ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica

Tamanho: px
Começar a partir da página:

Download "ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica"

Transcrição

1 INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 007/008 Semestre 1 o Apontamentos Teóricos: Função Eponencial e Função Logarítmica Autores: Maria Cristina Peioto Matos Nuno Conceição Joana Fialho Paula Sarabando 1

2 1.1. Função Eponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos: a) a 0 = 1 b) a a...a vezes = a c) a a = a + d) a a = a e) (a ) = a f) (ab) = a b g) ( a b) = a b h) a = 1 a i) a / = a Eercício 1. Aplicação de Propriedades das Potências a) 3 b) 3 c) (3 ) 3 d) ( ) 1 e) 3 f) 1/ 3 1/ Eemplo 1. Um investidor decide depositar euros num depósito a prazo(anual), na modalidade de juro composto, em determinado banco. A taa de juro aplicada é 0, 05. Determine a função que permite calcular o montante que o investidor obtém em função do prazo.

3 Resolução: Temos, Final do 1 o ano , 05 = (1 + 0, 05) = = , 05 Final do o ano , 05 + ( , 05) 0, 05 = , 05 (1 + 0, 05) = = (1, 05) Final do 3 o ano (1, 05) + ( (1, 05) ) 0, 05 = (1, 05) (1 + 0, 05) = = (1, 05) 3. Final de anos (1, 05) Desta forma a função que permite calcular o montante que o investidor obtém em função do prazo é f() = (1, 05) (1) A função (1) pertence a uma importante classe de funções chamadas funções eponenciais. Alguns eemplos simples são: f() =, g() = = 3 = 9, h() = ( )

4 Em geral, qualquer número positivo a 1 pode servir como base de uma função eponencial. Definição 1 Seja a IR + \{1}. A função f : IR IR () f() = a chama-se função eponencial de base a. Nota: Observemos que a função eponencial é definida através da potência da base fia e epoente variável. Os seguintes eemplos permitem-nos caracterizar a função eponencial: f : IR IR f() = g : IR IR g() = Graficamente temos, g() 6 f()

5 Da observação do gráfico podemos concluir que: f() = g() = Domínio IR IR Contradomínio IR + IR + Injectiva Sim Sim Sobrejectiva Não Não Monotonia Crescente Decrescente Intersecção com Eio dos XX Não tem Não tem Eio dos Y Y (0, 1) (0, 1) é muito grande f() é muito grande g() aproima-se de 0 é muito pequeno f() aproima-se de 0 g() é muito grande Em resumo, podemos definir as seguintes propriedades para a função eponencial: Propriedades da Função Eponencial: Seja f() = a, a IR + \{1} D f = IR, D f = IR+ f é injectiva, não sobrejectiva, não tem zeros O gráfico de f intersecta o eio dos Y Y em (0, 1) 5

6 f é estritamente crescente quando a > 1 e estritamente decrescente quando 0 < a < 1 a > 1 = lim f() = + + = lim f() = 0 0 < a < 1 = lim + f() = 0 = lim f() = + O gráfico de f tem uma assímptota horizontal = 0 Eemplo. a) Esboce o gráfico da função f() = 1 3 na máquina de calcular. b) Calcule o domínio e o contradomínio da função f. c) Resolva a equação f() > 0. Resolução: f()

7 Eemplo 3. Determine, em IR, o conjunto solução da equação = Função Eponencial Natural Introduzimos as funções eponenciais utilizando uma base genérica a, no entanto iremos dar ênfase especial às funções eponenciais que têm como base o número irracional e. Definição O número irracional e é definido como o limite lim (1 + 0 )1/ = e, (3) Na figura seguinte podemos observar o gráfico da função f : IR IR f() = e 6 e Obviamente, esta função goza de todas as propriedades anteriormente referidas. 7

8 1.3. Logaritmo de um Número Definição 3 Chamamos logaritmo de um número positivo na base a, (a IR + \{1}) ao número real tal que a = log a = (4) Nota: Quando a = e escrevemos ln = e = Da definição resulta que: log a a = 1 pois a 1 = a ln e = 1 pois e 1 = e log a 1 = 0 pois a 0 = 1 ln 1 = 0 pois e 0 = 1 ( ) 1 log a = 1 pois a 1 = 1 ( ) 1 ln = 1 pois e 1 = 1 a a e e log a a = pois a = a ln e = pois e = e a log a = pois log a = log a e ln = pois ln = ln Eemplo 4. a) log 16 = 4 pois 4 = 16. b) log 5 5 = pois 5 = 5. c) log 3/ 1 = 0 pois ( ) 0 3 = 1. d) log = pois ( 14) = 14. 8

9 Propriedades dos Logaritmos: Sejam a, b IR + \{1}: 1. log a = log a + log a. ln = ln + ln 3. log a = log a log a 4. ln = ln ln 5. log a n = n log a 6. ln n = n ln Eemplo 5. Supondo > 0 e > 0, aplique as propriedades dos logaritmos, cada uma das epressões seguintes: a) ln e b) 4 log 43 c) ln 10 9 d) log e) ln f) log 5 3 ( + 1) + log 3 ( + ) 3log 3 g) ln + ln h) ln 6 3 Resolução: a) ln e = b)4 log 43 = 3 c) ln 10 9 = ln 10 ln 9 d) log = log 6 ( + 1) 1/ = 1 ln ( + 1) e) ln 5 = ln () ln 5 = ln + ln ln 5 9

10 f) ln 6 3 = ln ln 6 3 = = ln (ln 6 + ln 3 ) = = ln ln 6 3ln g) ln + ln = ln + ln = ln h) log 3 ( + 1) + log 3 ( + ) 3log 3 = log 3 ( + 1)( + ) 3log 3 = = log 3 ( ) log 3 3 = = log Eemplo 6. Resolva as seguintes equações: a) e = 5 b) ln = 5 c) e 0,1t = 14 d) 3 + ln = 7 Resolução: a) e = 5 = ln 5 b) ln = 5 = e 5 c) e0,1t = 14 3e 0,1t = 4 e 0,1t = 4 3 0, 1t = ln 4 3 t = 10ln 4 3 d) 3 + ln = 7 = ln = 4 l n = = e = ±e 10

11 1.4. Função Logarítmica Relembrando o problema eposto na secção.1 como poderemos determinar ao fim de quantos anos o investidor obterá euros? Ora, o que pretendemos é a solução da equação: (1, 05) = (1, 05) = = log 1,05 Como pudemos observar, no eemplo anterior introduzimos uma nova função, a função logarítmica. Definição 4 Chamamos função logaritmo à função tal que log a = a = (5) Se a = e representamos a função logaritmo por ln = e = (6) Esta definição implica que a função logaritmo e a função eponencial sejam inversas uma da outra isto é: f : IR IR + f() = a f 1 : IR + IR f 1 () = log a 11

12 Como as funções f() = a e g() = log a são inversas uma da outra, os seus gráficos são refleões um do outro em relação à recta =. 6 = a 4 = = log a Propriedades da Função Logarítmica: Seja f() = log a, a IR + \{1} D f = IR +, D f = IR f é injectiva, é sobrejectiva O gráfico de f intersecta o eio dos XX em (1, 0) 1

13 f é estritamente crescente quando a > 1 e estritamente decrescente quando 0 < a < 1 a > 1 = lim f() = + + = lim 0 +f() = 0 < a < 1 = lim + f() = 0 = lim 0 +f() = + O gráfico de f tem uma assímptota vertical = 0 Eemplo 7. Partindo do gráfico de = ln, obtenha uma representação gráfica das seguintes funções: a) = ln b) = ln c) = ln d) = ln ( ) 4 = ln( ) = ln = ln 4 13

14 4 = ln = ln

15 INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 007/008 Semestre 1 o Caderno de Eercícios: Função Eponencial e Função Logarítmica Autores: Maria Cristina Peioto Matos Nuno Conceição Joana Fialho Paula Sarabando 15

16 1. Calcule o valor numérico das epressões: ( ) 3 (a) 5(5 3 ) (b) 64 3 (c) 81 1 (d) (e) 5 ( ) 1 ( ) 1 3 (f) (g) (h) (i) (j) Aplique as propriedades das potências para simplificar as epressões: (a) (5 )(5 3 ) (b) ( 5 ) ( ) (c) 53 1 ( )( ) (d) (e) ( ) ( )3 (f) ( ) ( ) (g) (h) (3) 3 3 (i) (8 )(4 3 ) (j) ( 4 6)1 [ ] 3 (k) (8 1 )(8 3 ) (l) ( e 3) ( ) ( ) 1 (m) e 0 e 5 1 (n) (o) e e 3. Associe cada uma das funções seguintes ao respectivo gráfico: (1) f() = 3 () f() = 3 (3) f() = 3 (4) f() = 3 (5) f() = 3 1 (6) f() = 3 + (a) (b) (c) (d) (e) (f) 16

17 ( ) 4. (a) Encontre b > 1 tal que = 3 possa ser epresso como = 3 (b ). 5 (b) Estas funções são de crescimento os decrescimento eponencial? justifique. (c) Verifique o seu resultado traçando o gráfico das duas funções. 5. (a) Esboce o gráfico da função = (1, 5). ( ) 4 (b) Esboce o gráfico da função =, (c) Mostre algebricamente que estes dois gráficos são idênticos. 6. Resolva as equações seguintes: (a) 3 = 81 (b) ( ) 1 1 = 7 (c) 4 = ( + ) (d) ( + 3) 4 3 = 16 3 (e) e 3 = e (f) e 1 = e (g) 3 = 3 e (h) = e 7. Suponha que a função c(t) = t + 1 t + 0, 5 traduz a produção necessária no ano 1000 t para pagar todas as despesas de eploração. (a) Esboce o gráfico deste modelo (b) Estime qual ano a partir do qual a produção será suficiente para cobrir as despesas de eploração. (c) Qual o ano em que haverá lucro máimo? 8. O preço de um determinado produto no mercado, ( dependendo da ) quantidade disponível, 4 segue o modelo dado pela função p() = Considere [0; 800] 4 + e 0,00 com a quantidade disponível do produto no mercado. (a) Faça um esboço do gráfico da função. p() é crescente? E decrescente? (b) Determine o preço unitário do produto quando estão disponíveis 100 e 700 unidades no mercado. (c) Determine a quantidade máima de produtos no mercado de modo a que o preço unitário não desça abaio de 100. (d) Qual o limite do preço se a quantidade aumentar indefinidamente? 17

18 9. Num determinado teste aplicado por uma empresa de recursos humanos, a proporção de 0, 97 respostas certas é modelada pela função P(n) = 1 + e 0,n, em que n representa o número de tentativas de completar o teste. (a) Esboce o gráfico desta função e diga se ela é crescente ou decrescente. (b) Estime graficamente a proporção de respostas correctas após 8 tentativas. Confirme, analiticamente, esse resultado. (c) Estime o número de tentativas necessário para que a proporção de respostas certas seja superior a 0, 9. (d) A proporção de respostas certas tem limite quando n cresce indefinidamente? Justifique. 10. (a) Escreva 64 = 4 3 na forma logarítmica. ( ) 1 (b) Escreva log 4 = 3 na forma eponencial. 64 (c) Se 4 =log, determine. 11. Escreva cada equação na forma eponencial. ) (a) 4 =log 16 (b) 4 =log 3 81 (c) 1 =log 4 (d) =log 3 ( Determine escrevendo as equações na forma eponencial. (a) log = 3 (b) log 4 = (c) log 8 = 1 3 (d) log 5 = Escreva cada equação na forma logarítmica. (a) 5 = 3 (b) 5 3 = 15 (c) 4 1 = 1 4 (d) 9 1/ = Calcule: ) (a) log 8 (b) log 3 9 (c) log 5 (

19 15. Associe cada uma das funções seguintes ao respectivo gráfico: (1) f() = + ln() () f() = ln() (3) f() = ln( + ) (4) f() = ln( 1) (a) (b) (c) 3 (d) Use as propriedades dos logaritmos ou a definição para simplificar cada epressão. (a) Se f() = ln, determine f(e ). (b) Se f() = ln, determine f( e). (c) Se f() = e, determine f(ln 3). (d) Se f() = 10, determine f(log ). 17. Aplique as propriedades das funções eponencial e logarítmica para simplificar as epressões: (a) log 3 (3 ) (b) 1 + ln(e ) (c) e ln( ) (d) 8 + e ln(3 ) 18. Sabendo que ln() 0, 6931 e que ln(3) 1, 0986, utilize propriedades dos logaritmos para calcular valores aproimados de ( ) 3 (a) ln(6) (b) ln (c) ln(81) (d) ln(4) (e) ln( 3 1) (f) ln ( )

20 19. Escreva como logaritmo de um único número: (a) ln( ) ln( + ) (b) ln( + 1) + ln( 1) (c) 1 3 [ ln( + 3) + ln() ln( 1) ] (d) ln(3) 1 ln( + 1) (e) ln() + 1 ln( + 1) (f) 1 ln( ) + 3 ln( + ) 0. Aplique as propriedades dos logaritmos para escrever as epressões como uma soma, diferença ou múltiplo de logaritmos. ( ) ( ) (a) ln (b) ln (c) ln ( ) 1 e (d) ln ( z(z 1) ) 1. Verifique analítica e graficamente que os pares de funções seguintes são equivalentes para > 0 : ( ) (a) f() = ln 4 ) (b) f() = ln( ( + 1) g() = ln() ln(4) g() = 1 [ ln() + ln( + 1) ]. Resolva as equações seguintes: (a) e 0,0174 = 0, 5 (b) e ln() = 4 (c) ln() = 4 (d) e +1 = 4 (e) 500(1, 07) = 1000 (f) e ln() 9 = 0 (g) 400(1, 06) = 1300 (h) 45 = e t 3. Verifique analítica e graficamente que os pares de funções seguintes são inversas para > 0 : (a) f() = e 1 (b) f() = e 3 g() = 1 + ln ( ) g() = ln ( 3) 0

21 4. Os alunos de uma turma foram submetidos a uma prova no início do ano lectivo e no fim de cada um dos 10 meses seguintes com provas de dificuldade equivalente. A classificação média admite o modelo S(t) = ln(t + 1). (a) Esboce o gráfico da função e classifique-a quanto à monotonia. (b) Qual foi a média das classificações na primeira prova? E na prova no final do 4 o mês? (c) Após quantos meses foi ultrapassada a média de 60? 5. Um automóvel percorre 5km com um litro de combustível se mantiver uma velocidade média de 60km/h. Os kms percorridos decrescem cerca de 7% por cada 10km/h a mais na média. Sendo s a velocidade e o número de kms percorridos por litro, um bom modelo para o número de kms percorridos com 1 litro de combustível em função da velocidade média é = 5e 0,4 0,007s, s 60. Determine a quantidade de combustível gasta por esse automóvel numa viagem de 150kms às médias de 60km/h, 80km/h e 100km/h. Juros Compostos: Se P euros forem investidos a uma taa de juros r por ano, capitalizando anualmente, o valor futuro S no fim do enésimo ano é dado pelo modelo: S = P(1 + r) n 6. Aplicam-se 1000 euros numa conta que rende juros à taa anual de 4%. Qual o tempo necessário para a duplicação desta quantia se o juro é composto (a) anualmente (b) mensalmente (c) diariamente (d) continuamente 1

22 Modelos de Decrescimento Eponencial: f() = Ca com a > 1 e C > 0 Modelos de Crescimento Eponencial: f() = Ca com a > 1 e C > 0 7. A população de uma cidade de 1970 a 1990 tem como modelo P(t) = 43000e 0,01737t, onde t = 0 corresponde a Segundo este modelo, em que ano a população foi de ? 8. Uma empresa descobre que as suas vendas começam a decair depois do fim de uma campanha publicitária e o declínio é tal que o número de vendas é S = ,1, onde é o número de dias após o fim da campanha. (a) Quantas vendas serão efectuadas 10 dias após o fim da campanha? (b) Se a empresa não quiser que as vendas caiam abaio de 500 vendas diárias, quando deveria iniciar uma nova campanha? 9. A produção V de uma floresta com t anos de idade tem o seguinte modelo matemático: V (t) = 6, 7e 48 t. (a) Determine a produção após 0 e 50 anos. (b) Esboce o gráfico deste modelo. (c) A produção tem um limite quando t cresce indefinidamente?

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

TÓPICOS DE MATEMÁTICA

TÓPICOS DE MATEMÁTICA INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA FUNÇÕES 2ª Parte Clara Viseu, Maria de Lurdes Vieira Baseado em: Harshbarger, Reynolds.

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão Matemática I Elaborado por Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Versão 2009-1 Conteúdo da Seção Função Eponencial Função Logarítmica 2 A função eponencial tem a seguinte forma b

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 00/0 Ficha Prática nº Parte III Função Eponencial Função Logaritmo Funções trigonométricas directas e inversas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tarefa nº do plano de trabalho nº 7. Considere a função f() -. a. Encontre a epressão analítica da função inversa de f.

Leia mais

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação

Leia mais

Logaritmos e a Calculadora

Logaritmos e a Calculadora Logaritmos e a Calculadora Denise Martinelli PIBID/Matemática Neumar Regiane Machado Albertoni PIBID/Matemática Violeta Maria Estephan professora do DAMAT CURITIBA, 015 19 a 1 de agosto de 015 Página 1

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5 Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº 5 do plano de trabalho nº 5 Resolver os eercícios 03, 0, 05, 0 e 6 das páginas 95 e 0.

Leia mais

Exercícios de Matemática. Maiores de 23. Departamento de Matemática Escola Superior de Tecnologia de Viseu Instituto Politécnico de Viseu

Exercícios de Matemática. Maiores de 23. Departamento de Matemática Escola Superior de Tecnologia de Viseu Instituto Politécnico de Viseu Departamento de Matemática Escola Superior de Tecnologia de Viseu Instituto Politécnico de Viseu Eercícios de Matemática Maiores de 3 Cursos do Departamento de Gestão Ano Lectivo 008/009 Noções básicas

Leia mais

A) 45 B) 22,5 C) 43 D) 21, A soma das áreas dos 20 primeiros trapézios é igual a: [A] 260 [B] 130 [C] 70 [D] 450

A) 45 B) 22,5 C) 43 D) 21, A soma das áreas dos 20 primeiros trapézios é igual a: [A] 260 [B] 130 [C] 70 [D] 450 6. Observe a sequência de trapézios rectângulos construídos como é sugerido na figura. Seja (a n ) a sucessão das áreas dos trapézios, em que o trapézio de ordem tem dois vértices nos pontos (, 0) e (,

Leia mais

Derivadas de funções reais de variável real

Derivadas de funções reais de variável real Derivadas de funções reais de variável real O conceito de derivada tem grande importância pelas suas inúmeras aplicações em Matemática, em Física e em muitas outras ciências. Neste capítulo vamos dar a

Leia mais

MATEMÁTICA A - 12o Ano Funções - Assintotas

MATEMÁTICA A - 12o Ano Funções - Assintotas MATEMÁTICA A - 12o Ano Funções - Assintotas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e 1 Estude a função f quanto à eistência de assintota horizontal,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A 0 05 007 Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Preparação para o Cálculo

Preparação para o Cálculo Preparação para o Cálculo Referencial cartesiano Representação gráfica Um referencial cartesiano é constituído por duas rectas perpendiculares (fias), com ponto de intersecção O: O diz-se a origem do referencial;

Leia mais

FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL

FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL Função Inversa e Função Composta; Generalidades; Monotonia, Etremos e Concavidades FICHA DE TRABALH N.º 8 MATEMÁTICA A - 0.º AN FUNÇÕES REAIS DE VARIÁVEL REAL FUNÇÃ CMPSTA E FUNÇÃ INVERSA; GENERALIDADES;

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 5

Processo Seletivo Estendido 2016 LISTA FUNÇ~OES - 5 Processo Seletivo Estendido 06 LISTA FUNÇ~OES - 5 Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Aleandre Trovon UFPR A presente

Leia mais

Capítulo 2. Funções. 2.1 Funções

Capítulo 2. Funções. 2.1 Funções Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função

Leia mais

Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais

Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial Prof.:

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II TPC nº ª Parte Nesta ª parte assinale a resposta certa e justifique. Na figura

Leia mais

( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos:

( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial. Propriedades

Leia mais

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO ESOL SEUNÁRI E LERTO SMPIO Matemática EXERÍIOS EXTRÍOS E PROVS NIONIS EXME RELIZS ENTRE 993 E 998 º NO /3 FIH E TRLHO E FUNÇÕES. Observe o gráfico de uma função F.. Estude o sinal de F.. onsidere as funções

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

1.2. Generalidade Sobre Funções O Plano Cartesiano

1.2. Generalidade Sobre Funções O Plano Cartesiano 1.. Generalidade Sobre Funções 1..1. O Plano Cartesiano Assim como podemos representar números reais por pontos numa recta de números reais, podemos também representar pares ordenados de números reais

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

Cálculo I - Lista 1: Números reais. Desigualdades. Funções.

Cálculo I - Lista 1: Números reais. Desigualdades. Funções. Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Cálculo I - Lista : Números reais Desigualdades Funções Prof Responsável: Andrés Vercik Um inteiro positivo n é par se n k para

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa intermédia nº 4 A

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa intermédia nº 4 A 1º Ano de Matemática A Tarefa intermédia nº 4 A 1. No referencial da figura estão partes das representações gráficas das funções f e g definidas por: f ( ) = 6 e g( ) 4 =. 1.1. Indique o domínio, o contradomínio,

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 2 do plano de trabalho nº 1

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 2 do plano de trabalho nº 1 Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº do plano de trabalho nº 1 Resolver a atividade 4 da página 11 e os eercícios 15, 16, 17

Leia mais

Prova 2 - Bases Matemáticas

Prova 2 - Bases Matemáticas Prova 2 - Bases Matemáticas Resolução comentada Bases Matemáticas - Turma A3 2 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema

Leia mais

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra. Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES 06 07 Matemática A.º Ano Fichas de Trabalho Compilação Tema

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

Exercícios Propostos

Exercícios Propostos Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11

Leia mais

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável Análise Matemática Cálculo diferencial, primitivas e cálculo integral de funções de uma variável (Soluções) Jorge Orestes Cerdeira, Isabel Martins, Ana Isabel Mesquita Instituto Superior de Agronomia -

Leia mais

Apostila 2: Matemática - Funções

Apostila 2: Matemática - Funções de 9 UNERJ - Centro Universitário de Jaraguá do Sul Curso: Administração / Ciências Contábeis Disciplina: Matemática Prof.: JOABLE Apostila : Matemática - Funções Conjuntos Numéricos Conjunto: conceito

Leia mais

7 Derivadas e Diferenciabilidade.

7 Derivadas e Diferenciabilidade. Eercícios de Cálculo p. Informática, 006-07 1 7 Derivadas e Diferenciabilidade. E 7-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções trigonométricas, eponenciais e logarítmicas Aula 0 Projeto GAMA

Leia mais

DATA: VALOR: 20 PONTOS NOTA:

DATA: VALOR: 20 PONTOS NOTA: DISCIPLINA: MATEMÁTICA PROFESSORAS: ADRIANA E CLÁUDIO DATA: VALOR: 0 PONTOS NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1ª SÉRIE EM TURMAS: NOME COMPLETO: Nº: Prezado (a) aluno (a), A recuperação

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

MATEMÁTICA Logaritmos Introdução. Professor Marcelo Gonsalez Badin

MATEMÁTICA Logaritmos Introdução. Professor Marcelo Gonsalez Badin MATEMÁTICA Logaritmos Introdução Professor Marcelo Gonsalez Badin Você certamente já sabe calcular logaritmos! Por eemplo, resolva a equação: = 8 = 8 = 3 = 3 Logaritmo é apenas um nome que é dado ao epoente

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 0.03.08 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

(x 2,y 2 ) (x 4,y 4 ) x

(x 2,y 2 ) (x 4,y 4 ) x 2.3. Derivadas 2.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

Comecemos por relembrar as propriedades dos limites das sucessões: b n = K e c IR então: lim. lim

Comecemos por relembrar as propriedades dos limites das sucessões: b n = K e c IR então: lim. lim .. Limites e Continuidade... Limites em IN Comecemos por relembrar as propriedades dos ites das sucessões: Propriedades dos Limites das Sucessões: Sejam n a n = L e n b n = K e c IR então: n [a n ± b n

Leia mais

Bases Matemáticas - Turma A3

Bases Matemáticas - Turma A3 Bases Matemáticas - Turma A3 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema de modo detalhado, com o propósito de ajudar na compreensão

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ANO 015 PROFESSOR (a) DISCIPLINA Aline Heloisa Matemática ALUNO (a) SÉRIE 1º Ano do Ensino Médio 1. OBJETIVO Quanto

Leia mais

( a) ( ) ( ) ( ) 1. A função m : x x x 2 tem por representação gráfica. A C 1 B D Seja f uma função definida em R.

( a) ( ) ( ) ( ) 1. A função m : x x x 2 tem por representação gráfica. A C 1 B D Seja f uma função definida em R. Para cada uma das seguintes questões, seleccione a resposta correcta entre as quatro alternativas que são indicadas, justificando a sua escolha.. A função m : tem por representação gráfica. A C B D. Seja

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

Caderno 2. Concurso Público Conteúdo. - Coletânea de Exercícios Gerais

Caderno 2. Concurso Público Conteúdo. - Coletânea de Exercícios Gerais Concurso Público 2016 Caderno 2 Conteúdo - Funções de Primeiro e Segundo Grau - Noções de Probabilidade e Estatística Descritiva - Matemática Financeira - Aplicações e Operações com Inequações - Sequências

Leia mais

TESTE DE AVALIAÇÃO MATEMÁTICA A. Versão A

TESTE DE AVALIAÇÃO MATEMÁTICA A. Versão A E S C O L A S E C U N D Á R I A A F O N S O L O P E S V I E I R A Escola Secundária Afonso Lopes Vieira TESTE DE AVALIAÇÃO MATEMÁTICA A Nome:... Data: //9 Duração da prova 9 min Nº:... º Ano Turma A Versão

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Fun c ao Logaritmo Fun c ao Logaritmo ( ) F. Logaritmo Matem atica II 2008/2009

Fun c ao Logaritmo Fun c ao Logaritmo ( ) F. Logaritmo Matem atica II 2008/2009 Função Logaritmo (27-02-09) Função Logaritmo Acabámos de estudar a função exponencial, cuja forma mais simples é a função f(x) = e x. Resolvemos vários problemas que consistiam em calcular f(x 0 ) para

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM300 - Pré-cálculo a lista de eercícios (06//07 a 0//07) Considere f() = 5 Calcule f(), f(),

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Cálculo Diferencial Integral 1 Profª Sheila Regina Oro AULAS 2, 3, 4, 5

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Cálculo Diferencial Integral 1 Profª Sheila Regina Oro AULAS 2, 3, 4, 5 AULAS,,, 5 FUNÇÕES. Plano Cartesiano Os nomes Plano Cartesiano e Produto Cartesiano são homenagens ao seu criador René Descartes (596-65), filósofo e matemático francês. O nome de Descartes em Latim, era

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4 Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005 Cálculo I Caderno de Eercícios 4 Limites, continuidade e diferenciabilidade de funções; fórmulas de Taylor e MacLaurin; estudo de funções.

Leia mais

Exercícios das Aulas Práticas

Exercícios das Aulas Práticas ANÁLISE MATEMÁTICA I Engenharia Civil Eercícios das Aulas Práticas Escola Superior de Tecnologia de Tomar Ano lectivo 007/008 - º Semestre Conteúdo Números Reais 3 Funções Reais de Variável Real 4 3 Limites

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

Soluções das questões. algumas propostas de resolução

Soluções das questões. algumas propostas de resolução Soluções das questões e algumas propostas de resolução 5 Tema I e II - Soluções Epressões Algébricas e Condições 1.a) 3 em IR \{-;0} b) 3 em IR \{-3; 0} d) 11 1 em IR \{-1;1} 1 f ) (3 ) em IR \{0;1} e)

Leia mais

Minicurso de nivelamento de pré-cálculo:

Minicurso de nivelamento de pré-cálculo: Minicurso de nivelamento de pré-cálculo: 07. Quarta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

Escola Secundária com 3º ciclo Tomaz de Figueiredo

Escola Secundária com 3º ciclo Tomaz de Figueiredo Escola Secundária com º ciclo Tomaz de Figueiredo Ficha de avaliação formativa de Matemática A º Ano Arcos de Valdevez, / / Turma Versão ª PARTE Para as sete questões desta parte, de entre as quatro alternativas

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

Lista 6. (d) y = 2x 3 2

Lista 6. (d) y = 2x 3 2 Lista 6 6 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira. Construa o gráfico cartesiano das funções de R em R: (a) = (b) = + (c) = + (d) = (e) = 4 (f) = 4. O gráfico da função = a+b é Determine: (a) os valores

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO APÊNDICE 106 107 APÊNDICE A (ATIVIDADES REFORMULADAS) - CADERNO DE ATIVIDADES INVESTIGATIVAS ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO Mestrando:

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

Matemática Caderno 5

Matemática Caderno 5 FUNÇÃO LOGARÍTMICA: Dado um número real a positivo e diferente de um (a > 0 e a 1), denominados função logarítmica de base a à função f() = log a definida para todo real positivo. D (f) = IR * + Im (f)

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES

Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES número de bactérias Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES. Um biólogo, ao estudar uma cultura bacteriológica, contou o número de bactérias num determinado instante ao qual chamou

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

e 4 8. Logaritmos 9. Equação da Recta log log 10 log lê-se logaritmo de 32 na base 2. Exemplos

e 4 8. Logaritmos 9. Equação da Recta log log 10 log lê-se logaritmo de 32 na base 2. Exemplos Matemática I - Gestão ESTG/IPB 1 8 Logaritmos 3 Base do aritmo: número positivo Logaritmando: número positivo 3 lê-se aritmo de 3 na ase Eemplos 8 3 significa que significa que 3 8 1 06 significa que 1

Leia mais

Exercícios de Matemática II

Exercícios de Matemática II Eercícios de Matemática II Sequências 1) Os números 4, + 1 e + 1 formam, nesta ordem, uma progressão aritmética. O maior desses três números é: R$ 1 000,00. Quanto esse cliente pagou de entrada na aquisição

Leia mais

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num.

Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num. Eercícios de Aprofundamento 05 Mat Log/Ep/Teo. Num.. (Ita 05) Considere as seguintes afirmações sobre números reais: I. Se a epansão decimal de é infinita e periódica, então é um número racional. II..

Leia mais

Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas

Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais

Leia mais

Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial

Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial Lista de Eercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Eponencial Professor: Anderson Benites FUNÇÃO POLINOMIAL DO 1º GRAU Uma função é chamada de função do 1º grau (ou

Leia mais

COMISSÃO DE EXAMES DE ADMISSÃO. Prova de Matemática

COMISSÃO DE EXAMES DE ADMISSÃO. Prova de Matemática COMISSÃO DE EXAMES DE ADMISSÃO Prova de Matemática Ano Acadêmico: 9 Duração : Minutos Curso: Engenharia de Minas. Sejam dados os pontos A ( ; ) e B ( m ; ). Sabendo que a distância entre eles é igual a

Leia mais

5.7 Aplicações da derivada ao estudo das funções.

5.7 Aplicações da derivada ao estudo das funções. Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +

Leia mais

Cálculo Diferencial em

Cálculo Diferencial em Cálculo Diferencial em Definição de Derivada Seja f uma função real de variável real definida num intervalo aberto que contém c. Chama-se derivada de f em c a caso este limite eista. f c lim ffc c, c Esta

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Ano Lectivo 8-9 - º Semestre Eame Final de ª Época em 5 de Junho

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 1 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 1 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 6 Data / / Escola Aluno A B C D E 4 5 6 7 8 9 A B C

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO ESOL SEUNÁRI E LERTO SMPIO EXERÍIOS EXTRÍOS E EXMES NIONIS Matemática 4/5 FIH E TRLHO (FUNÇÕES) ª PRTE. Obrve o gráfico de uma função F.. Estude o sinal de F.. onsidere as funções reais de variável real,

Leia mais

BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL ===========================================================================================

BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL =========================================================================================== PROFESSOR: MARCELO SOARES BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL =========================================================================================== 01- Um azulejista usou 2000 azulejos

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taa de Variação e Derivada TPC nº 7 (entregar no dia 04-02-20).

Leia mais

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ;

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ; Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/004 Ficha Prática nº. 5: Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo

Leia mais