ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO"

Transcrição

1 APÊNDICE 106

2 107 APÊNDICE A (ATIVIDADES REFORMULADAS) - CADERNO DE ATIVIDADES INVESTIGATIVAS ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PESPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO Mestrando: José Geraldo de Araújo Pereira Orientador: Prof. Dr. João Bosco Laudares 2010

3 109 1ª ATIVIDADE Nessa atividade, será explorado o conceito da Função Exponencial, dando ênfase à Ciência Biológica (crescimento vegetativo), envolvendo o crescimento de uma planta. O Quadro a seguir apresenta a primeira atividade. Se a altura de uma planta dobra a cada mês, durante um certo período de sua vida, supondo que sua altura inicial é de 1 cm, então: a) Qual o valor da altura para o instante inicial? b) Qual é a altura da planta ao final do 1º mês e, sucessivamente, no final do 2º até o 10º mês? c) Identifique a variável dependente e independente em estudo e dê nome para elas? d) Construa uma tabela que represente essa situação. e) Plote, no sistema de eixos, os dados da tabela construída, indicando a variável dependente na vertical e a independente na horizontal. f) Una os pontos. g) Interpretando o gráfico, dê um valor aproximado para: a) 2,5 meses. b) 4 meses e 10 dias. c) 5 meses e 20 dias. h) A curva obtida no item f corresponde a uma função a) do Iº grau (cujo gráfico é uma reta). b) do IIº grau (uma parábola). c) uma curva desconhecida. i) As grandezas envolvidas são proporcionais? Justifique? j) O gráfico é uma função crescente ou decrescente? Justifique? k) Repita o gráfico construído no item f e trace uma reta crescente que tangencia a curva a partir do ponto inicial. O que você conclui a respeito do crescimento da reta e da curva? l) Existe um valor extremo num determinado ponto do gráfico (mínimo ou máximo)? m) Formalize, usando as variáveis nomeadas, uma lei de formação que melhor se ajuste ao gráfico. A relação encontrada é denominada Função Exponencial. (cujo gráfico é uma curva exponencial).

4 110 2ª ATIVIDADE Nessa atividade, será explorado como as Funções Exponencial e Logarítmica são aplicadas em problemas de Economia e de Finanças, nomeadamente no cálculo dos "juros compostos". O Quadro a seguir apresenta a segunda atividade. Uma pessoa deposita em um banco a quantia de R$10.000,00 durante 10 anos, a uma taxa de 12% ao ano e podendo sacar a qualquer momento, isto é, o capital mais juros: denominado de Montante. Mediante informações prestadas pela instituição Financeira, o valor a ser resgatado em qualquer instante obedece a seguinte lei de formação:, onde as variáveis correspondem ao montante, o capital empregado, a taxa unitária e o tempo da aplicação. Analisando os dados da situação financeira, responda: a) Verifique se a lei de formação tem 04(quatro) grandezas representadas por quatro letras, duas variáveis e dois parâmetros. b) Identifique a variável independente? c) Identifique a variável dependente? d) Qual é o valor do capital inicial? e) Qual o capital aproximado a receber (capital acumulado) no final do 1º, 2º, 3º, 4º, 5º, 10º ano? f) E ao fim de t anos? g) No item f, ao escrever a fórmula, encontra-se uma relação envolvendo quantas grandezas? Quais letras as representam? h) Que condição devemos impor a? Justifique? As outras grandezas são constantes? i) Construa uma tabela, que represente a situação de item e. j) Plote no sistema de eixos os dados da tabela construída, indicando a variável independente na horizontal e dependente na vertical, unindo os pontos. k) A curva obtida no item j corresponde a que tipo de uma função? l) Construa uma nova tabela, invertendo os pares ordenados do item i. m) Plote no sistema de eixos os pares obtidos, com as novas coordenadas, una os Pontos e trace o gráfico. n) Repita os dois gráficos obtidos, num mesmo sistema de eixos. o) Trace a bissetriz do Iº quadrante. p) Tome 05(cinco) pontos dessa bissetriz, e trace retas perpendiculares à bissetriz, até

5 111 interceptar as curvas. q) O que você pode conclui em relação às duas curvas? r) Formalize usando as variáveis nomeadas uma lei de formação que melhor se ajusta ao gráfico. A relação encontrada é a função Exponencial, e o gráfico cujas coordenadas foram mudadas de posição define uma nova função, a função Logarítmica, denominada curva logarítmica. s) As curvas obtidas são proporcionais? Justifique? t) O gráfico da função exponencial é crescente ou decrescente, e o da logarítmica? Justifique? u) Como se comportam as duas curvas quanto ao crescimento ou ao decrescimento? v) Qual curva cresce mais rapidamente com o tempo aumentando? w) Se a sua dívida cresce exponencialmente e os seus rendimentos com o Logaritmo. O que você pode concluir? x) Se a sua dívida cresce como o logaritmo e os seus rendimentos como a Exponencial. O que você pode concluir?

6 112 3ª ATIVIDADE Nessa atividade, serão exploradas a definição e a interpretação dos coeficientes das Funções Exponencial e Logarítmica, com base (. O quadro a seguir apresenta a terceira atividade. 1) Dada a função, complete a tabela seguinte: X Inverta os pares ordenados e complete a nova tabela. X A tabela formada define uma nova função, y é igual ao logaritmo de x na base 2, isto é, 1.1. Considere a função, complete a tabela seguinte de acordo com os valores da base. a = 2 a = 3 a = 4 X Plote os valores da tabela acima num sistema de eixos Interpretando o gráfico, responda Interpretando o gráfico, responda. a) Dê o domínio e a imagem das funções, usando a notação de intervalos. b) Verifique se há intersecção com os eixos. Em caso afirmativo, determine os pares ordenados. c) As funções são crescentes ou decrescentes? d) Tome alguns valores fixos para e, a partir deles, trace segmentos paralelos ao eixo e una estes segmentos. e) O que podemos afirmar em relação à inclinação das curvas? f) Examine o comportamento do gráfico para e. g) Generalize uma condição para a base, verificando o crescimento de seus valores de modo que a função seja crescente Preencha a tabela seguinte, invertendo os pares ordenados da função, obtendo a tabela da função. a = 2 X

7 113 a = 3 a = 4 X X 1.6. Plote, num mesmo sistema de eixos, os valores da tabela construída e responda às questões a seguir, interpretando o gráfico. a) Dê o domínio e a imagem das funções, usando a notação de intervalos. b) Verifique se há intersecção com os eixos. Em caso afirmativo, determine os pares ordenados. c) As funções são crescentes ou decrescentes? d) Tome alguns valores fixos para, e a partir deles trace segmentos paralelos ao eixo e una estes segmentos. e) O que podemos afirmar em relação à inclinação das curvas? f) Observando os valores de para crescendo, tendendo a (+) infinito, o que se pode concluir para? A função possui um máximo? g) Observando os valores de para decrescendo, tendendo a (-) infinito, o que se pode concluir para? A função possui um mínimo? h) Generalize uma condição para a base, verificando o crescimento de seus valores de modo que a função seja crescente.

8 114 4ª ATIVIDADE Nessa atividade, serão exploradas a definição e a interpretação dos coeficientes das Funções Exponencial e Logarítmica, com base (. O quadro a seguir apresenta a quarta atividade. 1) Dada a função, complete a tabela seguinte: X Inverta os pares ordenados e complete a nova tabela. X A tabela formada define uma nova função, y é igual ao logaritmo de x na base 1/2, isto é. 1.1) Considere a função, complete a tabela seguinte de acordo com os valores da base. X a = 1/2 a = 1/3 a = 1/ Plote os valores da tabela acima num sistema de eixos Interpretando o gráfico, responda. a) Dê o domínio e a imagem das funções, usando a notação de intervalos. b) Verifique se há intersecção com os eixos. Em caso afirmativo, determine os pares ordenados. c) As funções são crescentes ou decrescentes? d) Tome alguns valores fixos para e, a partir deles, trace segmentos paralelos ao eixo e una estes segmentos. e) O que podemos afirmar em relação à inclinação das curvas? f) Examine o comportamento do gráfico para e. g) Generalize uma condição para a base, verificando o decrescimento de seus valores de modo que a função seja decrescente Preencha a tabela seguinte, invertendo os pares ordenados da função, obtendo a tabela da função. X a = 1/2 X a = 1/3 a = 1/4 X

9 Plote, num mesmo sistema de eixos, os valores da tabela construída e responda às questões a seguir, interpretando o gráfico. a) Dê o domínio e a imagem das funções, usando a notação de intervalos. b) Verifique se há intersecção com os eixos. Em caso afirmativo, determine os pares ordenados. c) As funções são crescentes ou decrescentes? d) Tome alguns valores fixos para e, a partir deles, trace segmentos paralelos ao eixo e una estes segmentos. e) O que podemos afirmar em relação à inclinação das curvas? f) Observando os valores de para crescendo, tendendo a (+) infinito, o que se pode concluir para? A função possui um máximo? g) Observando os valores de para decrescendo, tendendo a (-) infinito, o que se pode concluir para? A função possui um mínimo? h) Generalize uma condição para a base, verificando o decrescimento de seus valores de modo que a função seja decrescente.

10 116 5ª ATIVIDADE Nessa atividade, serão explorados a interpretação gráfica e o comportamento das Funções Exponencial e Logarítmica como funções inversas. O quadro a seguir apresenta a quinta atividade. 1) Dados os gráficos das funções:,,,,. y A B C D E F x Relacione as curvas indicadas pelas letras no gráfico às suas funções: ( ),,,,,. 2) Dado os gráficos das funções:,,,, e.

11 117 M y P N x T S R Relacione as curvas indicadas pelas letras no gráfico às suas funções:,, e. 3) Analisando os gráficos das seguintes funções e, responda: y x

12 n) Determine 2 (dois) pares ordenados de uma das curvas. o) Inverta os pares ordenados do item a, e verificando se eles pertencem a outra curva. p) Trace segmentos de reta, unindo os pontos dos pares ordenados aos seus respectivos inversos. q) Marque, usando uma régua, os pontos médios desses segmentos. r) Una os pontos médios, e obtenha uma curva (reta). s) A reta passa pela origem? t) Determine a equação que melhor representa a curva (reta). u) A reta obtida pertence a qual bissetor? : chamado de bissetor ímpar ou : chamado de bissetor par. v) Existe simetria entre as curvas? w) Determine o domínio e o contra - domínio das funções representadas no gráfico. x) Sabendo que a troca do domínio de uma função pelo contradomínio da outra é exigência de obtenção da inversa. Isso acontece? y) Formalize uma expressão para a função analisada e sua inversa (domínio, contradomínio, lei de formação) ) Analisando os gráficos das seguintes funções e, responda: y x a) Determine 2 (dois) pares ordenados de uma das curvas.

13 b) Inverta os pares ordenados do item a, verificando se eles pertencem a outra curva. c) Trace segmentos de reta, unindo os pontos dos pares ordenados aos seus respectivos inversos. d) Marque, usando uma régua os pontos médios desses segmentos. e) Una os pontos médios, e obtenha uma curva (reta). f) A reta passa pela origem? g) Determine a equação que melhor representa a curva (reta). h) A reta obtida pertence a qual bissetor? : chamado de bissetor ímpar ou : chamado de bissetor par. i) Existe simetria entre as curvas? j) Determine o domínio e o contra - domínio das funções representadas no gráfico. k) Sabendo que a troca do domínio de uma função pelo contradomínio da outra é exigência de obtenção da inversa. Isso acontece? l) Formalize uma expressão para a função analisada e sua inversa (domínio, contradomínio, lei de formação). 119 Associe as Funções Exponenciais e suas respectivas inversas (Funções Logarítmicas) as respectivas bases 2, 3, 4, 1/2, 1/3 e 1/4 às letras no gráfico seguinte. A B C D E F y M N P x R S T

14 120 6ª ATIVIDADE Nessa atividade, será explorada a construção gráfica (translações: horizontais e verticais) das Funções Exponencial e Logarítmica, utilizando um Software Matemático Winplot. O quadro a seguir apresenta a sexta atividade. A) Considere a Função Exponencial, definida por. Com o auxílio do Winplot, análise as translações horizontais e verticais nas funções a seguir. Seja a função:. Considere a) Trace os gráficos das funções, utilizando um mesmo sistema de eixos. b) Usando a notação de intervalo, determine a imagem. c) Determine os pontos em que as curvas cortam os eixos coordenados. d) Quando diminui, o que acontece com as curvas? e) Quando aumenta, o que acontece com as curvas? f) Existe um valor de para o qual o gráfico das funções se aproxima? g) O que você pode afirmar para a expressão? h) Nas funções acima, há uma translação horizontal ou vertical em relação a? Seja a função:. Considere a) Trace os gráficos das funções, utilizando um mesmo sistema de eixos. b) Usando a notação de intervalo, determine a imagem. c) Determine os pontos em que as curvas cortam os eixos coordenados. d) Quando diminui, o que acontece com as curvas? e) Quando aumenta, o que acontece com as curvas? f) Existe um valor de para o qual o gráfico das funções se aproxima? g) O que você pode afirmar para a expressão? h) Nas funções acima, há uma translação horizontal ou vertical em relação a? Seja a função.. Considere a) Trace os gráficos das funções:, utilizando um mesmo sistema de eixos. b) Usando a notação de intervalo, determine a imagem. c) Determine os pontos em que as curvas cortam os eixos coordenados. d) Quando diminui, o que acontece com as curvas?

15 121 e) Quando aumenta, o que acontece com as curvas? f) Existe um valor de, para o qual o gráfico das funções se aproxima? g) O que você pode afirmar para a expressão? h) Nas funções acima, há uma translação horizontal ou vertical em relação a? Seja a função:. Considere a) Trace os gráficos das funções, utilizando um mesmo sistema de eixos. b) Usando a notação de intervalo, determine a imagem. c) Determine os pontos em que as curvas cortam os eixos coordenados. d) Quando diminui, o que acontece com as curvas? e) Quando aumenta, o que acontece com as curvas? f) Existe um valor de, para o qual o gráfico das funções se aproxima? g) O que você pode afirmar para a expressão? h) Nas funções acima, há uma translação horizontal ou vertical em relação a? B) Considere a função logarítmica, definida por. Com o auxílio do Winplot, analise as translações horizontais e verticais nas funções a seguir. 1) Seja a função. Considere: a) Trace os gráficos das funções, e, utilizando um mesmo sistema de eixos. b) Determine o domínio, usando a notação de intervalo. c) Determine os pontos em que as curvas cortam os eixos coordenados. d) Quando diminui, o que acontece com as curvas? e) Quando aumenta, o que acontece com as curvas? f) Existe um valor de, para o qual o gráfico das funções se aproxima? g) O que você pode afirmar para a expressão? h) Nas funções acima há uma translação horizontal ou vertical, em relação a? 2) Seja a função.considere: a) Trace os gráficos das funções, e, utilizando um mesmo sistema de eixos. b) Determine o domínio, usando a notação de intervalo. c) Determine os pontos em que as curvas cortam os eixos coordenados. d) Quando diminui, o que acontece com as curvas? e) Quando aumenta, o que acontece com as curvas?

16 122 f) Existe um valor de, para o qual o gráfico das funções se aproxima? g) O que você pode afirmar para a expressão? h) Nas funções acima, há uma translação horizontal ou vertical em relação a? 3) Seja a função. Considere: a) Trace os gráficos das funções, e, utilizando um mesmo sistema de eixos. b) Determine o domínio, usando a notação de intervalo. c) Determine os pontos em que as curvas cortam os eixos coordenados. d) Quando diminui, o que acontece com as curvas? e) Quando aumenta, o que acontece com as curvas? f) Existe um valor de, para o qual o gráfico das funções se aproxima? g) O que você pode afirmar para a expressão? h) Nas funções acima, há uma translação horizontal ou vertical em relação a? 4) Seja função. Considere: a) Trace os gráficos das funções, e, utilizando um mesmo sistema de eixos. b) Determine o domínio, usando a notação de intervalo. c) Determine os pontos em que as curvas cortam os eixos coordenados. d) Quando diminui, o que acontece com as curvas? e) Quando aumenta, o que acontece com as curvas? f) Existe um valor de, para o qual o gráfico das funções se aproxima? g) O que você pode afirmar para a expressão? h) Nas funções acima, há uma translação horizontal ou vertical em relação a?

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

ABORDAGEM DA FUNÇÃO EXPONENCIAL E LOGARÍTMICA NUMA PERSPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO

ABORDAGEM DA FUNÇÃO EXPONENCIAL E LOGARÍTMICA NUMA PERSPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO ABORDAGEM DA FUNÇÃO EXPONENCIAL E LOGARÍTMICA NUMA PERSPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO José Geraldo de Araújo Pereira Centro Federal de Educação Tecnológica de Minas Gerais - CEFET-MG josegeraldoap@yhoo.com.br

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

OBJETIVOS DOS CAPÍTULOS

OBJETIVOS DOS CAPÍTULOS OBJETIVOS DOS CAPÍTULOS Capítulo 1 Nesse capítulo, você notará como muitas situações práticas nas áreas de administração, economia e ciências contábeis podem ser representadas por funções matemáticas.

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

Anterior Sumário Próximo COMPORTAMENTO GRÁFICO DAS FUNÇÕES ELEMENTARES

Anterior Sumário Próximo COMPORTAMENTO GRÁFICO DAS FUNÇÕES ELEMENTARES Anterior Sumário Próximo COMPORTAMENTO GRÁFICO DAS FUNÇÕES ELEMENTARES Clicando em, o usuário é conduzido para uma tela onde as funções elementares estão divididas pelo comportamento gráfico que apresentam.

Leia mais

Matemática I Capítulo 06 Propriedades das Funções

Matemática I Capítulo 06 Propriedades das Funções Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES Licenciatura em Matemática Fundamentos de Matemática Elementar o /05 Professora Adriana FUNÇÕES. Determine a e b de modo que os pares ordenados a seguir sejam iguais: a) (a, b + ) e (a + 5, b 7) b) (a,

Leia mais

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12 Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2

UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2 UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE de 3.0. IMAGEM DE UM ELEMENTO ATRAVÉS DO DIAGRAMA DE FLECHAS 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DE Y = F(X) 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DO GRÁFICO

Leia mais

SESSÃO 4: PERFIL VERTICAL DA VELOCIDADE DO VENTO PRÓXIMO À SUPERFÍCIE

SESSÃO 4: PERFIL VERTICAL DA VELOCIDADE DO VENTO PRÓXIMO À SUPERFÍCIE SESSÃO 4: PERFIL VERTICAL DA VELOCIDADE DO VENTO PRÓXIMO À SUPERFÍCIE Respostas breves: 1.1) 2m 1.2) 20. 5.2) x=1,

Leia mais

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (2Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto)

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (2Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) Matemática (Prof. Lara) Lista de exercícios recuperação semestre (Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) 1-)(MACK) Se A é uma matriz 3 x 4 e B uma matriz n x m, então: a) existe

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com º ciclo D. Dinis 0º no de Matemática TEM Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Tarefa nº 5 FUNÇÕES LINERES E VRIÇÃO DE PRÂMETROS. Considere as seguintes

Leia mais

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei

Leia mais

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000? PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1- Resolva a inequação 4 3 Resp: 1,4 - Dizemos que uma relação entre dois conjuntos não vazios A e B é uma função de A em B quando:

Leia mais

FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!!

FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!! Matemática Matemática Avançada 3 o ano João mar/1 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є!! - {1}, a função f: R!! definida por f(x) =!! Definições - O gráfico

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

MATEMÁTICA Prof.: Alexsandro de Sousa

MATEMÁTICA Prof.: Alexsandro de Sousa E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães

Leia mais

Aula 1 Funções de Várias Variáveis

Aula 1 Funções de Várias Variáveis Aula 1 Funções de Várias Variáveis MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

Exercícios de Matemática Funções Função Polinomial

Exercícios de Matemática Funções Função Polinomial Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Ficha Prática nº Parte II. Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/04 Operações com funções. Composição de funções. Função Inversa. ) O gráfico

Leia mais

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}?

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}? Lista de Exercícios de Matemática 01-) Quantos números naturais há na sequência {10, 104, 105,..., 87, 88}? 0-) V ou F: a) Todo número natural é inteiro. Todo número racional é inteiro. c) Existe número

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais 1 Na figura ao lado, está representada, num referencial o.n., parte da hipérbole que é o gráfico de uma função As retas

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID Atividade nº 2 Oficina de Geometria Analítica com uso

Leia mais

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem.

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Probabilidade A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Experimento Aleatório É aquele experimento que quando repetido em iguais

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

LISTA DE EXERCÍCIOS ESPELHOS ESFÉRICOS E PLANOS Prof. Evandro 1ª Série E.M.

LISTA DE EXERCÍCIOS ESPELHOS ESFÉRICOS E PLANOS Prof. Evandro 1ª Série E.M. LISTA DE EXERCÍCIOS ESPELHOS ESFÉRICOS E PLANOS Prof. Evandro 1ª Série E.M. 01 Um objeto é colocado a 10 cm de um espelho côncavo, de distância focal igual a 20 cm. A imagem do objeto será: a) do tamanho

Leia mais

A definição pode ser estendida para os seguintes casos particulares: e, com.

A definição pode ser estendida para os seguintes casos particulares: e, com. FUNÇÃO EXPONENCIAL REVISÃO: POTENCIAÇÃO Dados um número real a e um número natural n, a expressão a n representa a operação de potenciação onde a é chamado base e n é o expoente, e cujo resultado é obtido

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Exercícios de exames e provas oficiais 1. Na figura abaixo, está representada, num referencial o.n. xoy, parte do gráfico de uma função polinomial f. Em qual das opções seguintes pode estar representada

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

Função Afim Fabio Licht

Função Afim Fabio Licht Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)

Leia mais

1 a série E.M. Professores Tiago Miranda e Cleber Assis

1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 Exercícios

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

3º Bimestre. Álgebra. Autor: Leonardo Werneck

3º Bimestre. Álgebra. Autor: Leonardo Werneck 3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 RELAÇÕES E FUNÇÕES... 6 1. O Plano Cartesiano... 6 2. Produto Cartesiano... 7 2.1. Gráfico de um Produto Cartesiano... 8 2.2. O produto ℝ ℝ ou ℝ𝟐...

Leia mais

Unidade 2 Conceito de Funções

Unidade 2 Conceito de Funções Unidade 2 Conceito de Funções Conceito Sistema Cartesiano Ortogonal Estudo do domínio, contradomínio e imagem de função Representações de funções por meio de tabelas, gráficos e fórmulas Conceito de Função

Leia mais

Gráficos de Logaritmos

Gráficos de Logaritmos Gráficos de Logaritmos 1. (Ueg 013) O gráfico da função y log(x 1) é representado por: a) b) c) d). (Espcex (Aman) 01) Na figura abaixo, dois vértices do trapézio sombreado estão no eixo x e os outros

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Kamila Gomes Ludmilla Rangel Cardoso Silva Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado

Leia mais

Módulo 1 Potenciação, equação exponencial e função exponencial

Módulo 1 Potenciação, equação exponencial e função exponencial Módulo 1 Potenciação, equação exponencial e função exponencial 1. Potenciação e suas propriedades 1.1. Potência de expoente natural Potenciação nada mais é do que uma multiplicação de fatores iguais. Casos

Leia mais

Aula 2 CONSTRUÇÃO DE GRÁFICOS EM PAPEL MONOLOG (MONO-LOGARÍTMICO) Menilton Menezes

Aula 2 CONSTRUÇÃO DE GRÁFICOS EM PAPEL MONOLOG (MONO-LOGARÍTMICO) Menilton Menezes Aula 2 CONSTRUÇÃO DE GRÁFICOS EM PAPEL MONOLOG (MONO-LOGARÍTMICO) META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos

Leia mais

Matemática em ação 9. Álgebra e Funções.

Matemática em ação 9. Álgebra e Funções. Matemática em ação 9 Álgera e Funções http://www.raizeditora.pt Matemática em ação 9 Fichas teóricas Conteúdos aordados: Equações do.º grau a uma incógnita Sistemas de equações Funções de proporcionalidade

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br ( ) 4t 1. Para que valores 5 + 1, 2t 4 pertence ao eixo das ordenadas? A linguagem das funções Sistema de coordenadas Conceito de função

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 0) Um recipiente com capacidade para 5 litros está completamente cheio de leite puro. Uma pessoa retira 3 litros desse leite e completa o recipiente com 3 litros de água. Em seguida, retira 3 litros

Leia mais

NOTAÇÕES MATEMÁTICAS UTILIZADAS

NOTAÇÕES MATEMÁTICAS UTILIZADAS Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

Vetores. Grandeza Escalar precisa somente de um número e sua unidade.

Vetores. Grandeza Escalar precisa somente de um número e sua unidade. Vetores Grandeza Escalar precisa somente de um número e sua unidade. Grandeza Vetorial precisa de módulo, direção e sentido para ficar perfeitamente representado. VETOR É o ente matemático que nos ajuda

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1.

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1. COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Professor: Henrique Plínio Função Quadrática Lista 2 Data: / /2015 III Unidade Aluno: 1 Turma: 1º 1.Considere

Leia mais

Lista de exercícios: Funções do 1º Grau

Lista de exercícios: Funções do 1º Grau Lista de eercícios: Funções do º Grau. Marque quais são as funções do º grau: (R= a, b, d, f, h, j, k) a. 7 e. i. 5 b. 4 f. j. c. 6 g. k. 5 6 d. 4 5 h.. Calcule o zero de cada uma das seguintes funções:

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

4. Considere a esfera definida pela condição. 5. O retângulo [ABCD] está dividido em seis quadrados iguais. Qual das igualdades seguintes é falsa?

4. Considere a esfera definida pela condição. 5. O retângulo [ABCD] está dividido em seis quadrados iguais. Qual das igualdades seguintes é falsa? Ficha de Trabalho n.º 6 página 2 4. Considere a esfera definida pela condição. 4.1. Sabendo que [ AB ] é diâmetro dessa esfera e que A tem de coordenadas (1, 1, 1), as coordenadas de B são: (A) (2, 4,

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PERSPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO

ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PERSPECTIVA CONCEITUAL E GRÁFICA NO ENSINO MÉDIO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Programa de Pós-Graduação em Ensino de Ciências e Matemática ABORDAGEM DAS FUNÇÕES EXPONENCIAL E LOGARÍTMICA NUMA PERSPECTIVA CONCEITUAL E GRÁFICA NO ENSINO

Leia mais

{ y} Cálculo III. 1 - Funções de Várias Variáveis

{ y} Cálculo III. 1 - Funções de Várias Variáveis 1 Cálculo III 1 - Funções de Várias Variáveis Em muitos casos, o valor de uma grandeza depende do valor de duas ou mais outras. O volume de água de um reservatório, por exemplo, depende das chuvas e da

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo

Leia mais

Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011

Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011 CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

Apêndice I Funções e Gráficos

Apêndice I Funções e Gráficos http://www.medeirosjf.net/fisica Física I Apêndice I: Funções e Gráficos pág.i 1 - Introdução Apêndice I Funções e Gráficos Neste apêndice, iremos trabalhar com alguns pré-requisitos básicos para que você

Leia mais