - orças Eternas - orças Internas orças eternas são mostradas em um dagrama de corpo lvre. Se não for contrabalanceada, cada uma das forças eternas pode mprmr ao corpo rígdo um movmento de translação ou de rotação, ou ambos. 3-3

4 rncípo da Transmssbldade: orças Equvalentes rncípo da Transmssbldade - s condções de equlíbro ou de movmento de um corpo não se modfcam ao se transmtr a ação de uma força ao longo de sua lnha de ação. OBSERVÇÃO: na fgura ao lado e são forças equvalentes. ara o camnhão ao lado, o fato de mudar o ponto de aplcação da força para o para-choque trasero não altera o seu movmento e nem nterfere nas ações das demas forças que nele atuam. O prncípo da transmssbldade nem sempre pode ser aplcado na determnação de forças nternas e deformações. 3-4

5 roduto Vetoral de Dos Vetores O conceto de momento de uma força em relação a um ponto é mas faclmente entenddo por meo das aplcações do produto vetoral. O produto vetoral de dos vetores e é defndo como o vetor V que satsfa às seguntes condções: 1. lnha de ação de V é perpendcular ao plano que contém e. 2. ntensdade de V é V sen 3. dreção e o sentdo de V são obtdos pela regra da mão dreta. rodutos vetoras: - não são comutatvos, - são dstrbutvos, - não são assocatvos, S S 3-5

6 ona rodutos Vetoras: Componentes Retangulares 3-6 rodutos vetoras de vetores untáros: roduto vetoral em termos de componentes retangulares: V V

7 omento de uma orça em Relação a um onto Uma força é representada por um vetor que defne sua ntensdade, sua dreção e seu sentdo. Seu efeto em um corpo rígdo depende também do seu ponto de aplcação. O momento de uma força em relação a um ponto O é defndo como O r O vetor momento O é perpendcular ao plano que contém o ponto O e a força. ntensdade de O epressa a tendênca da força de causar rotação em torno de um eo drgdo ao longo de O. r sen d O O sentdo do momento pode ser determnado pela regra da mão dreta. ualquer força que tem a mesma ntensdade, dreção e sentdo de, é equvalente a ela se também tem sua mesma lnha de ação e portando, gera o mesmo momento. 3-7

8 omento de uma orça em Relação a um onto Estruturas bdmensonas têm comprmento e largura, mas profunddade despreível e estão suetas a forças contdas no plano da estrutura. O plano da estrutura contém o ponto O e a força. O, o momento da força em relação a O, é perpendcular ao plano. Se a força tende a grar a estrutura no sentdo anthoráro, o vetor momento aponta para fora do plano da estrutura e a ntensdade do momento é postva. Se a força tende a grar a estrutura no sentdo horáro, o vetor momento aponta para dentro do plano da estrutura e a ntensdade do momento é negatva. 3-8

9 Teorema de Vargnon O momento em relação a um dado ponto O da resultante de dversas forças concorrentes é gual à soma dos momentos das váras forças em relação ao mesmo ponto O. r r r O teorema de Vargnon torna possível substtur a determnação dreta do momento de uma força pela determnação dos momentos de duas ou mas forças que a compõe. 3-9

10 ona Componentes Retangulares do omento de uma orça 3-10 O O momento de em relação a O, r r O,

11 ona Componentes Retangulares do omento de uma orça 3-11 omento de em relação a B: r B B / r r r B B B B B / B B B B

12 ona Componentes Retangulares do omento de uma orça 3-12 ara estruturas bdmensonas: Z O O B B B B B B

13 Componentes Retangulares no Espaço Com os ângulos entre e os eos, e temos, cos cos cos cos cos cos cos cos 2-13 cos é um vetor untáro ao longo da lnha de ação de e cos, cos e cos são os cossenos que orentam a lnha de ação de.

