FÍSICA MODERNA I AULA 20 - REVISÃO

Tamanho: px
Começar a partir da página:

Download "FÍSICA MODERNA I AULA 20 - REVISÃO"

Transcrição

1 Uiversidde de São Pulo Istituto de Físic FÍSICA MODERNA I AULA 0 - REVISÃO Prof. Márci de Almeid Rizzutto Pelletro sl 114 rizzutto@if.us.br 1o. Semestre de 014 Moitor: Gbriel M. de Souz Stos Pági do curso: htt://discilis.sto.us.br/course/view.h?id=905 16/05/014

2 Postuldos do Modelo de Bohr A qutizção do mometo gulr orbitl do elétro imlic qutizção d eergi =1 estdo fudmetl meor eergi Hidrogêio (eergi de ioizção) E Níveis discretos de eergi Os elétros se movem em certs órbits sem irrdir eergi átomo só ode eistir em estdos estcioários com eergis qutizds, E, defiids Átomos irrdim qudo um elétro sofre um trsição de um estdo estcioário r outro. A frequêci d rdição emitid est relciods às eergis ds órbits: h E i E f 13,6 e - =4 =3 = =1 +Ze

3 Correção de mss O vlor d costte de Rydberg obtido or Bohr foi muito róimo do vlor eerimetl R m=m e =9, kg e M = m =1, kg mee c Pr hver o cordo etre os vlores há ecessidde de um eque correção N suosição de Bohr o úcleo estv imóvel (sigific que su mss er cosiderd ifii Ms relidde mbos, o elétro o úcleo orbitm em toro de seu cetro comum de mss, correção de mss, uso mss reduzid o lugr d mss do elétro: 4 3 mm m M L = m e vr = ħ eergi E e 4 m e

4 Eerimeto de Frk Hertz Frck e Hertz em 1914 relizrm um eerimeto que cofirmou hiótese de Bohr que os estdos de eergi iter de um átomo são qutizdos. Amol de vidro com gás bi ressão (gás de átomos r ivestigr). Ctodo quecido que roduz elétros. Elétros são celerdos or um otecil V e trídos el grde olrizd ositiv. Os elétros que ssm el grde só chegm lc P se tiverem eergi suficiete r vecer o otecil retrddor Vr. ev=e -E 1 = 4,9eV (gráfico mostr rimeiro ico). Se ev>=4,9ev, o elétro icidete oderá trsferir 4,9eV o elétro do gás (fzer o elétro ir r o estdo ecitdo), o eslhmeto é ielástico e o elétro erde tod su eergi e ão cosegue vecer o oteci Vr e correte ci.

5 Eerimeto de Frck Hertz O rimeiro estdo ecitdo do Hg (mercúrio) tem eergi 4,9 ev cim do estdo fudmetl hc 4,9 536A 53, 6m Eerimetlmete temos um lih esectrl do mercúrio com este comrimeto de od E Ecitções múltils cusds elo mesmo elétro 4,9=9,8V (metde do cmiho té grde) N cofigurção usul es s ecitções múltils r o rimeiro estdo ecitdo são observds, de modo que s queds de correte =3 cotecem cd 4,9V 4,9eV 6,7eV = =1

6 Hióteses de de Broglie A hiótese de de Broglie em su tese de doutordo de 194, er que o comortmeto dul (od-rtícul) d rdição eletromgétic oderi ser licdo mtéri Vimos que odemos ssocir um fóto um frequêci de um od lumios que gover seu movimeto E h E um mometo do fóto é relciodo o comrimeto de od h Etão segudo de Broglie se ods de luz tem rorieddes de rtículs, rtículs devem ter rorieddes de od. E roôs que mbs s relções cim são vlids tmbém r rtículs. Deste modo, o comrimeto de od (ão reltivístico) ssocido rtícul d emss m e velocidde v é: h h mv

7 Difrção de RX O equeo lrgmeto sofrido or um feie de rios X o ssr or um fed de lgus milésimos de milímetros de lrgur idicv que ~ m 0, 1m Brgg em 191 estudou difrção de rios X em váris fmílis de los rlelos de átomos As ods difrtds com o mesmo âgulo or átomos situdos em los diferetes estrão em fse (iterferêci costrutiv) se difereç etre os dois ercursos foi igul o um umero iteiro de comrimeto de od dse 7

