Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)"

Transcrição

1 Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei da forma f () = a + b, onde a e b são números reais dados e a 0. a: coeficiente de (coeficiente angular), fornece a taa de variação da função b: é o termo constante. (coeficiente linear), parte fia: mostra onde o gráfico cruza o eio y. Eemplo: ) Um tái cobra R$ 0,00 de bandeirada e R$,60 o km rodado. Encontre a fórmula que epressa preço da corrida ( C ) em relação a distância ( ) percorrida. )f() = 5 3) f () = - 6, (b = 0, ou seja, f () = a a função é denominada por função linear) Gráfico O gráfico de uma função polinomial do o grau, y = a + b, com a 0 é uma reta oblíqua aos eios e y. y 7 5 a > 0 a > 0 y a < 0 -

2 Coeficientes da função afim O coeficiente a é chamado o coeficiente angular da reta, ele está ligado à inclinação da reta em relação ao eio O.(eio ). a = tangente do ângulo de inclinação = y = taa de variação da função Obs: Apenas a função do º grau tem taa de variação constante O coeficiente b, é chamado coeficiente linear da reta, ou seja, a ordenada do ponto que a reta corta o eio Oy (eio y) Se b = 0 a função é dita função linear e o gráfico corta os eios coordenados no ponto O = (0, 0) Cálculo da raiz ou zero da função Raiz ou zero de uma função é o valor de para o qual f () = 0. Observe que o zero ou raiz de uma função indica o valor de do ponto de intersecção do gráfico com o eio. Eemplo: Determine a raiz da função f() = 4- Dada a função f () = 4, pede-se: Verificar se a função é crescente ou decrescente a) Determinar o ponto de intersecção com o eio y b) Determinar a raiz da função c) Determinar o ponto de intersecção com o eio d) Utilizando os pontos de intersecção com os eios e y, construa o gráfico da f() e) Verifique para que valores de a função é positiva e para quais valores ela é negativa Obs: No item e), avaliamos para quais valores de temos f () > 0, e para quais valores de temos f () < 0. Determinar para que valores de a função f() =0,f()>0 e f() <0 significa estudar os sinais da função, isto é, os sinais de y ( y é a imagem de ). Para analisar os sinais de um função, inicialmente calculamos as raízes da função que são os valores para os quais f() =0 Observe os gráficos abaio: f () < f () > 0 + f () > 0 - f () < 0 : raiz

3 Situações que observamos uma função do º grau: I) Dados obtidos através de tabelas Eemplo: Uma pessoa vai diariamente à uma padaria e tem os seguintes gastos: Quantidade de pães Gastos (R$), 50,75 3 3,00 4 3,5 a) Qual é a lei algébrica que determina o gasto (C()) que uma pessoa terá na compra de pães? b) Quanto uma pessoa gastará se comprar 50 pães? c) Uma pessoa gastou R$ 9,75, quantos pães ela comprou? II) Dados obtidos através de problemas Eemplo: Uma torneira que despeja 40 litros de água por minuto é aberta para acabar de encher uma caia d água que já contém 00 litros. a) Qual é a lei que associa o volume (V) da caia (em litros) em função do tempo t (em minutos) gasto para encher a caia? b) Quantos minutos serão necessários para encher totalmente a caia cuja capacidade é de litros de água? III) Dados obtidos através de gráficos Eemplo: (PUC-RS) Um determinado tipo de óleo foi aquecido a partir de 0 o C até atingir 60 o C e obteve-se o gráfico abaio, da temperatura (T) em função do tempo (t). a) Determine a lei da função b) Calcule T(3) c) Determine em que instante a temperatura é 0 o C. Eercícios: ) Dada a função f () = , pede-se: 3

4 f) Verificar se a função é crescente ou decrescente g) Determinar o ponto de intersecção com o eio y h) Determinar a raiz da função i) Determinar o ponto de intersecção com o eio j) Utilizando os pontos de intersecção com os eios e y, construa o gráfico da f() k) Verifique para que valores de a função é positiva e para quais valores ela é negativa ) O preço do serviço eecutado por um pintor consiste em uma taa fia de R$ 5,00 e mais uma quantia que depende da área pintada. A tabela seguinte mostra alguns orçamentos apresentados por esse pintor: Observando a tabela, responda: a) Como se eprime, matematicamente, o total a pagar (y) pela pintura de metros quadrados? b) Qual é o preço cobrado pela pintura de uma área de 50 m? c) Qual é a área máima que pode ser pintada dispondo-se de R$ 65,00? 3) Com auílio de um cronômetro, marcando-se o tempo em hora, verificaram-se as distâncias percorridas por um móvel. Essas distâncias, percorridas em determinados tempos, foram registradas na tabela a seguir: Tempo (h) 0, 0,4 0,8,6 Distância (km) a) Indicar as variáveis (dependentes e independentes) relacionadas nessa situação. b) Epressar a lei matemática que relaciona a distância percorrida com o tempo. c) Calcular a distância quando o tempo é igual a,8 horas. d) Calcular o tempo quando a distância é 330 km. 4) A figura abaio representa os gráficos das funções f() = m + n e g() = c + d. 4

5 Determinar a lei da f () e da g () 5) Uma função f afim é tal que f (-) = 3 e f () =. Determine o valor de f (3). 6) Dados os gráficos das funções de em, e considerando que cada quadradinho tem cm de lado, obtenha a lei de correspondência de cada uma; 7) A raiz da função y = - k + 3 é. Determine k. 8) O esboço abaio refere-se ao gráfico da função real definida por f () = m +. Determine m 9) O custo C de produção de litros de certa substância é dado por uma função afim com 0, cujo gráfico está representado abaio: 5

6 Nessas condições, o custo de R$ 700,00 corresponde à produção de quantos litros? 0) O custo total de um fabricante consiste em um custo fio de R$ 00,00 e um custo variável de R$ 50,00 por unidade produzida. Epresse o custo total em função do número de unidades produzidas e desenhe o gráfico relacionado. ) Em certa cidade, a tarifa de tái é calculada da seguinte forma: R$ 5,00 a bandeirada mais R$,0 por quilômetro rodado. a) Pode-se estabelecer uma função entre essas grandezas? Em caso afirmativo, quais seriam as variáveis ( dependente e independente) dessa função? b) Qual a lei matemática definiria essa função? ) O gráfico esboçado, da função f () = a + b, representa o custo unitário de produção de uma peça em função da quantidade mensal produzida. Custo unitário quantidades produzidas Para que este custo unitário seja de R$ 6,00, a produção mensal deve ser igual a: a) 930 b) 90 c) 940 d) 960 e) 980 3) Na época do Natal, a loja A oferece aos funcionários temporários um salário fio de R$ 450,00 mais uma comissão de % (em reais) sobre o total vendido, já a loja B não oferece salário fio, mas paga 5% (em reais) de comissão sobre o total vendido. 6

7 a) Escreva a lei de formação das funções correspondentes ao salário recebido (y) em cada uma das lojas pelo total de vendas () em reais. b) Para um total de vendas de R$ 000,00, qual é o salário recebido na loja A? E na loja B? c) Qual deve ser o total de vendas para que um funcionário da loja A receba R$ 800,00 de salário? E na loja B? d) A partir de que valor de vendas é mais vantajoso trabalhar na loja B? 7

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra. Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial

Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial Lista de Eercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Eponencial Professor: Anderson Benites FUNÇÃO POLINOMIAL DO 1º GRAU Uma função é chamada de função do 1º grau (ou

Leia mais

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação

Leia mais

Equações do 2º grau 21/08/2012

Equações do 2º grau 21/08/2012 MATEMÁTICA Revisão Geral Aula 5 Parte 1 Professor Me. Álvaro Emílio Leite Equações do º grau Toda epressão que possui a forma + + =0, onde, e são números reais e 0, é uma equação do grau na incógnita.

Leia mais

Lista de exercícios: Funções do 1º Grau

Lista de exercícios: Funções do 1º Grau Lista de eercícios: Funções do º Grau. Marque quais são as funções do º grau: (R= a, b, d, f, h, j, k) a. 7 e. i. 5 b. 4 f. j. c. 6 g. k. 5 6 d. 4 5 h.. Calcule o zero de cada uma das seguintes funções:

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES Licenciatura em Matemática Fundamentos de Matemática Elementar o /05 Professora Adriana FUNÇÕES. Determine a e b de modo que os pares ordenados a seguir sejam iguais: a) (a, b + ) e (a + 5, b 7) b) (a,

Leia mais

Quanto ela receberá de salário se ela vender um total de R$ ,00?

Quanto ela receberá de salário se ela vender um total de R$ ,00? Uma vendedora recebe um salário mínimo R$ 788,00 mais comissão de 5% sobre o total de suas vendas durante o mês. Se X é o quanto ela vendeu no mês, qual a lei de formação que Melhor caracteriza a lei de

Leia mais

Matemática I Função do 1 grau

Matemática I Função do 1 grau Matemática I Função do 1 grau UNEB - Universidade do Estado da Bahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Função do 1 grau Prof. Dra. Rebeca Dourado Gonçalves

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Ou seja, D(f) = IR e Im(f) IR.

Ou seja, D(f) = IR e Im(f) IR. MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Profª Roberta Nara Sodré de Souza Função Quadrática

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

MATEMÁTICA E SUAS TECNOLÓGIAS

MATEMÁTICA E SUAS TECNOLÓGIAS MTEMÁTIC E SUS TECNOLÓGIS Lista de Eercícios / º ano Professor(a): Data: //6. De sonhos e luno(a):. Dê as coordenadas cartesianas dos pontos assinalados na figura abaio: H C D E F I G J. Observe o diagrama

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Kamila Gomes Ludmilla Rangel Cardoso Silva Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA

Leia mais

Matemática A Semiextensivo V. 2

Matemática A Semiextensivo V. 2 Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) } TRABALHO º ANO REGULAR - MATEMATICA Conjuntos: Questão : Escreva o conjunto expresso pela propriedade: x é um número natural par; x é um número natural múltiplo de 5 e menor do que ; x é um quadrilátero

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Ano: 1º Ensino Médio Professor: João Ângelo Atividades para Estudos Autônomos Data: 4 / 9 / 2017 Caro(a) aluno(a), Aluno(a): Nº: Turma: O momento de revisão deve

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo.

= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo. QUESTÕES 01 E 0 Para responder a essas questões, analise a tabela abaio. Em um clube, cada um dos jogadores de um time de futebol tinha a seguinte idade (em anos): 17 0 0 16 18 19 17 16 18 17 16 17 0 16

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 20 PROFESSOR (a) DISCIPLINA BRUNO REZENDE PEREIRA MATEMÁTICA ALUNO (a) SÉRIE

Leia mais

FUNÇÕES E GRÁFICOS. 2 5 f (x) = x + 6 a = 1 b = 6 APROVA CONCURSOS MINISTÉRIO DA FAZENDA

FUNÇÕES E GRÁFICOS. 2 5 f (x) = x + 6 a = 1 b = 6 APROVA CONCURSOS MINISTÉRIO DA FAZENDA FUNÇÕES E GRÁFICOS Introdução Par ordenado Par ordenado dentro das funções será o par formado pelo representante do conjunto domínio com seu respectivo elemento do conjunto imagem. Veja no eemplo. f :

Leia mais

21/08/ x + 2 y > 15. Considere a situação a seguir: Das sentenças matemáticas a seguir, quais são inequações?

21/08/ x + 2 y > 15. Considere a situação a seguir: Das sentenças matemáticas a seguir, quais são inequações? Considere a situação a seguir: Um retângulo tem metros de comprimento e y metros de largura, e um triângulo equilátero tem 5 m de lado. Supondo que o perímetro do retângulo seja maior que o perímetro do

Leia mais

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:

Leia mais

Exercícios Propostos

Exercícios Propostos Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11

Leia mais

A função y = ax + b. Na Aula 9, tivemos um primeiro contato

A função y = ax + b. Na Aula 9, tivemos um primeiro contato A UA UL LA A função = a + b Introdução Na Aula, tivemos um primeiro contato com a equação = a + b e aprendemos que seu gráfico é uma reta. Vamos então recordar algumas coisas. l Se a = 0, a nossa equação

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65

FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65 FUNÇÃO DO 1º GRAU INTRODUÇÃO Larissa toma um táxi comum que cobra R$ 2,60 pela bandeirada e R$ 0,65 por quilômetro rodado. Ela quer ir à casa do namorado que fica a 10 km de onde ela está. Quanto Larissa

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ANO 015 PROFESSOR (a) DISCIPLINA Aline Heloisa Matemática ALUNO (a) SÉRIE 1º Ano do Ensino Médio 1. OBJETIVO Quanto

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

9 ano E.F. Professores Cleber Assis e Tiago Miranda

9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Função Afim Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções Afim Resolução de Exercícios 1 Exercícios Introdutórios Exercício 7. Seja a função afim: f : R R x

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

Matemática I Lista de exercícios 02

Matemática I Lista de exercícios 02 Matemática I 2011.1 Lista de exercícios 02 1. O conjunto {( 1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {( x, y) R R x = y} (B) {( x, y) R R x > y} (C) {( x, y) R R x y} (D) {(

Leia mais

Matemática I Lista de exercícios 03

Matemática I Lista de exercícios 03 Matemática I 2014.1 Lista de exercícios 03 1. O conjunto {(1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {(x, y)î R R x = y} (B) {(x, y)î R R x > y} (C) {(x, y)î R R x ³ y} (D) {(x,

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

Utilizando a Geometria analítica para fazer desenhos no GrafEq

Utilizando a Geometria analítica para fazer desenhos no GrafEq Utilizando a Geometria analítica para fazer desenhos no GrafEq O problema é traçar estes 3 objetos no GrafEq, representado pela figura abaio, par tanto vamos iniciar traçando o quadrilátero vermelho. Primeiramente

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA TÓPICOS A SEREM ABORDADOS O que é cinemática? Posição e Deslocamento

Leia mais

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Tarefa 10 Módulo A1 A equação reduzida da reta

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Tarefa 10 Módulo A1 A equação reduzida da reta Escola Secundária com º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Tarefa 0 Módulo equação reduzida da reta. Represente no referencial o.n. Oy da figura os pontos de coordenadas

Leia mais

Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento?

Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento? A UUL AL A 5 Regra de três Num acampamento, há 48 pessoas e alimento suficiente para um mês. Se 6 pessoas forem embora, para quantos dias ainda haverá alimento? Para pensar Observe a seguinte situação:

Leia mais

SEQUÊNCIA DIDÁTICA PARA CONCEITUALIZAÇÃO DE DERIVADA COMO TAXA DE VARIAÇÃO INSTANTÂNEA

SEQUÊNCIA DIDÁTICA PARA CONCEITUALIZAÇÃO DE DERIVADA COMO TAXA DE VARIAÇÃO INSTANTÂNEA UNIVERSIDADE SEVERINO SOMBRA MESTRADO PROFISSIONAL EM EDUCAÇÃO MATEMÁTICA SEQUÊNCIA DIDÁTICA PARA CONCEITUALIZAÇÃO DE DERIVADA COMO TAXA DE VARIAÇÃO INSTANTÂNEA Autora: Monique Sequeira Lehmann Vassouras

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

MATEMÁTICA Função do 2º grau

MATEMÁTICA Função do 2º grau MATEMÁTICA Função do º grau Resolução dos eercícios 4, 5, 7, 17, 19 a 6 Série O Pensador Professor Marcelo Gonsalez Badin 4. (UFRJ) Oscar arremessa uma bola de basquete cujo centro segue uma trajetória

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Lista 2 de Matemática 1 a Série do Ensino Médio - 1 o Bimestre de 2011

Lista 2 de Matemática 1 a Série do Ensino Médio - 1 o Bimestre de 2011 CORPO DE BOMBEIROS MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ASSISTÊNCIA AO ENSINO COLÉGIO MILITAR DOM PEDRO II Lista 2 de Matemática 1 a Série do Ensino Médio - 1 o Bimestre

Leia mais

Campos dos Goytacazes/RJ Maio 2015

Campos dos Goytacazes/RJ Maio 2015 Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira

Leia mais

Função IDÉIA INTUITIVA DE FUNÇÃO

Função IDÉIA INTUITIVA DE FUNÇÃO Função IDÉIA INTUITIVA DE FUNÇÃO O conceito de unção é um dos mais importantes da matemática. Ele está sempre presente na relação entre duas grandezas variáveis. Assim são eemplos de unções: - O valor

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática. Tempo (x) Vazão (y)

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática. Tempo (x) Vazão (y) EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 6 Data / / Escola Aluno Questão A tabela a seguir informa

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

Recup. 2º Trimestre TRABALHO DE MATEMÁTICA Ensino Fundamental 9º ano classe: A-B-C-D Profs. Marcelo/Fernando Nome:, nº Data de entrega: 13/09

Recup. 2º Trimestre TRABALHO DE MATEMÁTICA Ensino Fundamental 9º ano classe: A-B-C-D Profs. Marcelo/Fernando Nome:, nº Data de entrega: 13/09 Recup. 2º Trimestre TRABALHO DE MATEMÁTICA - 2013 Ensino Fundamental 9º ano classe: A-B-C-D Profs. Marcelo/Fernando Nome:, nº Data de entrega: 13/09 NOTA:. Nota: Toda resolução deve ser feita em sulfite

Leia mais

Semana 5 Zeros das Funções_2ª parte

Semana 5 Zeros das Funções_2ª parte 1 CÁLCULO NUMÉRICO Semana 5 Zeros das Funções_2ª parte Professor Luciano Nóbrega UNIDADE 1 2 LOCALIZAÇÃO DAS RAÍZES PELO MÉTODO GRÁFICO Vejamos dois procedimentos gráficos que podem ser utilizados para

Leia mais

LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA

LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA Conteúdo da P: Função do 1º grau e do º grau, Probabilidade e Situações Problemas de funções. Função de 1º Grau 1. Observe o quadro abaio e responda:

Leia mais

Função polinomial do 1 grau ou função afim

Função polinomial do 1 grau ou função afim Curso Matemática do Zero Professor Rodrigo Sacramento Matemática Função polinomial do 1 grau ou função afim Plano cartesiano O Plano Cartesiano é formado por dois eixos perpendiculares (dois eixos que

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 9 30 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 9 30 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 9 3 de abril de Aula 9 Pré-Cálculo Cuidado! Se os eios coordenados são desenhados com escalas

Leia mais

1ª SÉRIE Ensino Médio

1ª SÉRIE Ensino Médio E n s in o F o r t e e d e R e s u l t a do s Estudante: Centro Educacio nal Juscelino K ub itschek G u a r á / Valp ar aíso Eercícios Recuperação Semestral M A T E M Á T I C A 1ª SÉRIE Ensino Médio Data:

Leia mais

Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES

Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES número de bactérias Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES. Um biólogo, ao estudar uma cultura bacteriológica, contou o número de bactérias num determinado instante ao qual chamou

Leia mais

AULA 5 Função Afim. Se a > 0 (ou seja, se o valor de a for um número positivo), a função y = ax + b é crescente. Ex1:

AULA 5 Função Afim. Se a > 0 (ou seja, se o valor de a for um número positivo), a função y = ax + b é crescente. Ex1: AULA 5 Função Afim Sejam a e b números reais e a 0. Dizemos que uma função f : R R é função do 1º grau ou função afim quando está definida pela lei (ou seja, quando tiver esse formato): em que : y f (

Leia mais

Aula 14 - Erivaldo. Função Afim

Aula 14 - Erivaldo. Função Afim Aula 14 - Erivaldo Função Afim Definição: Uma função f : R R chama-se afim quando eistem constantes reais a e b, tais que f() = a. + b para todo real. Eemplos: a) f() = 3 5 a = b = 3 5 c) f() = 5 a = b

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão

Leia mais

INSTITUTO FEDERAL DE BRASILIA 2ª Lista de exercícios ALUNO(A): TURMA: 1_2016 DATA: 18/03/2016

INSTITUTO FEDERAL DE BRASILIA 2ª Lista de exercícios ALUNO(A): TURMA: 1_2016 DATA: 18/03/2016 INSTITUTO FEDERAL DE BRASILIA ª Lista de eercícios MATEMÁTICA ALUNO(A): TURMA: _06 DATA: 8/0/06. Duas plantas crescem de uma forma tal que, t dias após serem plantadas, a planta tem h (t) t centímetros

Leia mais

Estudo de Função Constante

Estudo de Função Constante Estudo de Função Constante Este Objeto de Aprendizagem (OA) foi construído visando um estudo sobre Função Constante. Objetivos: Fazer a integração da Matemática com a Física, a partir da aplicação de gráficos

Leia mais

9 Integrais e Primitivas.

9 Integrais e Primitivas. Eercícios de Cálculo p. Informática, 006-07 9 Integrais e Primitivas. E 9- Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f() = sin, F (π) = 3.

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

Função Afim Fabio Licht

Função Afim Fabio Licht Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)

Leia mais

PLANTÕES DE JULHO MATEMÁTICA

PLANTÕES DE JULHO MATEMÁTICA Página 1 Matemática 1 Funções do 1º e 2º grau PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 1º ANO Turma: Profª CAROL MARTINS Data: JULHO 2016 1) (UFPE) No gráfico a seguir, temos o nível da água armazenada

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Cálculo Diferencial Integral 1 Profª Sheila Regina Oro AULAS 2, 3, 4, 5

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Cálculo Diferencial Integral 1 Profª Sheila Regina Oro AULAS 2, 3, 4, 5 AULAS,,, 5 FUNÇÕES. Plano Cartesiano Os nomes Plano Cartesiano e Produto Cartesiano são homenagens ao seu criador René Descartes (596-65), filósofo e matemático francês. O nome de Descartes em Latim, era

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

Módulo e Função Modular

Módulo e Função Modular INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença

Leia mais

Matemática Régis Cortes GEOMETRIA ANALÍTICA

Matemática Régis Cortes GEOMETRIA ANALÍTICA GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE

Leia mais

Não fujas da Matemática!

Não fujas da Matemática! Não fujas da Matemática! Problema: O pai do Filipe decidiu propor ao seu filho um negócio, que consistia em lavar o seu carro pagando-lhe assim uma quantia de 1,5 euros por hora. Se o Filipe demorar 3

Leia mais

EXERCÍCIOS DE ESTRUTURA SEQUENCIAL

EXERCÍCIOS DE ESTRUTURA SEQUENCIAL EXERCÍCIOS DE ESTRUTURA SEQUENCIAL 1 - O coração humano bate em média uma vez por segundo. Desenvolva um algoritmo para calcular e escrever quantas vezes o coração de uma pessoa baterá se viver X anos.

Leia mais

= =

= = PARA TREINAR! Relembrando...(números inteiros: soma e subtração) Observe os eercícios resolvidos, e a seguir resolva os demais:. + =. + 7 = Obs.: facilmente entendemos que essas epressões se. 6 7 = comportam

Leia mais

MATEMÁTICA. Use este espaço para rascunho.

MATEMÁTICA. Use este espaço para rascunho. MATEMÁTIA 01. As promoções do tipo Leve 5 e Pague 4, quando feitas de modo que o cliente ganhe de fato um produto, dão um desconto, sobre cada unidade vendida, de: a) 6,5%. b) 10%. c) 0%. d) 5%. e) 30%.

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Professor: Danilo Menezes de Oliveira Machado

Professor: Danilo Menezes de Oliveira Machado Professor: Danilo Menezes de Oliveira Machado O QUE PRECISA SER LEMBRADO Progressão aritmética: a n = a 1 + (n 1)r Parte fixa: a 1 Parte variável: (n 1)r Variável: n Tipo de variável: Discreta (IN) Juros

Leia mais

3. FUNÇÃO. NOÇÕES FUNDAMENTAIS

3. FUNÇÃO. NOÇÕES FUNDAMENTAIS 7 3. FUNÇÃO. NOÇÕES FUNDAMENTAIS 3.1. INTRODUÇÃO Observamos, no dia a dia, que muitos objetos ou grandezas estão relacionados. Por eemplo, trabalhando com números reais estamos sempre comparando uns com

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - Matemática Questões Professores: Guilherme Neydiwan 0-25 26-45 ª Série º Bimestre - N2 08 / 04 / 206 LEIA ATENTAMENTE AS INSTRUÇÕES

Leia mais