14 ona Componentes Retangulares no Espaço 2-14 dreção de uma força é defnda pelas coordenadas de dos pontos, em sua lnha de ação ,, e,, N d d d d d d d d d d d d d d d d N d 1 e lga vetor que

15 2-15

16 roblema Resolvdo 3.1 Uma força vertcal de 450 N é aplcada na etremdade de uma alavanca que está lgada ao eo em O. Determne: a) o momento da força em relação a O; b) a força horontal aplcada em que gera o mesmo momento; c) a força mínma aplcada em que gera o mesmo momento; d) a posção de uma força vertcal de N para que ela gere o mesmo momento; e) se alguma das forças obtdas nas partes b, c e d é equvalente à força orgnal 3-16

17 roblema Resolvdo 3.1 a) O momento em relação a O é gual ao produto da força pela dstânca perpendcular entre a lnha de ação da força e O. Como a força tende a grar a alavanca no sentdo horáro, o vetor momento aponta para dentro do plano que contém a alavanca e a força. O d O d 60 cmcos N0,3 m 30 cm O 135 N m 3-17

18 roblema Resolvdo 3.1 b) ara a força horontal aplcada em que gera o mesmo momento tem-se, d O 60 cm d 135 N m 0,52 m 135 N m 0,52 m sen cm 259,6 N 3-18

19 roblema Resolvdo 3.1 c) força mínma aplcada em que gera o mesmo momento deve atuar a uma dstânca perpendcular é máma de O, ou sea, quando é perpendcular a O. d O 135 N m 0,6 m. 135 N m 0,6 m 225 N 3-19

20 roblema Resolvdo 3.1 d) ara determnar o ponto de aplcação de uma força vertcal de N que gera o mesmo momento em relação a O temos, O 135 N m d OB cos 60 d N d 135 N m N 12,5 cm 0,125 m OB 25 cm 3-20

21 roblema Resolvdo 3.1 e) Embora cada uma das forças nas letras b), c) e d) gere o mesmo momento que a força de 450 N, nenhuma tem sua mesma ntensdade, dreção e sentdo, ou sua mesma lnha de ação. ortanto, nenhuma das forças é equvalente à força de 450 N. 3-21

22 roblema Resolvdo 3.4 SOLUÇÃO: O momento da força eercda pelo fo é obtda a partr do produto vetoral, r C Uma placa retangular é sustentada pelos suportes e B e por um fo CD. Sabendo que a tração no fo é 200 N, determne o momento em relação a da força eercda pelo fo no ponto C. 3-22

23 roblema Resolvdo 3.4 SOLUÇÃO: r C r r C C r 200 N 200 N 0,3m 0,08 m r r C C 0,3 m 0,24 m 0,32 m 120 N 96 N 128 N D D 0.5 m 0,3 0 0, ,68 Nm 28,8 Nm 28,8 Nm 3-23

24 ona roduto Escalar de Dos Vetores 3-24 O produto escalar de dos vetores e é defndo como escalar resultado cos rodutos escalares: - são comutatvos, - são dstrbutvos, - não são assocatvos, ndefndo S rodutos escalares em termos de componentes cartesanas:

25 roduto Escalar de Dos Vetores: plcações Ângulo entre dos vetores: cos cos roeção de um vetor sobre um dado eo: OL cos proeção de sobre o eo OL cos cos OL ara um eo defndo por um vetor untáro: OL cos cos cos 3-25

26 ona roduto Trplo sto de Três Vetores 3-26 roduto trplo msto de três vetores: escalar resultado S Os ses produtos trplos mstos que podem ser formados com S, e têm o mesmo valor absoluto, mas não necessaramente o mesmo snal, S S S S S S S S S S S S S nalsando o produto trplo msto tem-se,

27 omento de uma orça em Relação a um Dado Eo omento O de uma força aplcada no ponto em relação a um ponto O: r O O momento OL em relação a um eo OL é a proeção do momento O sobre esse eo, ou sea, OL O r omentos de em relação aos eos coordenados: 3-27

28 omento de uma orça em Relação a um Dado Eo omento de uma força em relação a um eo arbtráro: BL B r B r r r B B O resultado é ndependente do ponto B escolhdo sobre o eo dado. 3-28

29 roblema Resolvdo 3.5 Um cubo sofre a ação de uma força conforme mostrado. Determne o momento de : a) em relação a b) em relação à aresta B c) em relação à dagonal G do cubo. d) Determne a dstânca perpendcular entre G e C. 3-29

30 ona roblema Resolvdo omento de em relação a : a a a a r r a 2 omento de em relação a B: a B 2 2 B a

31 ona roblema Resolvdo omento de em relação à dagonal G: a a a a a a a r r G G G G 6 a G

32 roblema Resolvdo 3.5 Dstânca perpendcular entre G e C: ortanto, é perpendcular a G. 3 6 G a 6 d d a

33 omento de um Bnáro Duas forças e - de mesma ntensdade, lnhas de ação paralelas e sentdos opostos formam um bnáro. omento do bnáro: r rb r rb r r sen d O vetor que representa o momento do bnáro é ndependente da escolha da orgem dos eos coordenados, sto é, trata-se de um vetor lvre que pode ser aplcado a qualquer ponto produndo o mesmo efeto 3-33

34 omento de um Bnáro Dos bnáros terão momentos guas se 1 d1 2d 2 os dos bnáros estverem em planos paralelos, e os dos bnáros tverem o mesmo sentdo ou a tendênca de causar rotação na mesma dreção. 3-34

35 de Bnáros Consdere dos planos 1 e 2 que se nterceptam, cada um contendo um bnáro. 1 r 1 no plano 1 r no plano 2 2 s resultantes dos vetores também formam um bnáro. r R r 1 2 elo teorema de Vargnon, r 1 r soma de dos bnáros é um bnáro de momento gual à soma vetoral dos momentos dos dos. 3-35

36 Bnáros odem Ser Representados por Vetores Um bnáro pode ser representado por um vetor gual em ntensdade, dreção e sentdo ao momento do bnáro. Vetores que representam bnáros obedecem à le de a de vetores. Vetores bnáros são vetores lvres, ou sea, o ponto de aplcação não é relevante. Vetores bnáros podem ser decompostos em componentes vetoras. 3-36

37 Substtução de uma Dada orça por uma orça em O e um Bnáro Não se pode smplesmente mover uma força para o ponto O sem modfcar sua ação no corpo. aplcação de duas forças de mesma ntensdade e sentdos opostos em O não altera a ação da força orgnal sobre o corpo. s três forças podem ser substtuídas por uma força equvalente e um vetor bnáro, sto é, um sstema força-bnáro. 3-37

38 Substtução de uma Dada orça por uma orça em O e um Bnáro ara mover a força de para um ponto dferente O deve-se aplcar naquele ponto um vetor bnáro dferente O r O ' Os momentos de em relação a O e a O estão relaconados. O' r ' r s r s s O ara mover o sstema força-bnáro de O para O deve-se somar ao sstema o momento da força aplcada em O em relação a O. 3-38

39 ona omento de uma força

40 ona omento de um Bnáro

41 ona omento de um Bnáro

42 roblema Resolvdo 3.6 SOLUÇÃO: Introdumos no ponto duas forças de 90 N com sentdos opostos, produndo 3 bnáros para os quas os componentes dos momentos são faclmente calculados. lternatvamente, pode-se calcular os momentos das quatro forças em relação a um únco ponto arbtráro. O ponto D é uma boa escolha pos apenas duas das forças geram momento naquele ponto. Determne os componentes do bnáro únco equvalente aos dos bnáros mostrados. 3-42

43 roblema Resolvdo 3.6 Introdumos no ponto duas forças de 90 N com sentdos opostos. Os três bnáros podem ser representados pelos três vetores bnáros, 135 N0,45 m 60,75 N m 90 N0,30 m 27 N m 90 N0,225 m 20,25 N m 60,75 Nm 27 Nm 20,25 Nm 3-43

44 roblema Resolvdo 3.6 lternatvamente, calculamos a soma dos momentos das quatro forças em relação a D. Somente as forças em C e E geram momento em relação ao ponto D. D 0,45 m 135 N 0,225 m 0,30 m 90 N 60,75 Nm 27 Nm 20,25 Nm 3-44

45 Sstema de orças: Redução a uma orça e um Bnáro Um sstema de forças pode ser substtuído por um sstema força-bnáro equvalente atuando em um dado ponto O. s forças e os vetores bnáros podem ser substtuídos por uma força resultante e um vetor bnáro resultante, R R r O O sstema força-bnáro em O pode ser movdo para O com a soma do momento de R em relação à O, R R s R O' O Dos sstemas de forças são equvalentes se eles podem ser redudos a um mesmo sstema força-bnáro. 3-45

46 Casos artculares de Redução de um Sstema de orças Se a força resultante e o bnáro em O forem mutuamente perpendculares, o sstema pode ser substtuído por uma únca força que atua ao longo de uma nova lnha de ação. O sstema força-bnáro resultante para um sstema de forças será mutuamente perpendcular se: 1) as forças forem concorrentes, 2) as forças forem coplanares, ou 3) as forças forem paralelas. 3-46

47 Casos artculares de Redução de um Sstema de orças O sstema de forças coplanares é redudo a um sstema força-bnáro que consste R em R e O, que são mutuamente perpendculares. O sstema pode ser redudo a uma únca força movendo-se a lnha de ação de R até que seu momento em relação a R O se torne O. Em termos de componentes retangulares, R R R O 3-47

48 roblema Resolvdo 3.8 SOLUÇÃO: a) Calculamos a força resultante para as forças mostradas e o bnáro resultante para os momentos das forças em relação a. ara a vga acma, redua o sstema de forças dado a (a) um sstema forçabnáro equvalente em, (b) um sstema força bnáro equvalente em B, e (c) a uma força únca ou resultante. Observação: Como as reações de apoo não estão ncluídas, esse sstema não manterá a vga em equlíbro. b) Encontramos um sstema forçabnáro em B equvalente ao sstema força-bnáro em. c) Determnamos o ponto de aplcação para a força resultante de tal forma que seu momento em relação a sea gual ao bnáro resultante em. 3-48

49 roblema Resolvdo 3.8 SOLUÇÃO: a) Calculamos a força e o bnáro resultantes em. R 150 N 600 N 100 N 250 N R 600 N R r 1, , ,8 250 R 1880 Nm 3-49

50 roblema Resolvdo 3.8 b) Encontramos um sstema força-bnáro em B equvalente ao sstema força-bnáro em. força fca nalterada pelo movmento do sstema força-bnáro de para B. R 600 N O bnáro em B é gual ao momento em relação a B do sstema força-bnáro encontrado em. R R B rb R 1880 N m 4,8 m 600 N 1880 N m 2880 N m 1000 Nm R B 3-50

51 roblema Resolvdo 3.10 SOLUÇÃO: Determnamos os vetores posção relatvos traçados do ponto até os pontos de aplcação das váras forças. Decompomos as forças em componentes retangulares. Três cabos estão presos ao suporte, como lustrado. Substtua as forças eercdas pelos cabos por um sstema força-bnáro equvalente em. Calculamos a força resultante, R Calculamos o bnáro resultante, r R 3-51

52 roblema Resolvdo 3.10 SOLUÇÃO: Determnamos os vetores posção relatvos em relação a : rb 0,075 0,050 m rc 0,075 0,050 m r 0,100 0,100 m D Decompomos as forças em componentes retangulares : B 700 N re B re B 175 0,429 0,857 0, N C B D 1000 Ncos 45 cos Ncos60 cos N N 3-52

53 roblema Resolvdo 3.10 Calculamos a força resultante: R R N Calculamos o bnáro resultante: R r r 0, , B r C r D B c D 300 0, , , , ,68 163,9 R ( 30 Nm) (17,68 Nm) (118,9 Nm) 3-53

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO. ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada

Leia mais

TICA. Sistemas Equivalentes de Forças MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Sistemas Equivalentes de Forças MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CPÍTULO 3 Copos ECÂNIC VETORIL PR ENGENHEIROS: ESTÁTIC TIC Fednand P. Bee E. Russell Johnston, J. Notas de ula: J. Walt Ole Teas Tech Unvest Rígdos: Sstemas Equvalentes de Foças 2010 The cgaw-hll Companes,

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

4.1. Equilíbrio estático de um ponto material

4.1. Equilíbrio estático de um ponto material CAPÍTULO 4 Estátca As Três Les ou Prncípos undamentas da Mecânca Newtonana dscutdos no capítulo anteror sustentam todo o estudo da Estátca dos pontos materas, corpos rígdos e conjuntos de corpos rígdos.

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág. ísca Setor Prof.: Índce-controle de Estudo ula 37 (pág. 88) D TM TC ula 38 (pág. 88) D TM TC ula 39 (pág. 88) D TM TC ula 40 (pág. 91) D TM TC ula 41 (pág. 94) D TM TC ula 42 (pág. 94) D TM TC ula 43 (pág.

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Mecânica Geral 1 - Notas de Aula 2 Equilíbrio de Corpos Rígidos Centro de Massa Prof. Dr. Cláudio Sérgio Sartori.

Mecânica Geral 1 - Notas de Aula 2 Equilíbrio de Corpos Rígidos Centro de Massa Prof. Dr. Cláudio Sérgio Sartori. Mecânca Geral 1 - otas de ula Equlíbro de Corpos Rígdos Centro de Massa Estátca do ponto materal. Estátca do corpo rígdo. Les de ewton Introdução: dnâmca estuda a relação entre os movmentos e suas causas,

Leia mais

Plano de Aula Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Plano de Aula Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goás Curso: Engenhara Cvl Dscplna: Mecânca Vetoral Corpo Docente: Gesa res lano e Aula Letura obrgatóra Mecânca Vetoral para Engenheros, 5ª eção revsaa, ernan. Beer, E. ussell Johnston, Jr. Etora

Leia mais

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori ecânca Geral II otas de UL 3 - Teora Prof. Dr. Cláudo S. Sartor QUILÍBRIO D PRTÍCUL. QUILÍBRIO D CORPOS RÍGIDOS. DIGR D CORPO LIVR. QUILÍBRIO D CORPOS RÍGIDOS 3 DISÕS. QUILÍBRIO D CORPOS RÍGIDOS SUBTIDOS

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez Engenhara Cvl/Mecânca Cálclo - º semestre de 01 Proa Gsele A.A. Sanchez 4ª ala: Dervadas Dreconas e Gradente Gradentes e dervadas dreconas de nções com das varáves As dervadas parcas de ma nção nos dão

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-10b UNICAMP IFGW username@f.uncamp.br O teorema dos exos paralelos Se conhecermos o momento de nérca I CM de um corpo em relação a um exo que passa pelo seu centro de

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca Undade C Capítulo Campos magnétcos esoluções dos exercícos propostos. Incalmente determnamos, pela regra da mão dreta n o, a dreção e o sentdo dos vetores ndução magnétca e que e orgnam no centro

Leia mais

CARGAS MÓVEIS. Faculdade de Engenharia São Paulo FESP Engenharia Civil CE2 Estabilidade das Construções II

CARGAS MÓVEIS. Faculdade de Engenharia São Paulo FESP Engenharia Civil CE2 Estabilidade das Construções II Faculdade de Engenhara São Paulo FESP Engenhara Cvl CE2 Establdade das Construções II CARGAS MÓVEIS Autor: Prof. Dr. Alfonso Pappalardo Jr. Coord. Geral: Prof. Dr. Antono R. Martns São Paulo 20 SUMÁRIO

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A NOTAÇÕES N = f1; ; ; g C conjunto dos números comlexos R conjunto dos números reas undade magnára = 1 [a; b] = fx R; a x bg jzj módulo do número z C [a; b[ = fx R; a x < bg z conjugado do número z C ]a;

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

PARTE II EQUILÍBRIO DA PARTÍCULA E DO CORPO RÍGIDO

PARTE II EQUILÍBRIO DA PARTÍCULA E DO CORPO RÍGIDO 1 PARTE II EQUILÍBRIO DA PARTÍULA E DO ORPO RÍGIDO Neste capítulo ncalente trataos do equlíbro de partículas. E seguda são apresentadas as defnções dos centros de gravdade, centros de assa e centródes

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular Físca para Oceanograa FEP (4300) º Semestre de 0 nsttuto de Físca- Unversdade de São Paulo Aula 0 olamento e momento angular Proessor: Valdr Gumarães E-mal: valdr.gumaraes@usp.br Fone: 309.704 olamento

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20 1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Equações de Movimento

Equações de Movimento Euações de Movmento Vbrações e Ruído (0375) 06 Departamento de Cêncas Aeroespacas Tópcos Abordagem Newtonana. Prncípo de d Alembert. Abordagem energétca. Prncípo dos trabalhos vrtuas. Euações de Lagrange.

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMS ESOLVDOS DE FÍSC Prof. nderson Coser Gaudo Departamento de Físca Centro de Cêncas Eatas Unversdade Federal do Espírto Santo http://www.cce.ufes.br/anderson anderson@npd.ufes.br Últma atualação:

Leia mais

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20 1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 010 13/1/009 INSTRUÇÕES 1. Confra, abaxo, o seu número de nscrção, turma e nome. Assne no local ndcado. Conhecmentos Específcos. Aguarde autorzação para abrr o caderno de prova. Antes

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos da físca 3 Undade apítulo 15 Indução eletromagnétca esoluções dos testes propostos 1 T.372 esposta: d ob ação da força magnétca, elétrons se deslocam para a extremdade nferor da barra metálca. essa extremdade,

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano) 1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Capítulo 2 Método de Cross

Capítulo 2 Método de Cross UNIERSIDDE NDRNTE DE SÃO PUO - Escola de Engenhara vl Notas de aula do curso Teora das Estruturas Prof. Dr. Rcardo de. lvm.. Introdução aítulo étodo de ross O étodo de ross é um método que ermte calcular

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

3 Cálculo Básico de Enlace Via Satélite

3 Cálculo Básico de Enlace Via Satélite 35 3 Cálculo Básco de Enlace Va Satélte Neste capítulo é tratado o cálculo básco de um enlace va-satélte, subentenddo em condções normas de propagação (espaço lvre) nos percursos de subda e descda e consderados

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Exemplos. representado a seguir, temos que: são positivas. são negativas. i

Exemplos. representado a seguir, temos que: são positivas. são negativas. i 6 Prodto Vetoral Para defnrmos o prodto etoral entre dos etores é ndspensáel dstngrmos o qe são bases postas e bases negatas Para sso consderemos ma base do espaço { } e m obserador Este obserador dee

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Unversdade São Judas Tadeu Faculdade de Tecnologa e Cêncas Exatas Cursos de Engenhara Laboratóro de Físca Mesa de Forças Autor: Prof. Luz de Olvera Xaver F r = + = F1 + F + F1. F.cosα = ϕ β α BANCADA:

Leia mais

a) 3 c) 5 d) 6 b) i d) i

a) 3 c) 5 d) 6 b) i d) i Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)

Leia mais

Física I para Engenharia. Aula 5 Trabalho Energia Potencial

Física I para Engenharia. Aula 5 Trabalho Energia Potencial ísca I para Engenhara º Semestre de 4 Insttuto de ísca- Unversdade de São Paulo Aula 5 Trabalho Energa Potencal Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Trabalho realzado por uma orça constante

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

Estática. Prof. Willyan Machado Giufrida. Estática

Estática. Prof. Willyan Machado Giufrida. Estática Estática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do ponto ou do eixo.

Leia mais

Estática. Prof. Willyan Machado Giufrida. Estática

Estática. Prof. Willyan Machado Giufrida. Estática Estática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma medida da tendência dessa força de provocar a rotação de um corpo em torno do ponto ou do eixo.

Leia mais

Física E Extensivo V. 6

Física E Extensivo V. 6 GAARITO ísca E Extenso V. 6 Exercícos ) I. also. Depende da permeabldade do meo. II. Verdadero. III. Verdadero. ~ R µ. µ. π. d R π π. R R ) R cm 6 A 5) 5 6 A µ. R 4 π. -7. 6., π. 6,π. 5 T 8 A 3) A A regra

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Lei das Malhas (KVL) Lei dos Nós (KCL)

Lei das Malhas (KVL) Lei dos Nós (KCL) Le das Malhas (KL) Le dos Nós (KCL) Electrónca Arnaldo Batsta 5/6 Electrónca_omed_ef KCL (Krchhoff Current Law) Nó é o ponto de lgação de dos ou mas elementos de crcuto amo é uma porção do crcuto contendo

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos Capítulo 10 da físca 3 xercícos propostos Undade Capítulo 10 eceptores elétrcos eceptores elétrcos esoluções dos exercícos propostos 1 P.50 a) U r 100 5 90 V b) Pot d r Pot d 5 Pot d 50 W c) Impedndo-se

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

Estudo de Curto-Circuito

Estudo de Curto-Circuito Estudo de Curto-Crcuto Rotero. Objetvo / aplcações. Natureza da corrente de defeto 3. Resposta em regme (4 tpos de defeto) 4. Resposta transtóra 5. Conclusões Objetvo Determnação de correntes e tensões

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW username@f.uncamp.br F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =

Leia mais