8 Temos que : Difrção de elétros Elétro r este cso odemos ssocir um comrimeto de od (or eemlo r eergi ciétic de 100 ev) De Broglie h h hc 1,4keVm 10 1, 10 m 5 me mc E ( ev) Testes eerimetis d hiótese de de Broglie 197 Dvisso e Germer (USA) e G. Thomso (Escóci): Estudrm qutidde de elétros que erm eslhdos em um suerfície de Ni em fução do âgulo de eslhmeto Potecil fz com que os e - sejm emitidos com E (ev)

9 Difrção de elétros E e = 54 ev E eergi que tem correte máim o detector A eistêci deste ico em 50º mostr qulittivmete o ostuldo de de Broglie ois só ode ser elicdo com um iterferêci costrutiv de ods eslhds

10 d Difrção de elétros dse d cos Máimo gulo. deeslhmeto. d é distâci etre os los de Brgg est relciod distâci itertômic D trvés d relção: d Dse Dse cos Dse Dse Medids de difrção de RX revelrm que D=0,15m r o Ni. O comrimeto de od etão clculdo r =1 0,15se50 0, 165m

11 Ou usdo distâci Iterlr: Medids com rios-x d = 0,091 m Máimo em = 50 o = dcos/ = 0,0910,906 = 0,165 m Clculdo or De Broglie r elétros de 54eV e : h h hc 1,4keVm 5 mk mc E ( ev) G.P. Thomso Nobel em ,168m Difrção de feie de elétros Semelhtes eerimetos com feies de rótos, êutros e mesmo átomos resetm o mesmo feômeo de difrção mostrdo que s relções de de Broglie são uiversis. O i G. Thomso ghou o Nobel or ter descoberto e - e ter crcterizdo-o como rtícul. E o filho ghou o Nobel or mostrr que o e - é um od

12 Cso reltivístico Pr se determir um eressão equivlete que se lique tto s rtículs reltivístics como ão-reltivístics: E E E 0 mc E0 c mc E K 1 Eergi de reouso d rtícul E Eergi totl 0 EK c E0 h hc E E 1/ K E 0 K E E 0 K c E K 1/ Alicável qulquer rtícul com qulquer eergi

13 Regrs de qutizção de Wilso e Sommerfeld Em 1916, Wilso e Sommerfeld eucirm um cojuto de regr de qutizção: Pr qulquer sistem físico o qul s coordeds são fuções eriódic do temo eiste um codição quâtic r cd coorded dq q é um coorded, q é o mometo ssocido est coorded e, q é o úmero quâtico que tom es vlores iteiros. P q q h 13 sigific que itegrção é tomd sobre um eríodo d coorded q. Eemlo: No cso do átomo de H o elétro se movedo em um órbit de rio r tem mometo gulr costte L=mvr. A coorded é um fução eriódic do temo (0 ) L Ld 0 d L h h h L

14 Regrs de qutizção de Wilso e Sommerfeld Um iterretção físic d regr de qutizção de Bohr foi dd em 194 or de Broglie L r mvr h Mometo do elétro em um órbit ossível de rio r, h h r r h As órbits ossíveis são quels s quis s circuferêcis odem coter etmete um úmero iteiro de comrimetos de od de de Broglie Sommerfield trblhou com órbits elítics r o átomo de H e tmbém levou em cot s correções reltivístics r eergi do elétro. Usou isto como tettiv de elicr estrutur fi do hidrogêio (Estrutur fi é um serção ds lihs esectris em váris comoetes diferetes). 14

15 Órbits elítics de Sommerfeld 15 Número quâtico zimutl Usou coordeds olres Ld P dr r r h h b As váris órbits crcterizds or um mesmo vlor de são dits degeerds 1) A rimeir codição dá mesm restrição r o mometo gulr orbitl L 1,,3... Que er obtid r teori d órbit circulr ) A segud codição (que ão er licável órbit urmete circulr) L( / b 1) r r 0,1,,3... Que er obtid r teori d órbit circulr

16 Órbits elítics de Sommerfeld Sommerfeld clculou os vlores dos semi-eios mior () e meor (b) que dão form e o tmho ds órbits elítics e eergi totl E do elétro ess órbit b E 4o Ze 1 4 o Z e 4 16 é mss reduzid é o úmero quâtico: 1,,3... r 0,1,,3... 1,,3... r As eergi são degeerds =1 =3, =3 =3, = =3, =1 =, = =, =1 E E E E E 3 E 1 E E 4 =1, =1

17 Órbits elítics de Sommerfeld trtds reltivisticmete O tmho rel d correção deede d velocidde médi do elétro que or su vez deede d ecetricidde d órbit, correções d ordem de v /c, er rovável que mior correção fosse órbit muito ecêtric, orque v umet à medid que o elétro se roim do úcleo v ( mr mr 4o r1 0 me v mr mke 1 m( ) 1) ke mke As lihs trcejds ão form observds os esectros e ests trsições ão ocorrem (regrs de seleção): 1 v c i ke c f k Z e Z 1 3 E 1 ( ) 4o 4 é chmd de costte de estrutur fi 1,44evm. 197,3evm. =3, =3 =3, = =3, =1 =, = =, =1 =1, =1 ke c 1 137

18 (, 1 Suerosição de dus Ods mlitude (eveloe) Acos k k tcosk t k t k t k v t velocidde de gruo Em cotrste com o ulso combição de ods ão é loclizd o esço 16/05/014 FNC Fisic V 18 1 Podemos iterretr od som como sedo um eveloe que modul letmete um od com k e w médios é lrgur do evoltório e é iversmete roorciol o úmero de od A velocidde de rogção ds ods idividuis v f =w/k g A velocidde de rogção do gruo (que é velocidde do evoltório) v g d dk

19 Ods hrmôics que comõem um cote de ods. A velocidde é dd or: 19 v f f Velocidde de fse dk dv k v kv dk d dk d v f f f g ) ( k f k v k v k v f f f. A velocidde de gruo est relciod velocidde de fse or: A velocidde v g ode ser > ou < que v f

20 Pr o ostuldo de de Broglie 0 E h h k E m v f v g k d dk E d d m k m A velocidde de fse ão corresode velocidde d rtícul de d O cote de od se rog com velocidde do elétro v m v

21 O ricíio d icertez 1 Pricíio de icertez de Heiseberg, diz: que é imossível determir (fzer medids) simultemete d osição e mometo de um rtícul) ( e, or eemlo) resetm um relção etre sus icertezs dd or 1 k k h Quto mis bem defiid osição de um rtícul (cote de od mis estreito), meos defiido será o mometo dess rtícul (um combição mior de comrimetos de od, e ortto de mometos será ecessário) O ricíio de icertez tmbém ode ser eucido em termos d eergi e do temo: Ds rorieddes do cote de od, tem-se que: E h h. t E. t 1

22 Probbilidde Em M Bor roôs como relcior (fução de od) com o comortmeto ds rtículs que el descreve: A robbilidde que rtícul sej ecotrd o istte t em um coorded etre e +d é : P( ) d P( ) d (, * d (, (, d ão é um qutidde mesurável, ms o seu módulo o qudrdo é mesurável e é justmete robbilidde or uidde de comrimeto ou desidde de robbilidde P() r ecotrr rtícul o oto o temo t.

23 Já que rtícul deve ser ecotrd em lgum lugr o logo do eio, som ds robbilidde sobre todos os vlores de deve ser 1. (, d 1 3 Qulquer fução que stisfz est equção é dit ormlizd A robbilidde de um rtícul estr o itervlo =<<=b est relciodo áre embio d curv de té b de um fução desidde de robbilidde (, P b (, d b o áre embio d curv etre e b

24 OBSERVÁVEIS: ão é um qutidde mesurável MAS como odemos relcior fução de od com grdezs observáveis???? COMO odemos obter osição, o mometo ou eergi de um rtícul rtir d fução de od (de meir et o mudo quâtico)????? VALORES ESPERADOS: USANDO iterretção robbilístic de Bohr, odemos obter es os vlores médios ou vlores eserdos ds grdezs P(, d * 4 (, (, d

25 5 OPERADORES OBSERVÁVEIS RESUMIDAMENTE 1- o cso d osição o oerdor é o rório vlor d osição: ˆ * ˆ - o cso do mometo, oerdor é ddo or: i (, i 3 - o cso d eergi, oerdor é ddo or: E E Eˆ * i t (, i t (, d (, d

26 OBSERVÁVEIS - VALOR ESPERADO Temos etão que o vlor eserdo de qulquer grdez que deede d osição, do mometo, d eergi ode ser determido trvés de: 6 f (,, E) * (, fˆ, i, i t (, d O vlor médio de um grdez em mecâic quâtic é ormlmete chmdo de vlor eserdo, que é o vlor que se eser obter de um medid dquel grdez. Observe que ão esermos ecessrimete que o vlor de um medid que teh um lt robbilidde sej igul o vlor eserdo.

27 7 Elétro em um ci Podemos ssocir robbilidde de loclizr rtícul em um estdo com meor eergi usdo um fução de od r o elétro (ssocir o elétro um od cosseoidl) Fução de od 1,,3..., cos ) ( A A robbilidde que rtícul sej ecotrd em um oto coorded etre / e / é : d P d P ) ( ) ( ) ( ) ( ) ( * A cos ) ( / / cos ) ( d A P Od fi s ot serd or um distâci, terá / comrimetos de od:

28 Elétro em um ci ( ) A cos, 1,,3... = 1 = / (m) / -/ / (m) = 15 = / / (m) -/ / (m)

29 9 Qulquer fução que stisfz est equção é dit ormlizd 1 ) ( d Mudç de vriável No osso cso: 1 cos ) ( / / d A P Já que rtícul deve ser ecotrd em lgum lugr o logo do eio, som ds robbilidde sobre todos os vlores de deve ser 1. 1 cos ) ( / / d A P (m) = 1 d d A A 1 -/ / Costte de ormlizção

30 Qul o vlor médio do mometo r fução de od do estdo fudmetl d rtícul detro dest ci: / / = 1 P(, d / / / / cos 30 ( ) Acos, 1,,3... * (, (, d d (m) -/ / Fução ímr Fução r Como itegrl é sobre um vlor ímr em um região simétric itegrl é ul 0 O vlor médio d osição do elétro ci o estdo =1 é em =0 O vlor mis rovável de, é ddo elo vlor de ode P() é máim: m L

31 Elétro em um ci ( ) A cos, 1,,3... = A / / cos d / (m) / Fução ímr Como itegrl é sobre um vlor ímr em um região simétric itegrl é ul 0 Fução r O vlor médio d osição do elétro ci o estdo = é em =0 Observe que ão esermos ecessrimete que o vlor de um medid que teh um lt robbilidde sej igul o vlor eserdo. m 4 e 4

32 3 Qul o vlor médio do mometo o qudrdo d osição d rtícul detro dest ci:... 1,,3, cos ) ( A d / / i ˆ Sbemos que: i i i i ˆ vle 1 O mometo médio qudrático: Que é um medid ds flutuções em toro d médi, ois rtícul ode ser ecotrd com mometo me ou me

33 Eercício: Um rtícul detro d ci De tmho L = (m) 0 L A desidde de robbilidde é ddo or: L L 33 ( ) se,0 L, L L P( ) ( ) Qul robbilidde de ecotrr rtícul em um equeo itervlo ete e +X P(0.50L se P(0.75L se L 3 0,01L L) 0,01L 0.76L) P( etre. e ) ( ) % (0.50L) %

FÍSICA MODERNA I AULA 19

FÍSICA MODERNA I AULA 19 Uiversidde de São ulo Istituto de Físic FÍSIC MODRN I U 9 rof. Márci de lmeid Rizzutto elletro sl rizzutto@if.us.br o. Semestre de 0 Moitor: Gbriel M. de Souz Stos ági do curso: htt:discilis.sto.us.brcourseview.h?id=905

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Uversdde de São ulo Isttuto de Físc FÍSIC MODERN I U 5 rof. Márc de lmed Rzzutto elletro sl 0 rzzutto@f.us.br o. Semestre de 08 ág do curso: htts:edscls.us.brcoursevew.h?d=695 0008 OERDORES OBSERVÁVEIS

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Universidde de São Pulo Instituto de Físic FÍSIC MODRN I U 5 Pro. Márci de lmeid Rizzutto Pelletron sl 0 rizzutto@i.us.br o. Semestre de 05 Monitor: Gbriel M. de Souz Sntos Págin do curso: htt:discilins.sto.us.brcourseview.h?id=55

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

FÍSICA MODERNA I AULA 14

FÍSICA MODERNA I AULA 14 Uiversidade de São Paulo Istituto de Física FÍSICA MODERNA I AULA 14 Profa. Márcia de Almeida Rizzutto Pelletro sala 114 rizzutto@if.usp.br 1o. Semestre de 014 Moitor: Gabriel M. de Souza Satos Págia do

Leia mais

Instituto de Física USP. Física V - Aula 23. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 23. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 3 Professora: Mazé Bechara Aula 3 Alicações de Wilso-Sommerfeld. A roosta de de Broglie de caráter dual das artículas materiais 1. Alicações de Wilso-Sommerfeld:

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

Aula de Medidas Dinâmicas I.B De Paula

Aula de Medidas Dinâmicas I.B De Paula Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

Disciplina: Cálculo Numérico. Professora: Dra. Camila N. Boeri Di Domenico NOTAS DE AULA / 1

Disciplina: Cálculo Numérico. Professora: Dra. Camila N. Boeri Di Domenico NOTAS DE AULA / 1 Discili: Cálculo Numérico Proessor: Dr. Cmil N. Boeri Di Domeico NOTAS DE AUA 8 / 4. INTERPOAÇÃO 4.. INTRODUÇÃO O roblem de ler s etrelihs de ddos tbeldos ocorre com requêci em licções. Tmbém é comum os

Leia mais

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo? erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui

Leia mais

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,

Leia mais

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 5 Professora: Mazé Bechara Paulo Vazolii - cietista e compositor Aula 5 Aida o átomo de H. A proposta de de Broglie de caráter dual das partículas materiais 1. Aida

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

APLICAÇÕES DO CÁLCULO INTEGRAL

APLICAÇÕES DO CÁLCULO INTEGRAL 9 APLICAÇÕES DO CÁLCULO INEGRAL Gil d Cost Mrques Fudmetos de Mtemátic I 9. Cálculo de áres 9. Áre d região compreedid etre dus curvs 9. rlho e Eergi potecil 9.4 Vlores médios de grdezs 9.5 Soms 9.6 Propgção

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

Instituto de Física USP. Física Moderna. Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna. Aula 25. Professora: Mazé Bechara Istituto de Física USP Física Modera Aula 5 Professora: Mazé Bechara Aula 5 A equação de Schroediger para estados estacioários ligados. Aplicação o movimeto uidimesioal. 1. Aplicação : os auto estados

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Capítulo 39: Mais Ondas de Matéria

Capítulo 39: Mais Ondas de Matéria Capítulo 39: Mais Odas de Matéria Os elétros da superfície de uma lâmia de Cobre foram cofiados em um curral atômico - uma barreira de 7,3 âgstros de diâmetro, imposta por 48 átomos de Ferro. Os átomos

Leia mais

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração.

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração. 7 olução proximd Neste cpítulo é feit elborção de um ov formulção simplificd prtir de um estudo de Lel (008), demostrd por dus forms á cohecids de proximção do cálculo do vetor w de prioriddes retirds

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 25. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 5 Professora: Mazé Bechara Aula 5 Aida o átomo de H. A proposta de de Broglie de caráter dual das partículas materiais 1. Aida o átomo de hidrogêio, a procura do

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

LOGARÍTMOS 1- DEFINIÇÃO. log2 5

LOGARÍTMOS 1- DEFINIÇÃO. log2 5 -(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O

Leia mais

Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente

Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente Aerodiâmic Potecil Complexo Exemplos de plicção W z com R W x + i y Fução potecil de velocidde φ ( x, y) x, φ costte x costte - Equipoteciis são rects verticis Fução de correte ψ ( x, y) y, ψ costte y

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

CORRELAÇÃO DE SINAIS DE TEMPO DISCRETO

CORRELAÇÃO DE SINAIS DE TEMPO DISCRETO CORRELAÇÃO DE SINAIS DE TEPO DISCRETO CORRELAÇÃO DE SINAIS DE TEPO DISCRETO Assemeh-se covoução. O objetivo de computr correção etre dois siis é pr medir o gru de simiridde etre ees. Correção de siis é

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni SUMÁRIO SÉRIES DE FOURIER Prof. Me. Arto Brboi. INTRODUÇÃO.... SÉRIES DE FOURIER..... Fuções Periódics..... Fuções secciolmete difereciáveis..... Fuções de rcos múltiplos..... Coeficietes de Fourier...

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierecil e Itegrl Limites Proessor: Luiz Ferdo Nues, Dr. 8/Sem_ Cálculo ii Ídice Limites.... Noção ituitiv de ite.... Deiição orml de ite.... Proprieddes dos ites.... Limites lteris...

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

Instituto de Física USP. Física Moderna I. Aula 20. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 20. Professora: Mazé Bechara Istituto de Física USP Física Modera I Aula 20 Professora: Mazé Bechara Satos FC tricampeão paulista Aula 20 A oda da partícula material e o pricípio de icerteza 1. Odas de de Broglie - aplicações: (a)

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO Prov de Cohecietos Especíicos QUESTÃO:, poto Deterie os vlores de e pr os quis ução dd sej cotíu e R. =,,, é cotíu e :.. li li li li. li li é cotíu e :.. li li li li Obteos Resolvedo equções θ e β: Respost:.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de grge Professor Volmir Eugêio Wilhelm Professor Mri Klei Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução f() que ão se cohece. São cohecidos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

Routo Terada. July 27, 2004

Routo Terada. July 27, 2004 Routo Terd July 27, 2004 1. Resíduo qudrático mod Sej Z. éumresíduo qudrático módulo (ou um qudrdo módulo ) se existir um x Z tl que x2 mod. Se tl x ão existir, diz-se que éum ão-resíduo qudrático módulo.

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

( ) E( X) = µ (desconhecido) V( X) = σ 2 (conhecido) ( ) se X ~ N µ,σ 2 ( ) se X qq e n grande

( ) E( X) = µ (desconhecido) V( X) = σ 2 (conhecido) ( ) se X ~ N µ,σ 2 ( ) se X qq e n grande A Pires, IST, Outubro de 000 Cpítulo 7 - Estimção por itervlos 7. Itervlos de cofiç Pr lém dum estimtiv potul de um prâmetro é, em muits situções, importte dispôr de lgum form de itervlo que idique cofiç

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara Istituto de Física USP Física V - Aula Professora: Mazé Bechara Aula O Modelo Atômico de Bohr. Determiações das velocidades o movimeto de um elétro iteragido com o úcleo o modelo de Bohr.. Os estados atômicos

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

Sexta Feira. Cálculo Diferencial e Integral A

Sexta Feira. Cálculo Diferencial e Integral A Set Feir Cálculo Diferecil e Itegrl A // Fuções Reis iite de Fuções Código: EXA7 A Tur: EEAN MECAN Prof. HANS-URICH PICHOWSKI Prof. Hs-Ulrich Pilchowski Nots de ul Cálculo Diferecil iites de Fuções Sej

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

Lista de Exercícios 01 Algoritmos Seqüência Simples

Lista de Exercícios 01 Algoritmos Seqüência Simples Uiversidde Federl de Mis Geris - UFMG Istituto de Ciêcis Exts - ICEx Discipli: Progrmção de Computdores Professor: Dvid Meoti (meoti@dcc.ufmg.br) Moitor: João Felipe Kudo (joo.felipe.kudo@terr.com.br)

Leia mais

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara Istituto de Física USP Física V - Aula Professora: Mazé Bechara AVISO 1. Já se ecotra a págia da disciplia o TEC 3 para ser etregue até 9/5. Aula O Modelo Atômico de Bohr 1. As hipóteses do modelo de Bohr

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 Itegrção Numéric Aálise Numéric Artur Miguel Cruz Escol Superior de Tecologi Istituto Politécico de Setúbl 015/016 1 1 versão 13 de Juho de 017 1 Itrodução Clculr itegris é muito mis difícil do que clculr

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof: Reildo Hs Métodos Itertivos Motivção I Ocorrêci em lrg escl de sistems lieres em cálculos de Egehri e modelgem cietífic Eemplos: Simulções

Leia mais

Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0

Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0 Colégio Nome: N.º: Edereço: Dt: Telefoe: E-mil: Discipli: MATEMÁTICA Prov: DESAFIO PARA QUEM CURSARÁ A ạ SÉRIE DO ENSINO MÉDIO EM 09 QUESTÃO 6 A difereç etre o cubo de um úmero rel positivo e o seu quádruplo,

Leia mais

CAPÍTULO III SUCESSÕES E SÉRIES DE FUNÇÕES. 1. Convergência ponto a ponto e convergência uniforme

CAPÍTULO III SUCESSÕES E SÉRIES DE FUNÇÕES. 1. Convergência ponto a ponto e convergência uniforme CAPÍTULO III SUCESSÕES E SÉRIES DE FUNÇÕES Covergêci oto oto e covergêci uiforme Cosiderem-se s fuções f 3 tods de A R em R Pr cd A f é um sucessão de termos reis e oderá ou ão eistir lim f Sedo B A um

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais