Elementos de Estatística e Probabilidades II

Tamanho: px
Começar a partir da página:

Download "Elementos de Estatística e Probabilidades II"

Transcrição

1 Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros dscretos, um dos capítulos leconados na dscplna de Elementos de Estatístca e Probabldades II do curso de Educação Básca.

2 Elementos de Estatístca e Probabldades II VARIÁVEIS ALEATÓRIAS Defnção Dado um espaço amostra, chama-se varável aleatóra, v.a (undmensonal) e costuma representar-se por X a uma função que a cada acontecmento ω do espaço amostra, faz corresponder x = X (ω), ou seja, X: Ω R ω x = X (ω) É usual utlzar letras maúsculas tas como X, Y, Z, M, N,..., para representar varáves aleatóras. A cada um dos valores de uma varável aleatóra X podemos fazer corresponder uma probabldade P[X = x], defnda como sendo a probabldade do acontecmento que tem como magem x por meo da aplcação X. Exemplo : Consderemos a experênca aleatóra que consste no lançamento de uma moeda equlbrada três vezes consecutvas. Sendo F = "sar cara" e C = "sar coroa" o conjunto de todos os resultados possíves é dado por Ω = {(F,F,F), (F,F,C), (F,C,F), (C,F,F), (F,C,C), (C,F,C), (C,C,F), (C,C,C)} Neste espaço amostra, podemos defnr uma varável aleatóra X = número de vezes que sau caras. Esta varável pode tomar valores 0,, 2 ou 3. Podemos calcular a probabldade da v.a. tomar cada um destes valores. Por exemplo, probabldade de sar uma vez cara é dada por, P[X = ] = P[(F,C,C) ou (C,F,C) ou (C,C,F)] = 8 3. As varáves aleatóras podem ser dscretas, se assumem um conjunto fnto ou nfnto numerável de valores, ou contínuas, se são susceptíves de tomar qualquer valor real pertencente a um ntervalo dado. Para uma dada experênca aleatóra podemos estar nteressados no estudo de uma únca característca - varável aleatóra undmensonal - ou no estudo de um conjunto de k característcas - varável aleatóra multdmensonal ou vector aleatóro. Educação Básca 2

3 Elementos de Estatístca e Probabldades II Uma varável aleatóra dz-se bdmensonal se for uma função que a cada elemento de Ω faz corresponder um elemento de R 2. Generalzando, é uma varável n-dmensonal se o conjunto de chegada for Rⁿ. VARIÁVEL ALEATÓRIA UNIDIMENSIONAL Varáves aleatóras dscretas: Função de probabldade de uma varável dscreta X: Se X é uma v.a. dscreta, que assume valores dstntos x, x 2,, x n,..., então a função de probabldade (f.p.) de X é defnda como f x p x P[ X 0 x] se x x se x x, =, 2,, n, e deve satsfazer as seguntes condções:. 0 f(x), xr; 2. Se n fnto, n f x. Caso n nfnto, f x terá de ser uma sére convergente de soma. Ao conjunto de pares ordenados (x, f(x )), =,2,...,n,..., desgna-se por dstrbução de probabldades da varável aleatóra. Exemplo 2. Consderando a v.a. do exemplo anteror, X = número de vezes que sau cara em três lançamentos de uma moeda, P[X = 0] = P[(C C C)]= 8 3 P[X = ] = P[(F C C) U (C F C) U (C C F)] = 8 3 P[X = 2] = P[(F F C) U (F C F) U (C F F)]= 8 P[X = 3] = P[(F F F)]= 8 Grafcamente, x f(x) /8 3/8 3/8 /8 Educação Básca 3

4 Elementos de Estatístca e Probabldades II 0,40 0,35 0,30 0,25 0,20 0,5 0,0 0,05 0, F(x) 0,25 0,375 0,375 0,25 Função de dstrbução de uma varável aleatóra dscreta X: Defne-se função de dstrbução (f.d.) de uma varável aleatóra X como F(x)=P[X x]. Esta função tem domíno R, conjunto de chegada [0,] e verfca as seguntes propredades:. 0 F(x), x R; 2. F(x ) F(x 2 ), x, x 2 : x < x 2 (é uma função monótona não decrescente); 3. lm 0 e lm x F x x F x 4. P[x < X x 2 ] = F(x 2 ) - F(x ), x, x 2 : x < x 2. ; Exemplo 3. Retomando novamente o exemplo do lançamento de uma moeda três vezes consecutvas, em que consderaámos a v.a. número de caras obtdo. A função dstrbução da varável X é dada por F(0) = P[X 0] = F() = P[X ] = F(2) = P[X 2] = x0 f x ; 8 x x2 f x x 7 8 F(3) = P[X 3] = x3 f f x 4 8 F x x 0 x 2 0 x 2 x 3 x 3 A representação gráfca da função dstrbução de uma varável aleatóra é "em escada" Educação Básca 4

5 Elementos de Estatístca e Probabldades II VECTORES ALEATÓRIOS Por vezes, numa mesma experênca, pretendemos observar smultaneamente mas do que um fenómeno aleatóro. O respectvo modelo probablístco envolve então o estudo em conjunto de mas do que uma varável aleatóra. Exemplo 4. Consdere o lançamento de dos dados equlbrados. Seja X o maor nº de pntas das faces vradas para cma e Y a soma das pntas das faces vradas para cma. (X,Y) é um par aleatóro. Exemplo 5. É selecconado aleatoramente um aluno de uma escola prmára. Seja U a altura do aluno (em cm), V o seu peso (em Kg) e W a sua dade (em meses). (U,V,W) é um vector aleatóro. Defnção 2 Seja (X) = (X,, X n ) um vector aleatóro. Dá-se o nome de função de dstrbução de (X) e representa-se por F (X) (x,, x n ) = F (X,, Xn) (x,, x n ) = P[X x,, X n x n ], (x,, x n ) R n. Vamos estudar apenas o caso de um vector aleatóro com duas varáves (X,Y).A generalzação a mas varáves é medata. PAR ALEATÓRIO A um vector aleatóro de dmensão 2 chamamos um par aleatóro ou varável aleatóra bdmensonal. Educação Básca 5

6 Elementos de Estatístca e Probabldades II Par aleatóro dscreto: Um par aleatóro dz-se dscreto quando ambas as componentes são v.a. s dscretas. Assm (X,Y) é um par aleatóro dscreto quando os domínos de exstênca das v.a. s X e Y são conjuntos fntos ou nfntos numeráves. função de probabldade conjunta: A função de probabldade conjunta do par aleatóro (X,Y) é uma função f(x,y) que assoca a cada elemento de R² uma probabldade, f(x,y) = p j = P[X = x,y = y]. Verfca as seguntes propredades:. 0 f(x,y), (x,y) R²; 2. j f(x.,y j ) Exemplo 6. Uma moeda equlbrada tem o algarsmo desenhado numa das faces e o algarsmo 2 desenhado na outra face. A moeda é lançada ao ar duas vezes. Seja a v.a. X soma dos dos números observados nos lançamentos e a v.a. Y dferença dos mesmos números (o prmero menos o segundo). = {(,), (,2), (2,), (2,2)} (X,Y) = (2,0) (3,-) (3,) (4,0) Assm temos : P[X = 2,Y = 0] = ¼; P[X = 3,Y = -] = ¼; P[X = 3,Y = ] = ¼; P[X = 4,Y = 0] = ¼. A função de probabldade conjunta, por vezes é representada através de um quadro. Para o exemplo 7 a função de probabldade conjunta de (X,Y) vem: X \ Y /4 0 3 /4 0 /4 4 0 /4 0 Educação Básca 6

7 Elementos de Estatístca e Probabldades II Função de dstrbução conjunta: Dada uma v.a. bdmensonal (par aleatóro) (X,Y), dscreta, a função de dstrbução conjunta de (X,Y) é defnda da segunte forma: x, y PX x Y y f x y j F,,, x x y y j e satsfaz as seguntes condções: lm F x, y. 0 x lm F x, y 2. 0 y lm F x, y 3. 0 x, y lm F x, y 4. x, y, com y fxo;, com x fxo; 5. 0 F(x,y), (x,y) R²; ; ; 6. F(x,y ) F(x 2,y 2 ), x < x 2, y < y 2 Exemplo 7 (contnuação) A função de dstrbução de (X,Y) F x, y y - - y 0 y 0 - y 0 y 0 0 y 0 y y y x 3 x 2 x 3 2 x 3 3 x 4 x 4 3 x 4 x 4 Y X Funções de probabldade margnas: Apesar de no par aleatóro se proceder ao estudo em conjunto de duas varáves aleatóras, sso não mpede que se possa estudar probablstcamente cada varável componente em separado. De facto é possível obter as funções de probabldade das varáves X ey, ndvdualmente, e a que damos o nome de funções de probabldade margnas: Educação Básca 7

8 Elementos de Estatístca e Probabldades II Função de probabldade margnal de X, x PX x, Y f x y f X, y Função de probabldade margnal de Y y P X, Y y f x y f Y, x Exemplo 7 (contnuação) Podemos calcular as probabldades margnas, sto é, calcular a função de probabldade de X ey usando a função de probabldade conjunta. Assm, P[X = 2] = P[({X = 2} {Y = -}) ({X = 2} {Y = 0}) ({X = 2} {Y = })] = = P[X = 2,Y = -] + P[X = 2,Y = 0] + P[X = 2,Y = ] = ¼, P[X = 3] = P[({X = 3} {Y = -}) ({X = 3} {Y = 0}) ({X = 3} {Y = })] = = P[X = 3,Y = -] + P[X = 3,Y = 0] + P[X = 3,Y = ] = ½, P[X = 4] = P[({X = 4} {Y = -}) ({X = 4} {Y = 0}) ({X = 4} {Y = })] = = P[X = 4,Y = -] + P[X = 4,Y = 0] + P[X = 4,Y = ] = ¼, Pelo que, a função de probabldade margnal de X é, Da mesma forma obtemos, P[Y = -] = ¼, P[Y = 0] = ½ e P[Y = ] = ¼, X A função de probabldade margnal de Y será, Y O quadro da dstrbução de probabldade conjunta de (X,Y) pode agora ser completado com mas uma lnha e uma coluna para as probabldades margnas das v.a. s X e Y. Educação Básca 8

9 Elementos de Estatístca e Probabldades II X \ Y /4 0 /4 3 /4 0 /4 /2 4 0 /4 0 /4 /4 /2 /4 função de probabldade margnal de X (soma de lnha) função de probabldade margnal de Y (soma de coluna) INDEPENDÊNCIA ENTRE VARIÁVEIS ALEATÓRIAS Dada uma v.a. bdmensonal (X,Y), as v.a. undmensonas que a ntegram, X e Y, dzem-se ndependentes se f(x,y) = f X (x) f Y (y), (x,y). PARÂMETROS DE UMA VARIÁVEL ALEATÓRIA E DE UM PAR ALEATÓRIO Valor esperado: Seja X uma varável aleatóra. O valor esperado, méda ou esperança matemátca de X, que denotamos por E[X] (também representado por μ X ou μ), quando exste, defne-se por E X x f x se X é uma varável aleatóra dscreta, Propredades do valor esperado: Dadas X e Y duas varáves aleatóras, e seja k uma constante real, E[k] = k ; E[kX] = k E[X]; E[X±Y] = E[X] ± E[Y]; E[XY] = E[X]. E[Y] + Cov[X,Y] Se X e Y forem ndependentes então E[XY] = E[X]. E[Y] Educação Básca 9

10 Elementos de Estatístca e Probabldades II Varânca: Seja X uma varável aleatóra. A varânca de X, que denotamos por Var[X] (também representada por 2 σ X ou smplesmente σ²), é defnda por: Var[X] = E[(X- μ X ) 2 ], ou seja, Var 2 X x - ) f x ( se X é uma v.a. dscreta, X Propredades da varânca: Dadas X e Y duas varáves aleatóras, e seja k uma constante real, Var[k] = 0; Var[kX] = k 2 Var[X]; Var[X±Y] = Var[X] +Var[Y] ± 2Cov[X,Y]; Se X e Y forem ndependentes então Var[X±Y] = Var[X] +Var[Y] Var[X] = E[X 2 ] E 2 [X] Onde, 2 2 x f x E X se X é uma varável aleatóra dscreta, Desgna-se por desvo-padrão a raíz quadrada postva da varânca: σ σ Var X. X Covarânca: A covarânca entre X ey, representa-se por Cov(X,Y)ou smplesmente σ X,Y, e defne-se como Cov[X, Y] = σ X,Y = E[(X- μ X ) (Y- μ Y )], ou seja,, ( x - )( x - ) f x, y Cov X Y j se (X,Y) é uma v.a. dscreta, X j Y j Uma outra fórmula para calcular a covarânca é onde Cov[X,Y] = E[XY] E[X] E[Y]. Educação Básca 0

11 Elementos de Estatístca e Probabldades II XY xy j f x y j j E, se (X,Y) é uma v.a. dscreta, Propredades da Covarânca: Sejam X ey duas varáves aleatóras e a, b, c e d constantes reas, X ey são varáves ndependentes Cov(X,Y) =0 (Nota: O recíproca pode não ser verdadero. O facto de Cov(X,Y) =0 não mplca a ndepndênca entre X ey, pode exstr uma lgação não lnear entre as varáves.); Cov(X,X) = Var[X]; Cov(aX+b, cy+d) = accov(x,y). A covarânca depende das undades em que se exprmem as varáves aleatóras X ey. Sendo assm, é mportante a ntrodução de um parâmetro para caracterzar a ntensdade da lgação entre X ey, mas que não dependa das undades, como é o caso do coefcente de correlação. Coefcente de correlação: O coefcente de correlação é defndo como: X,Y, σx,y X. Var Y σx σy Cov X Y Var Propredades do coefcente de correlação: Sejam X ey duas varáves aleatóras e a, b, c e d constantes reas, - < X,Y < ; Se X e Y são varáves aleatóras ndependentes, então X,Y = 0; O coefcente de correlação não se altera quando as varáves sofrem uma transformação lnear postva, ou seja, ρ ax+b,cy+d =ρ X,Y se ac > 0. Educação Básca

12 Elementos de Estatístca e Probabldades II MOMENTOS DE VARIÁVEIS ALEATÓRIAS Momento de ordem k relatvamente a um ponto C: μ kc = E [(X-C) k ]. Momento ordnáro de ordem k (caso em que C = 0): μ k = E [X k ]. Se X for uma v.a. dscreta, k k x f x Casos partculares de momentos ordnáros: μ 0=; μ = E [X] = μ X ; μ 2= E [X 2 ]. Momento centrado de ordem k (caso em que C=μ): μ k = E [(X - μ) k ]. Se X for uma v.a. dscreta, k k x f x Casos partculares de momentos centrados: μ 0 = ; μ = 0; μ 2 = E [(X - μ) 2 ] = Var [X]. Educação Básca 2

13 Elementos de Estatístca e Probabldades II Bblografa: Afonso, A., Nunes, C., (200) Estatístca e Probabldades - Aplcações e Soluções em SPSS. Escolar Edtora Slva, M. C. M. (993) Estatístca Aplcada à Pscologa e Cêncas Socas, Lsboa McGraw-Hll. Pestana D., Velosa S. (2002). Introdução à probabldade e estatístca. Volume. Fundação Calouste Gulbenkan. Educação Básca 3

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teora Elementar da Probabldade MODELOS MATEMÁTICOS DETERMINÍSTICOS PROBABILÍSTICOS PROCESSO (FENÓMENO) ALEATÓRIO - Quando o acaso nterfere na ocorrênca de um ou mas dos resultados nos quas tal processo

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Unversdade Federal do Pará Insttuto de Tecnologa Estatístca Aplcada I Prof. Dr. Jorge Teóflo de Barros Lopes Campus de Belém Curso de Engenhara Mecânca /08/06 7:39 ESTATÍSTICA APLICADA I - Teora das Probabldades

Leia mais

2. VARIÁVEIS ALEATÓRIAS

2. VARIÁVEIS ALEATÓRIAS VARIÁVEIS ALEATÓRIAS 0 Varável aleatóra Ω é o espaço amostral de um epermento aleatóro Uma varável aleatóra é uma função que atrbu um número real a cada resultado em Ω Eemplo Retra- ao acaso um tem produzdo

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíves resultados de um expermento. Evento é qualquer subconjunto do espaço amostral. Evento combnado: Possu duas ou

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall Sstemas Intelgentes Aplcados Carlos Hall Programa do Curso Lmpeza/Integração de Dados Transformação de Dados Dscretzação de Varáves Contínuas Transformação de Varáves Dscretas em Contínuas Transformação

Leia mais

Bioestatística. AULA 6 - Variáveis aleatórias. Isolde Previdelli

Bioestatística. AULA 6 - Variáveis aleatórias. Isolde Previdelli Universidade Estadual de Maringá Mestrado Acadêmico em Bioestatística Bioestatística Isolde Previdelli itsprevidelli@uem.br isoldeprevidelli@gmail.com AULA 6 - Variáveis aleatórias 30 de Março de 2017

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

4 Critérios para Avaliação dos Cenários

4 Critérios para Avaliação dos Cenários Crtéros para Avalação dos Cenáros É desejável que um modelo de geração de séres sntétcas preserve as prncpas característcas da sére hstórca. Isto quer dzer que a utldade de um modelo pode ser verfcada

Leia mais

Gráficos de Controle para Processos Autocorrelacionados

Gráficos de Controle para Processos Autocorrelacionados Gráfcos de Controle para Processos Autocorrelaconados Gráfco de controle de Shewhart: observações ndependentes e normalmente dstrbuídas. Shewhart ao crar os gráfcos de controle não exgu que os dados fossem

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Testes não-paramétricos

Testes não-paramétricos Testes não-paramétrcos Prof. Lorí Val, Dr. http://www.mat.ufrgs.br/val/ val@mat.ufrgs.br Um teste não paramétrco testa outras stuações que não parâmetros populaconas. Estas stuações podem ser relaconamentos,

Leia mais

3. Estatística descritiva bidimensional

3. Estatística descritiva bidimensional 3. Estatístca descrtva bdmensonal (Tabelas, Gráfcos e números) Análse bvarada (ou bdmensonal): avala o comportamento de uma varável em função da outra, por exemplo: Quantas TV Phlps são venddas na regão

Leia mais

REGRESSÃO NÃO LINEAR 27/06/2017

REGRESSÃO NÃO LINEAR 27/06/2017 7/06/07 REGRESSÃO NÃO LINEAR CUIABÁ, MT 07/ Os modelos de regressão não lnear dferencam-se dos modelos lneares, tanto smples como múltplos, pelo fato de suas varáves ndependentes não estarem separados

Leia mais

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo 3 Metodologa de Avalação da Relação entre o Custo Operaconal e o Preço do Óleo Este capítulo tem como objetvo apresentar a metodologa que será empregada nesta pesqusa para avalar a dependênca entre duas

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Covariância na Propagação de Erros

Covariância na Propagação de Erros Técncas Laboratoras de Físca Lc. Físca e Eng. omédca 007/08 Capítulo VII Covarânca e Correlação Covarânca na propagação de erros Coefcente de Correlação Lnear 35 Covarânca na Propagação de Erros Suponhamos

Leia mais

3 A técnica de computação intensiva Bootstrap

3 A técnica de computação intensiva Bootstrap A técnca de computação ntensva ootstrap O termo ootstrap tem orgem na expressão de língua nglesa lft oneself by pullng hs/her bootstrap, ou seja, alguém levantar-se puxando seu própro cadarço de bota.

Leia mais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto

Leia mais

Regressão Linear Simples by Estevam Martins

Regressão Linear Simples by Estevam Martins Regressão Lnear Smples by Estevam Martns stvm@uol.com.br "O únco lugar onde o sucesso vem antes do trabalho, é no dconáro" Albert Ensten Introdução Mutos estudos estatístcos têm como objetvo estabelecer

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Regressão Múltipla. Parte I: Modelo Geral e Estimação

Regressão Múltipla. Parte I: Modelo Geral e Estimação Regressão Múltpla Parte I: Modelo Geral e Estmação Regressão lnear múltpla Exemplos: Num estudo sobre a produtvdade de trabalhadores ( em aeronave, navos) o pesqusador deseja controlar o número desses

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis Introdução A teora das probabldades é um ramo da matemátca que lda modelos de fenômenos aleatóros. Intmamente relaconado com a teora de probabldade está a Estatístca, que se preocupa com a cração de prncípos,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. vall@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Em mutas stuações duas ou mas varáves estão relaconadas e surge então a necessdade de determnar a natureza deste relaconamento. A análse

Leia mais

NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES

NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES NOÇÕES SOBRE CORRELAÇÃO E REGRESSÃO LINEAR SIMPLES 1 O nosso objetvo é estudar a relação entre duas varáves quanttatvas. Eemplos:. Idade e altura das cranças.. v. Tempo de prátca de esportes e rtmo cardíaco

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

NOTAS DE AULA DA DISCIPLINA CE DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES

NOTAS DE AULA DA DISCIPLINA CE DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES NOTAS DE AULA DA DISCIPLINA CE76 3 DISTRIBUIÇÃO NORMAL MULTIVARIADA 3 DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES A densdade normal multvarada é uma generalação da densdade normal unvarada ara dmensões

Leia mais

DIAGNÓSTICO EM MODELOS LINEARES GENERALIZADOS

DIAGNÓSTICO EM MODELOS LINEARES GENERALIZADOS DIAGNÓSTICO EM MODELOS LINEARES GENERALIZADOS 1 A análse de dagnóstco (ou dagnóstco do ajuste) confgura uma etapa fundamental no ajuste de modelos de regressão. O objetvo prncpal da análse de dagnóstco

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Estatística Aplicada II CORRELAÇÃO. AULA 21 07/11/16 Prof a Lilian M. Lima Cunha

Estatística Aplicada II CORRELAÇÃO. AULA 21 07/11/16 Prof a Lilian M. Lima Cunha 09//06 Estatístca Aplcada II CORRELAÇÃO AULA 07//6 Prof a Llan M. Lma Cunha CORRELAÇÃO: Identfcar a estênca ou não de assocação lnear entre varáves: -Preço de um produto em regões; -Frete e Km percorrdo;

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

2ª ACTIVIDADE ESCRITA DE MATEMÁTICA A 12.º C 2009 NOVEMBRO 20 Duração da prova: 45 minutos VERSÃO 1. Grupo I

2ª ACTIVIDADE ESCRITA DE MATEMÁTICA A 12.º C 2009 NOVEMBRO 20 Duração da prova: 45 minutos VERSÃO 1. Grupo I ª ATIVIDADE ESRITA DE MATEMÁTIA A.º 009 NOVEMBRO 0 Duração da prova 4 mnutos VERSÃO Grupo I Para cada uma das três questões deste grupo, seleccone a resposta correcta de entre as alternatvas que lhe são

Leia mais

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC)

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) UNDADE V DELNEAMENTO NTERAMENTE CASUALZADO (DC) CUABÁ, MT 015/ PROF.: RÔMULO MÔRA romulomora.webnode.com 1. NTRODUÇÃO Este delneamento apresenta como característca prncpal a necessdade de homogenedade

Leia mais

5 Implementação Procedimento de segmentação

5 Implementação Procedimento de segmentação 5 Implementação O capítulo segunte apresenta uma batera de expermentos prátcos realzados com o objetvo de valdar o método proposto neste trabalho. O método envolve, contudo, alguns passos que podem ser

Leia mais

2ª Atividade Formativa UC ECS

2ª Atividade Formativa UC ECS I. Explque quando é que a méda conduz a melhores resultados que a medana. Dê um exemplo para a melhor utlzação de cada uma das meddas de localzação (Exame 01/09/2009). II. Suponha que um professor fez

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D.

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D. Unversdade Federal do Paraná Departamento de Informátca Reconhecmento de Padrões Classfcadores Lneares Luz Eduardo S. Olvera, Ph.D. http://lesolvera.net Objetvos Introduzr os o conceto de classfcação lnear.

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Capítulo 2 Estatística Descritiva Continuação. Prof. Fabrício Maciel Gomes

Capítulo 2 Estatística Descritiva Continuação. Prof. Fabrício Maciel Gomes Capítulo Estatístca Descrtva Contnuação Prof. Fabríco Macel Gomes Problema Uma peça após fundda sob pressão a alta temperatura recebe um furo com dâmetro especfcado em 1,00 mm e tolerânca de 0,5 mm: (11,75

Leia mais

Introdução às Medidas em Física a Aula

Introdução às Medidas em Física a Aula Introdução às Meddas em Físca 4300152 8 a Aula Objetvos: Experênca Curvas Característcas Meddas de grandezas elétrcas: Estudar curvas característcas de elementos resstvos Utlzação de um multímetro Influênca

Leia mais

MODELOS DE REGRESSÃO PARAMÉTRICOS

MODELOS DE REGRESSÃO PARAMÉTRICOS MODELOS DE REGRESSÃO PARAMÉTRICOS Às vezes é de nteresse nclur na análse, característcas dos ndvíduos que podem estar relaconadas com o tempo de vda. Estudo de nsufcênca renal: verfcar qual o efeto da

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 4. Resumos Numéricos de Distribuições

Probabilidade e Estatística I Antonio Roque Aula 4. Resumos Numéricos de Distribuições Probabldade e Estatístca I Antono Roque Aula Resumos umércos de Dstrbuções As representações tabulares e grácas de dados são muto útes, mas mutas vezes é desejável termos meddas numércas quanttatvas para

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRGS Insttuto de Matemátca

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Cálculo Numérico BCC760 Interpolação Polinomial

Cálculo Numérico BCC760 Interpolação Polinomial Cálculo Numérco BCC76 Interpolação Polnomal Departamento de Computação Págna da dscplna http://www.decom.ufop.br/bcc76/ 1 Interpolação Polnomal Conteúdo 1. Introdução 2. Objetvo 3. Estênca e uncdade 4.

Leia mais

Resumos Numéricos de Distribuições

Resumos Numéricos de Distribuições Estatístca Aplcada à Educação Antono Roque Aula Resumos umércos de Dstrbuções As representações tabulares e grácas de dados são muto útes, mas mutas vezes é desejável termos meddas numércas quanttatvas

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Cap. 11 Correlação e Regressão

Cap. 11 Correlação e Regressão Estatístca para Cursos de Engenhara e Informátca Pedro Alberto Barbetta / Marcelo Menezes Res / Antono Cezar Borna São Paulo: Atlas, 2004 Cap. 11 Correlação e Regressão APOIO: Fundação de Apoo à Pesqusa

Leia mais

Um modelo nada mais é do que uma abstração matemática de um processo real (Seborg et al.,1989) ou

Um modelo nada mais é do que uma abstração matemática de um processo real (Seborg et al.,1989) ou Dscplna - MR070 INTRODUÇÃO À MODELAGEM DE SISTEMAS LINEARES POR EQUAÇÕES DIFERENCIAIS Os modelos de um determnado sstema podem ser físcos ou matemátcos. Neste curso focaremos a modelagem pela dentfcação

Leia mais

Modelo linear clássico com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear clássico com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear clássco com erros heterocedástcos O método de mínmos quadrados ponderados 1 Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

DELINEAMENTOS EXPERIMENTAIS

DELINEAMENTOS EXPERIMENTAIS SUMÁRIO 1 Delneamentos Expermentas 2 1.1 Delneamento Interamente Casualzado..................... 2 1.2 Delneamento Blocos Casualzados (DBC).................... 3 1.3 Delneamento Quadrado Latno (DQL)......................

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional. ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional. ou experimental. Prof. Lorí Val, Dr. vall@mat.ufrgs.br http://www.mat.ufrgs.br/~vall/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal http://www.mat.ufrgs.br/~vall/ ou expermental. Numa relação

Leia mais

Nome: Nº: Estatística para Economia e Gestão Licenciaturas em Economia e Gestão. 2.º Semestre de 2008/2009

Nome: Nº: Estatística para Economia e Gestão Licenciaturas em Economia e Gestão. 2.º Semestre de 2008/2009 Estatístca para Economa e Gestão Lcencaturas em Economa e Gestão.º Semestre de 008/009 Exame Fnal (.ª Época) 16 de Junho de 009; 17h30m Duração: 10 mnutos INSTRUÇÕES Escreva o nome e número de aluno em

Leia mais

CURSO A DISTÂNCIA DE GEOESTATÍSTICA

CURSO A DISTÂNCIA DE GEOESTATÍSTICA CURSO A DISTÂNCIA DE GEOESTATÍSTICA Aula 6: Estaconardade e Semvarânca: Estaconardade de a. ordem, Hpótese ntríseca, Hpótese de krgagem unversal, Crtéros para escolha, Verfcação, Representatvdade espacal,

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Cap. IV Análise estatística de incertezas aleatórias

Cap. IV Análise estatística de incertezas aleatórias TLF 010/11 Cap. IV Análse estatístca de ncertezas aleatóras Capítulo IV Análse estatístca de ncertezas aleatóras 4.1. Méda 43 4.. Desvo padrão 44 4.3. Sgnfcado do desvo padrão 46 4.4. Desvo padrão da méda

Leia mais

REITORA Ângela Maria Paiva Cruz. VICE-REITOR José Daniel Diniz Melo

REITORA Ângela Maria Paiva Cruz. VICE-REITOR José Daniel Diniz Melo REITORA Ângela Mara Pava Cruz VICE-REITOR José Danel Dnz Melo DIRETORIA ADMINISTRATIVA DA EDUFRN Lus Passegg (Dretor) Wlson Fernandes (Dretor Adjunto) Judthe Albuquerque (Secretára) CONSELHO EDITORIAL

Leia mais