Mecânica. Sistemas de Partículas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Mecânica. Sistemas de Partículas"

Transcrição

1 Mecânca Sstemas de Partículas

2 Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados, portanto. Por essa razão, às vezes nos refermos a essa parte da mecânca como a que é dedcada à dnâmca do ponto. Como sabemos, os objetos que se movem no nosso Unverso se encontram em constante nteração com os demas. Dessa forma, o nteresse maor na mecânca é o estudo de um sstema de partículas. Um sstema pode ter um número ndefndo de partículas. Para tas sstemas, fazemos uso do conceto de dstrbução contínua de massa. Esse caso é de nteresse no caso de um corpo rígdo. este capítulo, vamos analsar as les geras do movmento de um sstema de partículas. Esse número pode ser relatvamente pequeno, como ou 3, até um número muto grande. Faremos uma análse bastante geral. Isso é caracterzado pelo fato de que não especfcaremos o número de partículas que compõem o sstema. O caso de uma Para um sstema consttuído de um número de partículas, o estado clássco desse sstema é caracterzado pelos pares consttuídos, cada par pela velocdade, e a posção de cada um dos consttuntes: [ r, p],[ r, p],...[ r, p],...[ r, p]) ( ) Assm, o problema clássco que envolve a evolução do estado de um sstema de partculas é o de determnar o estado do sstema no nstante de tempo t, uma vez conhecdo o estado do sstema no nstante de tempo ncal [ r0, p0],[ r0, p0 ],...[ r0, p0],...[ r0, p0]) ( ) As equações de ewton para um sstema de partículas são, bascamente, as equações de cada uma das partículas. Temos, portanto, para um sstema dscreto, equações de segunda ordem no tempo. Essas equações determnam a evolução, no tempo, do estado do sstema.

3 Mecânca» Sstemas de Partículas Fgura 0: Sstemas smples e complexos de partículas. As Equações de Evolução do Sstema Consderemos um sstema composto por partículas. A posção da -ésma partícula será representada pelo vetor r. Imagnemos que sobre ela atuem dos tpos de forças: forças nternas e forças ernas.. Forças nternas. Estas forças são aquelas resultantes da nteração entre as partículas pertencentes ao sstema (sto é, as devdas às demas partículas do sstema). As forças nternas, que agem sobre a -ésma partícula, representadas por F () nt, podem ser escrtas como uma soma: F () nt = j = F j ( 3 ) onde F j é a força exercda pela j-ésma partícula sobre a -ésma partícula. Sabemos ademas, pela tercera le de ewton da ação e reação, que: F j = F j ( 4 ) Fgura 0

4 Mecânca» Sstemas de Partículas 3. Forças ernas. Estas forças são aquelas que resultam da nteração entre as partículas pertencentes ao sstema com objetos que não pertencem a esse sstema. ão se especfca que objetos são esses; dzemos apenas que cada partícula está, eventualmente, sujeta a tas forças. Podemos assm escrever que a força sobre a -ésma partícula é dada como uma soma que envolve, de um lado, as forças nternas e, de outro, as forças ernas F = F + F () () () nt ( 5 ) Utlzando agora a segunda le de ewton, podemos escrever, para cada uma das partículas, as quas desgnamos por,, 3,..., dp = F + F + F3 + + F dp = F + F+ F3 + + F dp 3 = F3 + F3+ F3 + + F3 ( 6 ) dp = F + F Estas são as equações báscas, as equações a partr das quas podemos determnar as posções e os momentos lneares das partículas. As soluções das equações acma correspondem, portanto, à solução do problema clássco da evolução do sstema. Conservação do momento lnear + F + F + F 3 Se adconarmos as equações (000), verfcaremos que os termos das forças nternas na somatóra se anulam. Isto decorre de (000). Portanto, podemos escrever para a soma dp = F ( 7 ) = =

5 Mecânca» Sstemas de Partículas 4 Defnndo o momento lnear total do sstema como a soma dos momentos de cada uma das partículas Podemos, portanto, escrever P dp = = p F = ( 8 ) ( 9 ) ou seja, a taxa pela qual o momento lnear total do sstema vara com o tempo é gual à soma das forças ernas. Um resultado muto mportante que decorre de (000) é o de que, na ausênca de forças ernas ou se o resultado for nulo, F = 0 = ( 0 ) Então de (000) verfca-se que o momento lnear se conserva dp = 0 ( ) e, consequentemente, escrevemos a conservação do momento lnear total como P P = 0 ( ) onde P 0 é um vetor constante. Este resultado vale ndependentemente da natureza das forças nternas. É uma consequênca dreta das les de ewton. O Centro de Massa A despeto de ser muto dfícl, em geral, determnar a posção e a velocdade de qualquer uma das partículas do sstema [tendo em vsta a dfculdade de encontrarmos a solução exata para o sstema de equações (000)], exste um ponto no sstema de partículas cujo movmento em um bom

6 Mecânca» Sstemas de Partículas 5 número de casos é prevsível. Esse ponto é o centro de massa. O centro de massa é defndo pelas suas coordenadas R x, R y, e R z dadas pelas expressões: R R R M mx = = mx + mx + mx 3 3+ mx M x y z ( ) M my = = M my + my + + my ( ) = = M mz mz mz mz M ( ) ( 3 ) onde m de M é a massa total do sstema de partículas 3 M = m = m + m + m + + m ( 4 ) Podemos assm escrever, vetoralmente, que o vetor de posção do centro de massa ( R) é dado por: R = mr M ( 5 ) o caso de um sstema composto por um número muto grande de partículas é preferível tratá-lo como uma dstrbução contínua de partículas e não dscreta. esse caso, um dos concetos mas relevantes é a densdade. A densdade de massa é defnda como a relação entre a quantdade de massa dm contda num elemento nfntesmal de volume dv. Defnmos, portanto, dm( r ) ρ( r ) = ( 6 ) dv onde r é o vetor posção do elemento de volume dv. Dada a densdade volumétrca de massa, podemos calcular a massa total através da ntegral de volume da densdade M = ρ( r ) dv ( 7 ) Fgura 03

7 Mecânca» Sstemas de Partículas 6 Para uma dstrbução contínua de massa, o centro de massa é dado por: R rρ( r) dv M = ( 8 ) Movmento do Centro de Massa O movmento do centro de massa é bastante smples. Para entendermos sso notamos prmeramente que mv p M dr = = e, portanto, a taxa de varação do vetor posção do centro de massa vezes a massa total é gual ao movmento lnear total P= M dr ( 0 ) ( 9 ) Fgura 4: A determnação da posção do centro de massa é mportante para efeto do equlíbro dos corpos rígdos. Consequentemente, de (000) e (000) resulta que: M d R dp = = () F ( ) Assm, o centro de massa é tal que ele se movmenta como se todas as forças ernas estvessem atuando sobre ele. ão é assm muto dfícl determnar a posção do centro de massa de um sstema de partículas. o caso em que as forças ernas se anulam ou são nulas, temos M d R = 0 ( ) e, portanto, o centro de massa tem um movmento retlíneo e unforme, ndependentemente das forças nternas.

8 Mecânca» Sstemas de Partículas 7 Fgura 05: Admtndo-se a força gravtaconal constante, o movmento do centro de massa é bastante smples. Sstemas de duas Partículas Consderemos o caso mas smples de um sstema de partículas: aquele composto por apenas duas partículas. esse caso, as equações (000) se reduzem a apenas duas: m dr = F F + ( 3 ) m dr = F F + o caso do sstema consttuído por apenas duas partículas, defnmos além do centro de massa mr + mr mr + mr R = = ( 4 ) M m + m Fgura 06: Coordenadas envolvendo um sstema de duas partículas. a coordenada relatva r = r r ( 5 ) Defnmos, além da massa total, M = m + m ( 6 )

9 Mecânca» Sstemas de Partículas 8 a massa reduzda mm = + µ = µ m m m + m. ( 7 ) A utldade das grandezas físcas assm defndas pode ser entendda ao adconarmos e subtrarmos as equações (000). A adção nos leva a M d R = F F ( 8 ) + ao passo que a subtração nos leva, depos de dvdrmos a prmera equação por m e a segunda por m, a d () ( ) F F ( r r )= + F m m µ ( 9 ) A prmera equação representa o resultado já conhecdo de que o centro de massa se move de tal manera que tudo se passa como se todas as forças ernas estvessem atuando sobre ele. Para entendermos a relevânca da coordenada relatva e de massa reduzda, consderemos o caso em que o sstema de duas partículas não está sujeto a forças ernas. essas crcunstâncas, as equações (000) se escrevem agora µ dr = F r ( ) ( 30 ) M d R = 0 Uma vez conhecda a força (ou forças) de nteração entre as duas partículas, podemos determnar 000 a partr de ( rt ()) e utlzando ( Rt ()). Uma vez conhecdos rt () e Rt (), podemos determnar r e r utlzando (000), sto é, r t R m () = + M r m r t R M r () = + ( 3 ) Fgura 07: Ilustração da coordenada do centro de massa e da coordenada relatva.

10 Mecânca» Sstemas de Partículas 9 O Centro de Massa Como Sstema de Referênca Em mutos casos, é útl fazer uso de um sstema de coordenadas cuja orgem concde com o centro de massa do sstema. Assm, a posção de uma partícula genérca do sstema (-ésma partícula) é dada por: r = R+ r ( 3 ) onde o vetor r determna a posção relatva ao centro de massa. A velocdade é composta por dos termos dr dr dr = + = VCM + V onde V representa a velocdade de partícula relatva ao sstema centro de massa. A aceleração é dada por ( 33 ) a = a + a CM ( 34 ) lembrando que o índce lnha, novamente aqu, representa a grandeza (no caso, a aceleração) relatva ao centro de massa. Multplcando a equação (000) por m, efetuando a soma e lembrando (000), notamos uma propredade da coordenada relatva ao centro de massa. Tal propredade pode ser resumda pela segunte: Fgura 08: Coordenada relatva ao centro de massa. mr = 0. m ( 35 ) Se consderarmos um sstema contínuo, então, a propredade análoga (000) para um sstema contínuo é: ρ( rrdv ) =. 0 ( 36 ) Veremos que a propredade (000) ou, equvalentemente, (000) é muto útl na smplfcação da expressão de váras grandezas físcas quando expressas em termos do centro de massa.

11 Mecânca» Sstemas de Partículas 0 Momento Angular de um Sstema de Partículas O momento angular de uma partícula é dado por L = r p ( 37 ) enquanto a sua taxa de varação nstantânea é dl dr dp dp = p+ r = v p+ r O prmero termo do lado dreto da equação acma se anula, uma vez que V é paralelo a P. Utlzando a le de ewton, escrevemos: O lado dreto da equação acma é o torque da força defndo como dl = r F. ( 38 ) ( 39 ) τ= r F ( 40 ) Portanto, a taxa de varação do momento angular é gual ao torque aplcado pela força que age sobre o corpo. Portanto, dl Para um sstema de partículas, o momento angular total é dado pela soma dos momentos angulares de cada partícula pertencente ao sstema: =τ L = r p = mr V. o caso de uma dstrbução contínua de partículas, escrevemos para o momento angular ( 4 ) ( 4 ) L = p ( rr ) VdV. ( 43 )

12 Mecânca» Sstemas de Partículas Utlzando o sstema centro de massa, verfcamos que de (000) e (000) L = R P+ r p ( 44 ) Donde nfermos que o momento angular do sstema pode ser expresso como o momento angular do centro de massa mas o momento angular de cada uma das partículas relatvas ao centro de massa. A Conservação do Momento Angular Total A taxa de varação do momento angular total é dada por dl dp = r = r F + Fj j () = r F + ( ) r Fj ( 45 ) Fgura 09 Lembrando a tercera le de ewton, notamos que o últmo termo se escreve ( r rj) Fj =0 ( 46 ) Como F j é paralelo a r r, temos: j ( r rj) Fj =0 ( 47 ) Donde resulta: dl = r F () ( 48 )

13 Mecânca» Sstemas de Partículas ou seja, a taxa de varação com o tempo do momento angular total é gual à soma dos torques das forças ernas dl () () = τ = r F ( 49 ) o caso em que esses torques se anulam ou se tornam nulos, temos o resultado de que o momento angular total deve ser conservado, sto é: dl = 0 ( 50 ) Energa Cnétca de um Sstema de Partículas A energa cnétca do sstema é dada pela soma de energa cnétca de cada uma das partículas que o compõem. Temos assm: E 0 m = r = mv ( 5 ) Consderando-se o sstema centro de massa, utlzando a defnção (000), temos: E m R m 0 = + R mr + ( r ) ( 5 ) Tendo em vsta a propredade (000), o segundo termo se anula e, portanto, E 0 M = R + mv ( 53 ) E, portanto, a energa cnétca é dada pela energa cnétca do centro de massa mas a energa cnétca das partículas no seu movmento relatvo ao centro de massa.

14 Mecânca» Sstemas de Partículas 3 Fgura 0: A energa cnétca de um gás deal depende apenas da temperatura desse gás. Energa Potencal do Sstema Admtndo-se que as forças ernas sejam conservatvas, teremos F = VU ( r) ( 54 ) onde = U + + U U U j k x y z ( 55 ) Admtndo-se anda que as forças nternas são conservatvas, sto é, admtndo-se que F = U n ( r r ) j j j ( 56 ) então, a energa potencal do sstema será dada por: U = U ( r ) + U r rj j ( ) ( 57 )

