DISTRIBUIÇÃO DE FREQUÊNCIAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DISTRIBUIÇÃO DE FREQUÊNCIAS"

Transcrição

1 Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa DISTRIBUIÇÃO DE FREQUÊNCIAS 5 5. DISTRIBUIÇÃO DE FREQUÊNCIA 5.1 Máxmo, mínmo e ampltude amostral Corresponde aos valores máxmos e mínmos de um ROL e a dstânca entre estes valores. São determnados pelo menor e maor valore do ROL na axa desejada. A ampltude amostral pode ser determnada pela expressão: max mn Exemplo1: A partr da coleta de dados reerentes a uma população de 100 alunos, determne o máxmo, o mínmo e a ampltude amostral: Solução: Incalmente organzam-se os dados em orma de ROL: ROL {8, 8,8, 8, 8, 9, 9, 30, 30, 33, 33, 34, 35, 37, 39, 40} A smples organzação em ROL já mostra os valores lmtes nerores e superores, ou seja, máxmo e mínmo de axa de dados; Logo: mn 8 anos e max 40 anos A varação ou ampltude é dada por: max mn, logo a dstânca entre o valor máxmo e o valor mínmo ou, AMPLITUDE AMOSTRAL é dada por anos. Assm, a ampltude de varação de dade é de 1 anos. Pro. M. Sc Aquno 35

2 Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa 5. Dstrbução de requênca ( ) Uma orma de derencar os dados de um ROL é categorzamos conorme o número de vezes que um determnado tem é repetdo, ou como se dz, pela requênca em que os dados se repetem. Para sto os dados organzados em ROL devem ser dspostos em uma tabela denomnada tabela de requêncas. Exemplo : Organze os dados coletados para uma população de 100 alunos em uma tabela de requênca que consdere a dade e a requênca de repetção dos valores no ROL: Solução: Incalmente organzam-se os dados em orma de ROL ROL {8, 8,8, 8, 8, 9, 9, 30, 30, 33, 33, 34, 35, 37, 39, 40} Observando-se os dados, percebe-se que a dade de 8 anos se repete por 5 vezes. Logo é representado como: ( 8) 5 Com sso a tabela com estes valores é representada como: IDADE Frequênca Pro. M. Sc Aquno 36

3 Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa O agrupamento em requêncas como eto no exemplo anteror pode demandar uma quantdade de lnhas ou espaço consderável na tabela dcultando a vsualzação da normação ou até mesmo a nerênca. É possível reorganzar os dados de orma a agrupar por axas de valores dendas segundo a smbologa: L < ncal nal ncal nal O símbolo - representa a nclusão do valor ncal e a exclusão do valor nal. Pode ser dendo também como: ncal. nal L ncal nal O símbolo nclu ambos os lmtes extremos da axa de valores. A não nclusão do lmte neror pode ser smbolzada por: ncal. nal L ncal < nal valores: Inclundo somente uma barra, resulta na exclusão dos extremos dos L < < ncal nal ncal nal A tabela anteror pode ser denda de orma smplcada como: IDADE Frequênca Desta orma, é perceptível uma separação da dade dos alunos da sala por axas. A separação vsualzada é denda pelo termo CLASSE onde corresponde ao número da classe. Pro. M. Sc Aquno 37

4 Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa 5.3 Classe A classe dstngue axas de valores aos quas se deseja desenvolver um determnado estudo ou smplesmente representar de orma agrupada Número de classe Uma orma mas crterosa de denr a tabela anteror é calculando a melhor dstrbução possível, apesar de que este método não substtur o própro pesqusador e o que ele deseja em sua pesqusa. Estes valores requerem que sejam determnadas as quantdades para o numero de classes K. Esta quantdade, que representa um valor para o número total de classes de classes possíves, podendo ser calculado por: K N dadosamostras Ou anda pela aplcação da relação de Sturges: log K 1+ N dadosamostras log Exemplo 3: possíves: Dado o ROL abaxo, determnar o número de classes Solução: ROL {8, 8,8, 8, 8, 9, 9, 30, 30, 33, 33, 34, 35, 37, 39, 40} Observando o número de dados, temos o valor 16, determnando o número de classes a partr do da expressão, temos: K 16 4 Logo o número de classes pode ser 4 se aplcado o método da raz ou pode ser 5 se aplcado o método de Sturges. ou log16 K log A vantagem de um método sobre o outro é denda pelo pesqusador. Encontrando na resolução um valor não ntero, o pesqusador poderá denr entre o valor ntero superor ou neror ao valor encontrado para o número de classes. Sendo o valor raconáro, por exemplo: 4,5 o pesqusador podera optar por K4 ou K5 a seu crtéro. Entendendo também que se ora obtdo por um método o valor ntero e o outro não, pode ser convenente acetar o método que proporconou o valor ntero. Pro. M. Sc Aquno 38

5 5.3. Ampltude de classe Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa Agora é necessáro denr o tamanho do ntervalo entre o lmte neror e superor de cada classe. Para sso é necessáro determnar o valor da ampltude de classeh. Este valor pode ser determnado pela expressão: Por exemplo, conhecdo o valor de K 4, determnado no exemplo anteror, temos que a ampltude de classe é; h K h K max K mn Com sso, o conjunto de dados da axa de dados será dado por axas dvddas conrme a ampltude h. Logo as classes cam dvdas como: Sendo, mínmo máxmo Temos as axas: 8 31, 31 34, 34 37, Ponto médo de classe Como cada axa possu um valor médo de axa que representa o valor central da axa, este pode ser calculado pela expressão: médo superor + neror Isso quer dzer que, dado neror 8e superor 31 temos que,para o mesmo exemplo anteror, o ntervalo médo da axa é de:. médo ,5 Ao crtéro do pesqusador pode ser assumdo como resposta 9 ou 30. Pro. M. Sc Aquno 39

6 Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa 5.4 Elementos da dstrbução de requêncas É dto requênca a quantdade que representa o número de uma determnada ocorrênca de valores Frequênca smples ou absoluta ( ) É o valor numérco que representa dretamente o número de dados de cada classe por uma quantdade n logo, para os valores somados de 1 até k-ésmo elemento, tem-se: Exemplo 3: Dado o rol abaxo, monte uma tabela com a requênca smples: ROL {8, 8, 8, 8, 8, 9, 9, 30, 30, 33, 33, 34, 35, 37, 39, 40} A partr do rol dado, a tabela o dvdda em três classes, e os valores para as classes oram separados por cores para derencação. Somadas as quantdades de valores solados estes são acumulados na requênca da classe. IDADE Frequênca k 1 n k Frequênca relatva ( r ) Pro. M. Sc Aquno 40

7 Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa São razoes entre a requênca smples e a requênca total. Ela representa qual a parcela da amostra a classe representa. Logo para uma quantdade n representando a requênca smples e, para os valores somados de 1 até k-ésmo elemento, tem-se: r k 1 n Exemplo 4: Da classe de qual a parcela que ela representa da amostra total, ou seja, a requênca relatva? Solução: N 16 que é a requênca absoluta e, a requênca da classe 3 dada por 3 5 Logo, 5 r 3 0,315 31,5% da ração ao qual a classe corresponde Frequênca acumulada ( F ) Corresponde a soma de todas as requêncas smples para cada classe neror a uma determnada classe. Dene um lmte superor para as quas todas as classes somadas são nerores. j 1 Fr j Exemplo 5: Deseja-se saber a requênca acumulada abaxo da classe de 35-41: Solução: Antes dela exstem duas classes logo o valor do J-ésmo termo parcal é que representa a classe. Então, o valor ca dendo como: Fr A requênca acumulada é então de 1 alunos, ou seja, 1 alunos possuem dade neror a 35 anos Frequênca acumulada relatva ( Fr ) Pro. M. Sc Aquno 41

8 Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa É a requênca acumulada da classe dvdda pela requênca absoluta. Fr F k 1 F n Exemplo 6: Quero saber a requênca relatva acumulada da classe de 35-41: Solução: Novamente o valor do k-ésmo termo parcal é que representa a classe para qual temos o valor acumulado de F e n16 que é requênca absoluta. Então, o valor para a requênca relatva é: 1 Fr 0,75 75% 16 O resultado mostra que 1 alunos, que representa 75% aproxmadamente, possuem dade neror a 35 anos. Pro. M. Sc Aquno 4

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

CÁLCULO DO ALUNO EQUIVALENTE PARA FINS DE ANÁLISE DE CUSTOS DE MANUTENÇÃO DAS IFES

CÁLCULO DO ALUNO EQUIVALENTE PARA FINS DE ANÁLISE DE CUSTOS DE MANUTENÇÃO DAS IFES MIISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO SUPERIOR DEPARTAMETO DE DESEVOLVIMETO DA EDUCAÇÃO SUPERIOR TECOLOGIA DA IFORMAÇÃO CÁLCULO DO ALUO EQUIVALETE PARA FIS DE AÁLISE DE CUSTOS DE MAUTEÇÃO DAS IFES

Leia mais

Visando dar continuidade ao trabalho de simulação, encaminho o MODELO DE ALOCAÇÃO E DIMENSIONAMENTO DO PESSOAL DOCENTE DE TERCEIRO GRAU

Visando dar continuidade ao trabalho de simulação, encaminho o MODELO DE ALOCAÇÃO E DIMENSIONAMENTO DO PESSOAL DOCENTE DE TERCEIRO GRAU Ofíco Brasíla, 24 de anero de 2005. Senhora Presdente ANDIFES, Vsando dar contnudade ao trabalho de smulação, encamnho o MODELO DE ALOCAÇÃO E DIMENSIONAMENTO DO PESSOAL DOCENTE DE TERCEIRO GRAU revsado

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando

Leia mais

FACULDADE DE TECNOLOGIA TUPY CURITIBA

FACULDADE DE TECNOLOGIA TUPY CURITIBA FACULDADE DE TECNOLOGIA TUPY CURITIBA MÉTODOS QUANTITATIVOS ESTATÍSTICA APLICADA VAGNER J. NECKEL 2010 Rev. 00 SUMÁRIO 1. CONCEITOS GERAIS...3 1.1 PANORAMA HISTÓRICO...3 1.2 DEFINIÇÃO...3 1.3 A ESTATÍSTICA

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

2. BACIA HIDROGRÁFICA

2. BACIA HIDROGRÁFICA . BACIA HIDROGRÁFICA.1. GENERALIDADES Embora a quantdade de água exstente no planeta seja constante e o cclo em nível global possa ser consderado fechado, os balanços hídrcos quase sempre se aplcam a undades

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

ESTATÍSTICA. na Contabilidade Revisão - Parte 2. Medidas Estatísticas

ESTATÍSTICA. na Contabilidade Revisão - Parte 2. Medidas Estatísticas 01/09/01 ESTATÍSTICA na Contabldade Revsão - Parte Luz A. Bertolo Meddas Estatístcas A dstrbução de frequêncas permte-nos descrever, de modo geral, os grupos de valores (classes) assumdos por uma varável.

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA André Luz Souza Slva IFRJ Andrelsslva@globo.com Vlmar Gomes da Fonseca IFRJ vlmar.onseca@rj.edu.br Wallace Vallory Nunes IFRJ wallace.nunes@rj.edu.br

Leia mais

Análise de circuitos elétricos Prof. Eng Luiz Antonio Vargas Pinto 2008

Análise de circuitos elétricos Prof. Eng Luiz Antonio Vargas Pinto 2008 Análse de crcutos elétrcos Pro. Eng uz Antono argas Pnto 008 Geração de orrente alternada... 3 Fluxo magnétco... 3 Freqüênca de um snal senodal... 5 e de Ohm para crcutos de corrente alternada... 7 rcuto

Leia mais

Apostila De Estatística

Apostila De Estatística Apostla De Estatístca Professores: Wanderley Akra Shgut Valéra da S. C. Shgut Brasíla 006 INTRODUÇÃO 1.1. PANORAMA HISTÓRICO Toda Cênca tem suas raízes na hstóra do homem; A Matemátca que é consderada

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação números e funções Gua do professor Software Como comprar sua moto Objetvos da undade 1. Aplcar o conceto de juros compostos; 2. Introduzr o conceto de empréstmo sob juros; 3. Mostrar aplcações de progressão

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

1ª e 2ª leis da termodinâmica

1ª e 2ª leis da termodinâmica 1ª e 2ª les da termodnâmca 1ª Le da Termodnâmca Le de Conservação da Energa 2ª Le da Termodnâmca Restrnge o tpo de conversões energétcas nos processos termodnâmcos Formalza os concetos de processos reversíves

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS

ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS Dogo Raael de Arruda RESUMO Constam, neste trabalho, concetos relaconados aos rscos e as ncertezas exstentes nas carteras de nvestmento

Leia mais

UNIVERSIDADE ESTADUAL DO PIAUÍ - UESPI PRÓ REITORIA DE ENSINO DE GRADUAÇÃO - PREG DEPARTAMENTODE ASSUNTOS PEDAGÓGICOS - DAP

UNIVERSIDADE ESTADUAL DO PIAUÍ - UESPI PRÓ REITORIA DE ENSINO DE GRADUAÇÃO - PREG DEPARTAMENTODE ASSUNTOS PEDAGÓGICOS - DAP UNVERSDADE ESTADUAL DO PAUÍ - UESP PRÓ RETORA DE ENSNO DE GRADUAÇÃO - PREG DEPARTAMENTODE ASSUNTOS PEDAGÓGCOS - DAP 1.TERRTORO ENTRE ROS /TERESNA/ Poeta Torquato Neto, Clóvis Moura, União CAMPUS TERESNA

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

MÉTODO DE FIBONACCI. L, em que L

MÉTODO DE FIBONACCI. L, em que L Métodos de bonacc e da Seção Aúrea Adotando a notação: MÉTODO DE IBOACCI L e L L, em que L b a, resulta a: ncal orma Recursva: ara,,, - (-a) ou ara,,, - (-b) A esta equação se assoca a condção de contorno

Leia mais

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade Aplcações de Estmadores Bayesanos Empírcos para Análse Espacal de Taxas de Mortaldade Alexandre E. dos Santos, Alexandre L. Rodrgues, Danlo L. Lopes Departamento de Estatístca Unversdade Federal de Mnas

Leia mais

RESOLUÇÃO Nº 3259 RESOLVEU:

RESOLUÇÃO Nº 3259 RESOLVEU: Resolução nº 3259, de 28 de janero de 2005. RESOLUÇÃO Nº 3259 Altera o dreconamento de recursos captados em depóstos de poupança pelas entdades ntegrantes do Sstema Braslero de Poupança e Empréstmo (SBPE).

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

ÍNDICE NOTA INTRODUTÓRIA

ÍNDICE NOTA INTRODUTÓRIA OGC00 05-0-06 ÍDICE. Introdução. Âmbto e defnções 3. Avalação da ncerteza de medção de estmatvas das grandezas de entrada 4. Cálculo da ncerteza-padrão da estmatva da grandeza 5 de saída 5. Incerteza de

Leia mais

CONSUMO PER CAPITA DE ÁGUA NA CIDADE DE NATAL SEGUNDO A ESTRATIFICAÇÃO SOCIOECONÔMICA

CONSUMO PER CAPITA DE ÁGUA NA CIDADE DE NATAL SEGUNDO A ESTRATIFICAÇÃO SOCIOECONÔMICA CONSUMO PER CAPITA DE ÁGUA NA CIDADE DE NATAL SEGUNDO A ESTRATIFICAÇÃO SOCIOECONÔMICA Jorge Ivan de Olvera 1 e Manoel Lucas Flho 2 Resumo Neste trabalho realzou-se uma sondagem, acerca do consumo per capta

Leia mais

CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS

CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS Nos capítulos anterores analsaram-se város modelos usados na avalação de manancas, tendo-se defndo os respectvos parâmetros. Nas correspondentes fchas de exercícos

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 0 a Fase Profa Mara Antôna Gouvea PROVA A QUESTÃO 0 Consdere as retas r, s e t de equações, resectvamente, y x, y x e x 7 y TRACE, no lano cartesano abaxo, os gráfcos

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Modelos estatísticos para previsão de partidas de futebol

Modelos estatísticos para previsão de partidas de futebol Modelos estatístcos para prevsão de partdas de futebol Dan Gamerman Insttuto de Matemátca, UFRJ dan@m.ufrj.br X Semana da Matemátca e II Semana da Estatístca da UFOP Ouro Preto, MG 03/11/2010 Algumas perguntas

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Palavras-chave: jovens no mercado de trabalho; modelo de seleção amostral; região Sul do Brasil.

Palavras-chave: jovens no mercado de trabalho; modelo de seleção amostral; região Sul do Brasil. 1 A INSERÇÃO E O RENDIMENTO DOS JOVENS NO MERCADO DE TRABALHO: UMA ANÁLISE PARA A REGIÃO SUL DO BRASIL Prscla Gomes de Castro 1 Felpe de Fgueredo Slva 2 João Eustáquo de Lma 3 Área temátca: 3 -Demografa

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Introdução Experimentos Aleatórios Propensity Score Matching Variável Instrumental Diferença-em-Diferença Regressões com Designe Descontínuo

Introdução Experimentos Aleatórios Propensity Score Matching Variável Instrumental Diferença-em-Diferença Regressões com Designe Descontínuo Avalação de Programas: Aplcações com o Software Stata Leandro Costa Vtor Mro Fortaleza, Janero de 2011 Sumáro Introdução Expermentos Aleatóros Propensty Score Matchng Varável Instrumental Dferença-em-Dferença

Leia mais

Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo.

Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo. Motores síncronos Prncípo de funconamento ão motores com velocdade de rotação fxa velocdade de sncronsmo. O seu prncípo de funconamento está esquematzado na fgura 1.1 um motor com 2 pólos. Uma corrente

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL II

MEDIDAS DE TENDÊNCIA CENTRAL II MEDIDAS DE TENDÊNCIA CENTRAL II 8. MÉDIA, MEDIANA E MODA 8. Mediana 8 7 A mediana divide um conjunto de dados pré-ordenados em duas porções iguais, ou seja, duas partes de 50% cada. Nesta divisão, 50%

Leia mais

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO J. W. B. Lopes 1 ; E. A. R. Pnhero 2 ; J. R. de Araújo Neto 3 ; J. C. N. dos Santos 4 RESUMO: Esse estudo fo conduzdo

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

Estimativas de Arrecadação de Impostos Próprios Estaduais e Municipais, Transferências Constitucionais e os 25% Constitucionais da Educação

Estimativas de Arrecadação de Impostos Próprios Estaduais e Municipais, Transferências Constitucionais e os 25% Constitucionais da Educação 1 Estimativas de Arrecadação de Impostos Próprios Estaduais e Municipais, Transferências Constitucionais e os 25% Constitucionais da Educação Resumo O presente estudo objetivou levantar dados sobre o total

Leia mais

MAE5778 - Teoria da Resposta ao Item

MAE5778 - Teoria da Resposta ao Item MAE5778 - Teora da Resposta ao Item Fernando Henrque Ferraz Perera da Rosa Robson Lunard 1 de feverero de 2005 Lsta 2 1. Na Tabela 1 estão apresentados os parâmetros de 6 tens, na escala (0,1). a b c 1

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais