Probabilidades e Estatística TODOS OS CURSOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Probabilidades e Estatística TODOS OS CURSOS"

Transcrição

1 Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas o semestre 07/08 0/07/08 :0 o Teste C 0 valores. Um relatório anual estabelece que 6% dos utilizadores de serviços móveis possuem um smartphone. A probabilidade de um utilizador aceder à internet através do seu telemóvel é igual a 77% respetivamente 8%), se o utilizador possui um smartphone respetivamente não possui um smartphone). Considere um utilizador de serviços móveis escolhido casualmente. a) Calcule a probabilidade de esse utilizador aceder à internet através do seu telemóvel..) Quadro de acontecimentos e probabilidades Acontecimento Probabilidade S {utilizador possui smartphone} PS) 0.6 I {utilizador acede à internet} PI )? Probabilidade pedida Pela lei da probabilidade total, tem-se PI S) 0.77 PI S ) 0.08 PI ) PI S) PS) + PI S ) PS ) ) 0.7 b) Qual é a probabilidade de esse utilizador possuir um smartphone, sabendo que acede à internet.) através do seu telemóvel? Probabilidade pedida Invocando o teorema de Bayes, segue-se PS I ) PI S) PS) PI ) a) O tempo de vida em hora) de certo tipo de válvula é descrito pela variável aleatória X com função de distribuição { 0, x 00 F X x) 00 x, x > 00. a) Determine a mediana de X..0) X tempo de vida de certo tipo de válvula Mediana de X me mex ) 00,+ ) : F X me) 00 me Página de 6

2 me mex ) 00,+ ) : 00 me 0. me 00 me.6. b) Deduza a função de densidade de probabilidade de X e calcule o valor esperado do tempo de vida.0) desse tipo de válvula. F.d.p. de X f X x) df X x) dx { d[ 00 x ] dx 00 x, x > 00 0, c.c. Valor esperado de X EX ) x f X x)dx x 00 x dx 00 x dx 00 x c) Selecionadas ao acaso válvulas deste tipo, qual é a probabilidade de exatamente delas terem.0) tempo de vida superior a 00 horas? Y no. de válvulas com tempo de vida superior a 00 horas, em selecionadas ao acaso Distribuição de Y Y binomialn, p) com n ) p PX > 00) F X 00) F.p. de Y PY y) y) 0. y 0.) y, y 0,,..., Prob. pedida PY ) ) 0. 0.) [ F binomi al,0.) ) F binomi al,0.) ) t abel a ]. Grupo II 0 valores. A dureza de uma peça de aço na escala de Rockwell) é descrita por uma variável aleatória X com distribuição uniforme contínua no intervalo [0, 70]. a) Calcule a probabilidade de a dureza de uma peça estar compreendida entre e 68 unidades..) Página de 6

3 X dureza de uma peça de aço Distribuição de X X uniforme contínua0, 70) { f X x) , 0 x 70 0, caso contrário Prob. pedida P < X < 68) f X x)dx 0 dx x b) Obtenha um valor aproximado para a probabilidade de a média das durezas de 6 peças ser inferior.0) a 6 unidades, considerando as durezas dessas peças variáveis aleatórias independentes. V.a. X i dureza da peça i, n 6 i,...,n Distribuição, valor esperado e variância comuns i.i.d. X i X uniforme contínua0,70), i,...,n EX i ) EX ) µ , i,...,n V X i ) V X ) σ 70 0) 00, i,...,n X n n i X i média da dureza de n peças Valor esperado e variância de X n E X ) E n n i X ) i n V X ) V n n i X i ) Xi indep. n i EX i ) X i X n nex ) EX ) µ n n i V X i ) X i X nv X ) V X ) n n σ n Distribuição aproximada de X Pelo teorema do limite central TLC) pode escrever-se X E X ) V X ) X µ σ n a Normal0,). Valor aproximado da probabilidade pedida ) X µ P X < 6) P σ 6 µ σ n n T LC 6 60 Φ Φ.08) tabel a/calc / 6. Considere o par aleatório X, Y ) com função de probabilidade conjunta Página de 6

4 Y X a a) Complete a tabela e averigúe se X e Y são variáveis aleatórias independentes..) Obtenção de a a : x y PX x,y y) a 6 6 F.p. conjunta e marginais de X e Y Foram sumariadas na tabela seguinte: Y X PX x) PY y) ) ) + a 8 Dependência entre X e Y X e Y são v.a. INDEPENDENTES sse PX x,y y) PX x) PY y), x, y) R. Se por um lado por outro PX,Y ) [ ], PX ) PY ) [ ]. Deste modo conclui-se que PX,Y ) PX ) PY ), pelo que X e Y são v.a. DEPENDENTES. b) Determine EX Y )..) V.a. X Y F.p. de X Y Uma vez que PY ) PX x,y ) x + 7, Página de 6

5 temos PX x Y ) PX x,y ) PY ) 7 7 7, x 7, x 0, restantes valores de x Valor esperado de X Y EX Y ) x PX x Y ) x c) Calcule V X Y )..) Variância pedida Uma vez que se pretende calcular V X Y ) V X ) +V Y ) covx,y ) V X ) +V Y ) [EX Y ) EX ) EY )], serão necessários alguns cálculos auxiliares que envolverão as f.p. conjunta de X,Y ) e marginais de X e Y obtidas na alínea a). Valor esperado e variância de X EX ) x PX x) x V X ) EX ) E X ) x PX x) E X ) x Valor esperado e variância de Y EY ) y PY y) y ) V Y ) EY ) E Y ) y PY y) E Y ) y ) 6 ) ) Página de 6

6 V Y ) Valor esperado de X Y EX Y ) x y PX x,y y) Covariância x y ) ) covx,y ) EX Y ) EX ) EY ) Variância pedida cont.) V X Y ) V X ) +V Y ) covx,y ) ) 6 6. Página 6 de 6

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec

Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Duração: 9 minutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas o semestre 7/8 5/5/8 9: o Teste A valores. Uma loja comercializa telemóveis

Leia mais

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Duração: 90 minutos Grupo I Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Justifique convenientemente todas as respostas 1 o semestre 2017/2018 18/11/2017

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é

Leia mais

Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ

Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique convenientemente todas as respostas! o semestre 015/016

Leia mais

Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec

Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas 2 o semestre 2016/2017 06/05/2017 09:00 1 o teste A 10 valores

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Duração: 90 minutos Gruo I Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique convenientemente todas as resostas! 2 o semestre 2015/2016

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ 2 o semestre 2/22 o TESTE (Época

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MEAer, MEMec 2 o semestre 2010/2011 1 o Teste - Código A 16/4/2011 9 horas Duração: 1 hora e 30 minutos Grupo I Exercício

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 9 miutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as respostas 1 o semestre 217/218 3/1/218 11:3 1 o Teste C 1 valores 1. A Marta e o João irão passar

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, LEMat, MEBiom, MEFT, MEQ 2 o semestre 2011/2012 1 o Teste A 21/04/2012 9:00 Duração: 1 hora e 30 minutos Justifique convenientemente

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEIC-T, LEMat, LERC, LQ, MEAer, MEAmbi, MEBiol, MEEC, MEMec, MEQ 1 o Teste 1 o semestre 2010/2011 Duração: 1 hora e 30 minutos 20/11/2010

Leia mais

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC

Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Duração: 90 miutos Grupo I Probabilidades e Estatística LEAN, LEGI, LEGM, LMAC, MEAer, MEAmbi, MEC Justifique coveietemete todas as respostas o semestre 207/208 8//207 :00 o Teste B 0 valores. Um teste

Leia mais

Probabilidades e Estatística MEEC, LEIC-A, LEGM

Probabilidades e Estatística MEEC, LEIC-A, LEGM Departamento de Matemática Probabilidades e Estatística MEEC, LEIC-A, LEGM Exame a Época / o Teste (Grupos III e IV) o semestre 009/00 Duração: 80 / 90 minutos /06/00 9:00 horas Grupo I Exercício 5 valores

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, LEMat, MEBiom, MEFT, MEQ 2 o semestre 2011/2012 1 o Teste A 21/04/2012 9:00 Duração: 1 hora e 30 minutos Justifique convenientemente

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ o semestre 011/01 Exame de Época

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ o semestre 11/1 Exame de Época Especial

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Covariância e Coeficiente de correlação 11/13 1 / 21 Covariância Quando duas variáveis aleatórias

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual

Leia mais

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B. Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra

Leia mais

Exercícios propostos:

Exercícios propostos: INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.

Leia mais

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100% . Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Deartamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec o semestre 011/01 1 o Teste B 1/04/01 11:00 Duração: 1 hora e 30 minutos Justifique

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Teste B 2 o semestre 2007/08 Duração: 90 minutos 19/04/2008 11:30 horas O teste consiste em dois

Leia mais

Probabilidade Aula 11

Probabilidade Aula 11 0303200 Probabilidade Aula 11 Magno T. M. Silva Escola Politécnica da USP Junho de 2017 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia

Leia mais

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

ESTATÍSTICA I - 2º ano / Lic. Gestão - 2º sem 31/5/2011

ESTATÍSTICA I - 2º ano / Lic. Gestão - 2º sem 31/5/2011 ESTATÍSTICA I - º ano / Lic. Gestão - º sem /5/0 Época Normal - Parte Teórica (duração da parte teórica 40 minutos) Cotação da Parte Teórica: 8 Valores. Nesta parte as respostas são dadas no espaço a seguir

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Lei dos Grandes Números e Teorema Central do Limite 02/14 1 / 9 Lei dos Grandes Números Lei

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Deartamento de Matemática Probabilidades e Estatística LEMat, LMAC, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEQ o semestre 0/0 o Teste //0 8:30 Duração: hora e 30 minutos Gruo I Exercício.5 +.0 + 3.0 +.5 0.0

Leia mais

Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais

Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais Estatística Básica Variáveis Aleatórias Contínuas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Lembrando... Uma quantidade X, associada a cada possível resultado

Leia mais

Aula de Exercícios - Variáveis Aleatórias Contínuas (II) Aula de Exercícios - Variáveis Aleatórias Contínuas (II)

Aula de Exercícios - Variáveis Aleatórias Contínuas (II) Aula de Exercícios - Variáveis Aleatórias Contínuas (II) Aula de Exercícios - Variáveis Aleatórias Contínuas (II) Organização: Rafael Tovar Digitação: Guilherme Ludwig Exemplo VIII Distribuição contínua Seja X a v. a. contínua cuja densidade de probabilidade

Leia mais

PROBABILIDADE RESUMO E EXERCÍCIOS* P2

PROBABILIDADE RESUMO E EXERCÍCIOS* P2 PROBABILIDADE RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções grátis em Variáveis Aleatórias Discretas e Contínuas

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec o semestre 011/01 1 o Teste B 1/04/01 11:00 Duração: 1 hora e 30 minutos Justifique

Leia mais

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22 all Variáveis Aleatórias Bidimensionais & Teoremas de Limite Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário

Leia mais

Avaliação e Desempenho Aula 5

Avaliação e Desempenho Aula 5 Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade

Leia mais

{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;

{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3; Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos Motivação Em muitas situações precisamos Prof. Lorí Viali, Dr. viali@pucrs.br lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma determinada peça.

Leia mais

LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro.

LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V. A. C O N T Í N

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu. Engenharia e Gestão Industrial

Departamento de Matemática Escola Superior de Tecnologia de Viseu. Engenharia e Gestão Industrial Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Engenharia e Gestão Industrial 1 Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC,

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Aula 5 - Variáveis bidimensionais

Aula 5 - Variáveis bidimensionais Aula 5 - Variáveis bidimensionais PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 15 Variáveis bidimensionais

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

FUNÇÕES DE VARIÁVEL ALEATÓRIA

FUNÇÕES DE VARIÁVEL ALEATÓRIA 5 FUNÇÕES DE VARIÁVEL ALEATÓRIA Dada uma variável aleatória contínua X com função de densidade f (x). Considerando Y = g(x), uma função de X, também é uma variável aleatória. A definição da variável Y

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufgrs.br http://www.mat.ufrgsbr/~viali/ Motivação Em muitas situações precisamos lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I. o Ano/Gestão. o Semestre Época Normal Duração: horas 1. a Parte Teórica N. o de Exame: 1431 5.6.14 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a.a 3.a 4.a 6. 1.b.b

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 35 Fabrício Simões

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 5 de março de 2013 1 Aplicações de Integrais subject Aplicações de Integrais

Leia mais

Variáveis Aleatórias. Henrique Dantas Neder. April 26, Instituto de Economia - Universidade Federal de Uberlândia

Variáveis Aleatórias. Henrique Dantas Neder. April 26, Instituto de Economia - Universidade Federal de Uberlândia Variáveis Aleatórias Henrique Dantas Neder Instituto de Economia - Universidade Federal de Uberlândia April 2, 202 VARIÁVEL ALEATÓRIA DISCRETA O conceito de variável aleatória está intrínsicamente relacionado

Leia mais

Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05

Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 Departamento de Matemática Secção de Estatística e Aplicações - IST Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 3 o Teste 4/6/2005 9h O Teste que vai realizar tem a duração total

Leia mais

Uma breve introdução a probabilidade

Uma breve introdução a probabilidade Uma breve introdução a probabilidade Modelo Probabilístico Espaço amostral (S): conjunto de todos os resultados que podem ocorrer a partir de um experimento aleatório Probabilidade de eventos (P): quantificação

Leia mais

Variável Aleatória Contínua:

Variável Aleatória Contínua: Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS 4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Qui-quadrado 02/14 1 / 1 Definição 14.1: Uma variável aleatória contínua X tem

Leia mais

Fundamentos da Teoria da Probabilidade

Fundamentos da Teoria da Probabilidade Fundamentos da Teoria da Probabilidade Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Sinais Aleatórios

Leia mais

Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Outubro de 2013

Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Outubro de 2013 1. Seja X a duração de vida de uma válvula eletrônica e admita que X possa ser representada por uma variável aleatória contínua, com f.d.p. be bx, x 0. Seja p j = P (j X < j + 1). Verifique que p j é da

Leia mais

ESTATÍSTICA MULTIVARIADA. Tiago Teles de Abreu Tarré

ESTATÍSTICA MULTIVARIADA. Tiago Teles de Abreu Tarré Tiago Teles de Abreu Tarré 1 Variáveis Aleatórias É uma função que a cada acontecimento ω do espaço de resultados, faz corresponder um valor real, x = X (). Ω IR ω 1 x = X(ω 1 ) Variáveis Aleatórias Exemplo

Leia mais

Par de Variáveis Aleatórias

Par de Variáveis Aleatórias Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3

Leia mais

ME-310 Probabilidade II Lista 2

ME-310 Probabilidade II Lista 2 ME-3 Probabilidade II Lista 2. Uma máquina funciona enquanto pelo menos 3 das 5 turbinas funcionam. Se cada turbina funciona um tempo aleatório com densidade xe x, x >, independentemente das outras, calcule

Leia mais

Probabilidade 2 - ME310 - Lista 2

Probabilidade 2 - ME310 - Lista 2 Probabilidade - ME3 - Lista September 4, Lembrando:. Estatística de ordem, pg 38 Ross: f xj (x) = n! (n j)!(j )! F (x)j ( F (x)) n j f(x). Distribuição de probabilidade conjunta de funções de variáveis

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Vetores Aleatórios 10 de setembro de 2017 Modelos Probabiĺısticos para N Variáveis Aleatórias F X1,...,X n (x 1,...,x n) = P[X 1 x 1,..., X n x n] (x 1,...,x

Leia mais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto

Leia mais

Exercícios Funções Multivariadas, Exponencial e Outras

Exercícios Funções Multivariadas, Exponencial e Outras Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

Lista de Exercícios #5 Assunto: Variáveis Aleatórias Multidimensionais Contínuas

Lista de Exercícios #5 Assunto: Variáveis Aleatórias Multidimensionais Contínuas 1. ANPEC 018 Questão 9 Uma pessoa investe R$ 10.000,00 (I) em duas aplicações cujas taxas de retorno são variáveis aleatórias independentes, R 1 e R, com médias 5% e 14% e desvios-padrão 1% e 8%, respectivamente.

Leia mais

Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. RINCIAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por f, β α 0, Notação: ~ Uα, β.

Leia mais

5. Distribuições conjuntas de probabilidade e complementos

5. Distribuições conjuntas de probabilidade e complementos 5. Distribuições conjuntas de probabilidade e complementos Motivação 5. Pares aleatórios Ao realizar-se uma experiência aleatória é comum estarmos interessados em estudar mais do que uma v.a., nomeadamente,

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB

Motivação. VA n-dimensional. Distribuições Multivariadas VADB Motivação Em muitas situações precisamos lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma Prof. Lorí Viali, Dr. viali@mat.ufgrs.br http://www.mat.ufrgsbr/~viali/

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Duas Variáveis Aleatórias 29 de agosto de 2017 Duas Variáveis Aleatórias Função Distribuição Acumulada Conjunta: F X,Y (x,y) = P[X x, Y y] Propriedades: (a) 0

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES PROBABILIDADES E ESTATÍSTICA. 1ª Chamada 10/01/2008.

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES PROBABILIDADES E ESTATÍSTICA. 1ª Chamada 10/01/2008. MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES PROBABILIDADES E ESTATÍSTICA 1ª Chamada 10/01/2008 Parte Teórica DURAÇÃO : 50 min COTAÇÃO DA PARTE TEÓRICA: 8 Valores em 20 PERGUNTAS DE

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável

Leia mais

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

Estatística II Licenciatura em Gestão TESTE I

Estatística II Licenciatura em Gestão TESTE I Estatística II Licenciatura em Gestão 1 o semestre 2015/2016 14/01/2016 09:00 Nome N o Espaço reservado a classificações A utilização do telemóvel, em qualquer circunstância, é motivo suficiente para a

Leia mais

AGA Análise de Dados em Astronomia I. 2. Probabilidades

AGA Análise de Dados em Astronomia I. 2. Probabilidades 1 / 20 AGA 0505- Análise de Dados em Astronomia I 2. Probabilidades Laerte Sodré Jr. 1o. semestre, 2018 2 / 20 tópicos 1 probabilidades - cont. 2 distribuições de probabilidades 1 binomial 2 Poisson 3

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec Gest Industrial º Semestre º Folha Nº3: Variáveis Aleatórias De um lote que contém 0 parafusos, dos quais 5 são defeituosos,

Leia mais

1 a a. Para a soma dos números saídos ser 0, tem que sair 0 em ambos os dados

1 a a. Para a soma dos números saídos ser 0, tem que sair 0 em ambos os dados Página Preparar o Exame 0 0 Matemática A. O valor médio da variável aleatória X é dado por a a a a 0 a a a. Então, a a Resposta: B. O é um dos resultados possíveis para X,(X = {0,,, }) pelo que a opção

Leia mais