15 Mecânca» Sstemas de Partículas 4 Poderíamos ter argumentado que a dependênca do potencal em relação às coordenadas de tal forma que envolva apenas as dferenças entre as coordenadas é uma consequênca da nvarança da energa potencal com respeto a translações do sstema todo: r = r + r 0 ( 58 ) Assm, nfermos que a energa total do sstema é dada por: E M = R + mr ² + U ( r) + U( r rj ). j = ( 59 )

16 Mecânca» Sstemas de Partículas 5 Como usar este ebook Orentações geras Caro aluno, este ebook contém recursos nteratvos. Para prevenr problemas na utlzação desses recursos, por favor acesse o arquvo utlzando o Adobe Reader (gratuto) versão 9.0 ou mas recente. Botões Indca pop-ups com mas nformações. Snalza um recurso mdátco (anmação, áudo etc.) que pode estar ncluído no ebook ou dsponível onlne. Ajuda (retorna a esta págna). Crédtos de produção deste ebook. Indca que você acessará um outro trecho do materal. Quando termnar a letura, use o botão correspondente ( ) para retornar ao ponto de orgem. Bons estudos!

17 Mecânca» Sstemas de Partículas 6 Crédtos Este ebook fo produzdo pelo Centro de Ensno e Pesqusa Aplcada (CEPA), Insttuto de Físca da Unversdade de São Paulo (USP). Autora: Gl da Costa Marques. Revsão Técnca e Exercícos Resolvdos: Paulo Yamamura. Coordenação de Produção: Beatrz Borges Casaro. Revsão de To: Marna Keko Tokumaru. Projeto Gráfco e Edtoração Eletrônca: Danella de Romero Pecora, Leandro de Olvera e Prscla Pesce Lopes de Olvera. Ilustração: Alexandre Rocha, Alne Antunes, Benson Chn, Camla Torrano, Celso Roberto Lourenço, João Costa, Lda Yoshno, Mauríco Rhenlander Klen e Thago A. M. S. Anmações: Celso Roberto Lourenço e Mauríco Rhenlander Klen.

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

Eletromagnetismo. Energia Eletromagnética

Eletromagnetismo. Energia Eletromagnética letromagnetsmo nerga letromagnétca letromagnetsmo» nerga letromagnétca 1 Introdução A energa eletromagnétca é uma das mutas formas de energa. Como tal, ela pode ser armazenada, transportada e transformada

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Eletromagnetismo Indutores e Indutância

Eletromagnetismo Indutores e Indutância Eletromagnetsmo Indutores e Indutânca Eletromagnetsmo» Indutores e Indutânca Introdução Indutores são elementos muto útes, pos com eles podemos armazenar energa de natureza magnétca em um crcuto elétrco.

Leia mais

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-10b UNICAMP IFGW username@f.uncamp.br O teorema dos exos paralelos Se conhecermos o momento de nérca I CM de um corpo em relação a um exo que passa pelo seu centro de

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear Físca Módulo 1 Ssteas de Partículas e Centro de Massa Quantdade de ovento (oento) Conservação do oento lnear Partículas e ssteas de Partículas Átoos, Bolnhas de gude, Carros e até Planetas... Até agora,

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas Proceedng Seres of the Brazlan Socety of Appled and Computatonal Mathematcs, Vol. 4, N., 06. Trabalho apresentado no DINCON, Natal - RN, 05. Proceedng Seres of the Brazlan Socety of Computatonal and Appled

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular Físca para Oceanograa FEP (4300) º Semestre de 0 nsttuto de Físca- Unversdade de São Paulo Aula 0 olamento e momento angular Proessor: Valdr Gumarães E-mal: valdr.gumaraes@usp.br Fone: 309.704 olamento

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos da físca Undade B Capítulo 9 Geradores elétrcos esoluções dos testes propostos 1 T.195 esposta: d De U r, sendo 0, resulta U. Portanto, a força eletromotrz da batera é a tensão entre seus termnas quando

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenhara de Lorena EEL LOB1053 - FÍSICA III Prof. Dr. Durval Rodrgues Junor Departamento de Engenhara de Materas (DEMAR) Escola de Engenhara de Lorena (EEL) Unversdade

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20 1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Equações de Movimento

Equações de Movimento Euações de Movmento Vbrações e Ruído (0375) 06 Departamento de Cêncas Aeroespacas Tópcos Abordagem Newtonana. Prncípo de d Alembert. Abordagem energétca. Prncípo dos trabalhos vrtuas. Euações de Lagrange.

Leia mais

COMBUSTÍVEIS E COMBUSTÃO

COMBUSTÍVEIS E COMBUSTÃO COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenhara de Energa Dourados MS - 2013 CHAMAS DIFUSIVAS 2 INTRODUÇÃO Chamas de dfusão turbulentas tpo jato de gás são bastante comuns em aplcações ndustras. Há

Leia mais

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria.

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria. Elementos de Engenhara Químca I Apêndce B Apêndce B Frações másscas, molares e volúmcas. Estequometra. O engenhero químco lda constantemente com msturas de compostos químcos em stuações que mporta caracterzar

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano) 1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos

Leia mais

Capítulo 19. A teoria cinética dos gases

Capítulo 19. A teoria cinética dos gases Capítulo 19 A teora cnétca dos gases Neste capítulo, a ntroduzr a teora cnétca dos gases que relacona o momento dos átomos e moléculas com olume, pressão e temperatura do gás. Os seguntes tópcos serão

Leia mais

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000)

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000) Medda de Quatro Pontas Autor: Maurco Massazum Oka Versão.0 (janero 000) Introdução A técnca de medda de quatro pontas é largamente usada para a medda de resstvdades e resstêncas de folha. O método em s

Leia mais

Capítulo 30: Indução e Indutância

Capítulo 30: Indução e Indutância Capítulo 3: Indução e Indutânca Índce Fatos xpermentas; A e de Faraday; A e de enz; Indução e Tranferênca de nerga; Campos létrcos Induzdos; Indutores e Indutânca; Auto-ndução; Crcuto ; nerga Armazenada

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

Expansão livre de um gás ideal

Expansão livre de um gás ideal Expansão lvre de um gás deal (processo não quase-estátco, logo, rreversível) W=0 na expansão lvre (P e = 0) Paredes adabátcas a separar o gás das vznhanças Q = 0 ª Le U gás = Q + W = 0 U = U Para um gás

Leia mais

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20 1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões

Leia mais

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO. ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 010 13/1/009 INSTRUÇÕES 1. Confra, abaxo, o seu número de nscrção, turma e nome. Assne no local ndcado. Conhecmentos Específcos. Aguarde autorzação para abrr o caderno de prova. Antes

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão

Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão IF-UFRJ Elementos de Eletrônca Analógca Prof. Antôno Carlos Fontes dos Santos FIW362 Mestrado Profssonal em Ensno de Físca Aula 1: Dvsores de tensão e Resstênca nterna de uma fonte de tensão Este materal

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMS ESOLVDOS DE FÍSC Prof. nderson Coser Gaudo Departamento de Físca Centro de Cêncas Eatas Unversdade Federal do Espírto Santo http://www.cce.ufes.br/anderson anderson@npd.ufes.br Últma atualação:

Leia mais

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO W. R. G. SANTOS 1, H. G. ALVES 2, S. R. FARIAS NETO 3 e A. G. B. LIMA 4

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

PME5325-Fundamentos da Turbulência 2016

PME5325-Fundamentos da Turbulência 2016 35 CAPÍTULO ALGUMAS CONSIDERAÇÕES SOBRE A CINEMÁTICA E A DINÂMICA DOS FLUIDOS.. Teora do Movmento Elementar da Partícula Fluda.... Movmento de uma Partícula Fluda O movmento elementar de uma partícula,

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

8. Estudo da não-idealidade da fase líquida

8. Estudo da não-idealidade da fase líquida PQI 58 Fundamentos de Processos em Engenhara Químca II 009 8. Estudo da não-dealdade da fase líquda Assuntos. A le de Raoult. Defnção de atvdade 3. Convenções assmétrcas e a le de Henry 4. Exercícos 8..

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Unversdade São Judas Tadeu Faculdade de Tecnologa e Cêncas Exatas Cursos de Engenhara Laboratóro de Físca Mesa de Forças Autor: Prof. Luz de Olvera Xaver F r = + = F1 + F + F1. F.cosα = ϕ β α BANCADA:

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág. ísca Setor Prof.: Índce-controle de Estudo ula 37 (pág. 88) D TM TC ula 38 (pág. 88) D TM TC ula 39 (pág. 88) D TM TC ula 40 (pág. 91) D TM TC ula 41 (pág. 94) D TM TC ula 42 (pág. 94) D TM TC ula 43 (pág.

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências.

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências. 1 Fltros são dspostvos seletvos em freqüênca usados para lmtar o espectro de um snal a um determnado ntervalo de freqüêncas. A resposta em freqüênca de um fltro é caracterzada por uma faxa de passagem

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

V.1. Introdução. Reações Químicas.

V.1. Introdução. Reações Químicas. V.1. Introdução. Reações Químcas. V. Balanços Materas a Processos com Reação Químca Uma equação químca acertada ornece muta normação. Por exemplo, a reação de síntese do metanol: CO (g) + 3H (g) CH 3 OH

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais