F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra."

Transcrição

1 Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto A. O conjunto A dos valores permitidos para chama-se Domínio da função e o conjunto dos valores correspondentes de chamase Imagem da função. Representação: ou f (), pois f ( ) Salário R$, Horas trabalhadas ou. ou f ( ). Variável Dependente () Variável Independente () Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra. Eemplos: Salário (variável dependente ) depende do nº de horas trabalhadas (variável independente ); Produção de uma fábrica () depende do número de máquinas utilizadas (); Resistência de um fio elétrico () depende do diâmetro do fio com comprimento fio (); Volume de um gás com pressão constante () depende da temperatura (); etc. Aplicações: ) Um vendedor recebe mensalmente um salário composto de duas partes: uma parte fia, no valor de R$ 6,, e uma parte variável, que corresponde a uma comissão de 8% do total de vendas que ele fez durante o mês. a) Epressar a função que representa seu salário mensal. b) Calcular o salário do vendedor sabendo que durante um mês ele vendeu R$., em produtos. ) O preço a pagar por uma corrida de tái depende da distância percorrida. A tarifa é composta de duas partes: uma fia denominada bandeirada e uma parte variável que depende do número de quilômetros rodados. Suponha que a bandeirada esteja custando R$, e o quilômetro rodado, R$,68. a) Epresse a função que representa a tarifa. b) Quanto se pagará por uma corrida em que o tái rodou km? ) Uma Cia de energia elétrica cobra pela fatura mensal uma tarifa fia de R$, mais R$,4 por kwh consumido. a) Escreva uma função que permita calcular o valor pago mensalmente em função da quantidade de kwh consumidos. b) De acordo com a função escrita, calcule a quantia a ser paga pelo consumo de: 8 kwh, 7 kwh e kwh. c) Quantos kwh uma família consumiu em um mês cujo valor pago foi de R$,? 4) O preço de venda de um livro é de R$ 4, a unidade. Sabendo que o custo de cada livro corresponde a um valor fio de R$, mais R$, por unidade, construa uma função capaz de determinar o lucro líquido (valor descontado das despesas) na venda de livros, e o lucro obtido na venda de 6 livros. ) Um motorista de tái cobra R$, de bandeirada (valor fio) mais R$,7 por quilômetro rodado (valor variável). Determine o valor a ser pago por uma corrida relativa a um percurso de 8 quilômetros. 6) Uma pessoa vai escolher um plano de saúde entre duas opções A e B. Condições dos planos: Plano A cobra um valor fio mensal de R$ 8, e R$, por consulta num certo período e o Plano B cobra um valor fio mensal de R$, e R$, por consulta num certo período. Temos que o gasto total de cada plano é dado em função do número de consultas dentro do período pré estabelecido. Determinar: a) a função correspondente a cada plano. b) Em qual situação o plano A é mais econômico; o plano B é mais econômico; os dois se equivalem. Prof.Ms.Carlos Henrique

2 Função do º Grau: A. + B ou f() A. + B É a função f dada por A. + B, com Є R e A e B números reais não nulos (zero). A representação gráfica da função do º grau é uma reta pelo ponto (, B), ou seja, o valor do número real B, sempre será um ponto, que deverá ser marcado em cima da reta do. Sendo assim, necessitamos de mais um ponto para a construção da reta. Eemplo : (,) (,) (,). + D(f) < < + ou R Im(f) < < + ou R A > Função Crescente Eemplo : 4. +, se 4. + (,) (,) (,) 4. + se D(f) Im(f) A < Função Decrescente Resumo (esboço gráfico): A > Coeficiente Angular Positivo (+) + A + B A < Coeficiente Angular Negativo ( ) A + B Função Crescente Função Decrescente Prof.Ms.Carlos Henrique

3 Coeficiente Angular e Coeficiente Linear A. + B A é a variação em para cada aumento unitário em, é chamado Coeficiente Angular da reta. B identifica o ponto de intersecção da reta com o eio, é chamado Coeficiente Linear. Eemplo: (,) (,) 8 (,8) A 6 -- Coeficiente Angular Coeficiente Linear Ponto de intersecção com o eio B um aumento unitário em acarreta um aumento de unidades em. -- Eercícios: Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): a) + e) f ( ) i) + m) f ( ) + b) f ( ). + 4 f) f ( ) + 4 j) f ( ) n) f ( ),6 c) f ( ) + g) f ( ) + k) f ( ) 4 o) f ( ) d) f ( ) h) + l) f ( ) 6 p) Prof.Ms.Carlos Henrique

4 Função Constante: k ou f() k Seja k um número real qualquer. A função f definida em R e tal que f() k, recebe o nome de função constante, portanto, o valor de não varia com o aumento de. A representação gráfica de uma função constante é sempre uma reta paralela ou coincidente com o eio (abscissas), passando pelo ponto (, ). Eemplo : ou f() D(f) < < + ou R Im(f) - Eemplo :,, se se Nota: É importante observarmos nesse eemplo que temos (funções) constantes e cada uma delas é delimitada em cima do eio de acordo com seu Domínio, ou seja, a primeira função, está em cima do eio sobre o intervalo de (zero) até (dois) e a segunda função, está em cima do eio sobre o intervalo de (dois) até (cinco). Esses intervalos que delimitam as funções, estabelecendo fronteiras, são chamados de Domínio da função. Eercícios: Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): a) f ( ) + d) f ( ) g), se b) e) f ( ) h), se, se 7 c) f ( ) 7 f) i), se < 6, se > 4 Prof.Ms.Carlos Henrique

5 Funções Definidas por Várias Sentenças: Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): a) 4, se f ( ) d) + 7, se >, se f ( ) +, se < g), se > f ( ), se, se > b) +, se f ( ) e) +, se >, se < f ( ), se h), se > f ( ) + +, se +, se > c) +, se f ( ) f), se >, se < f ( ), se < i) 4, se f +, se < ) ( ), se ( Estudo do Sinal de uma Função do º Grau: O estudo do sinal de uma função do º grau consiste em determinar os valores reais de para os quais é zero, menor que zero ou maior do que zero, ou seja: f(), f() > e f() <. Eemplo: f(). 4 Primeiro, calculamos o zero da função, ou seja, fazemos f() / (zero da função) f(). 4 (, ) 4 (, 4) (, ) f() f() < f() f() 4 + f() > Resumindo: A função f() 4 se anula [f() ] quando. A função f() 4 é positiva [f() > crescente ] quando >. A função f() 4 é negativa [f() < decrescente ] quando <. 4 Eercícios: ) Estude a variação do sinal das seguintes funções do º grau: a) f ( ) + c) f ( ) e) + 6 g) b) + 9 d) f ( ) + f) f ( ) h) Prof.Ms.Carlos Henrique f ( ) + ) O lucro de uma Indústria que vende um único produto é dado pela fórmula matemática L() 4 ; L representa o lucro e, a quantidade de produto vendido. Determine a quantidade mínima desse produto que deve ser vendida para que há lucro.

6 Eercícios complementares com funções: ) Escrever a equação da reta A + B, que contém os pontos: P (, ) P (, ) P (, ) a) b) c) P (, ) P (8,) P (, ) ) Obtenha a função f() a. + b, de acordo com cada um dos gráficos a seguir: a) (, ) b) c) (, ) d) P d) P (, ) (8, ) (, ) Resp: f ()/. + Resp: f() ½. Resp: f(). + Resp: f(). ) Uma barra de ferro foi aquecida até uma temperatura de C e a seguir foi resfriada até a temperatura de 6 C. O gráfico mostra a temperatura da barra em função do tempo. a) Depois de quanto tempo, após o início do resfriamento, a temperatura da barra atingiu C. Resp: f ( ) 6. + b) De a 6 minutos, em que intervalo de tempo à temperatura da barra esteve positiva? Resp: a min c) De a 6 minutos, em que intervalo de tempo à temperatura da barra esteve negativa? Resp: a 6 min 6 Temperatura ( C ) 6 Tempo (min) 4) Dada a função do º grau f ( ), calcule: a) f ( ) Resp: b) f ( ) Resp: 7/ c) f ( ) Resp: 4 d) f Resp: ½ ) Se f ( ). +, calcule os valores reais de para que se tenha: a) f ( ) Resp: / b) f ( ) Resp: c) f ( ) - ½ Resp: /6 6) Dada à função f ( ) a. + b, sabe-se que f ( ) 4 e f ( ). Escrever a função f e calcular f ( ). Resp: f ( ). + 6 e f ( ) 7) A função f é definida por f ( ) a. + b. Sabe-se que f ( ) e f ( ). Obter o valor de f ( ). Resp: f ( ) 8) Dada a função f ( ) a. + b e sabendo que f ( ) e f ( ), calcule f. Resp: 9) Obter os valores dos coeficientes linear e angular da função do º grau tal que f ( ) e f ( ). Resp: a e b ) Dada à função f ( ) a. +, determine o valor de a para se tenha f ( 4 ). Resp: a ) O tempo t (em minutos) de desembarque de passageiros de um navio usado para cruzeiros marítimos é n dado ela lei: t ( n ) 7 +, sendo n o número de passageiros. Classifique como verdadeira ( V ) ou falsa ( F ) cada uma das afirmações seguintes: a) Em horas desembarcam 7 passageiros. Resp: ( V ) b) O tempo necessário para o desembarque de 6 passageiros é o dobro do tempo gasto por passageiros. Resp: ( F ) Prof.Ms.Carlos Henrique 6

7 Gráficos (RESUMO): Domínio e Imagem ) ) ² Função Par ³ Função Ímpar D(f) < < + ou R Im(f) < + ou [,+ [ D(f) < < + ou R Im(f) < < + ou R ) 4) Função Racional Função Racional D(f) ou R* Im(f) ou R* D(f) ou R* Im(f) < < + ou R + * ) 6) Função Irracional Função Irracional D(f) < + ou [,+ [ Im(f) < + ou [,+ [ D(f) - < < + ou R Im(f) - < < + ou R Atividades Práticas com Domínio de Funções: A) Determine o domínio de cada função definida por: ) f ( ) ) f ( ), com ) f ( ) 4) f ( ) ) f ( ) 6) f ( ) 6 7 Prof.Ms.Carlos Henrique

8 7) f ( ) 4 + 8) f ( ) + 9) f ( ) + ) f ( ) ln( ) ) f ( ) 4 ) f ( ) B) Determine o domínio de cada função definida por: ) 4) 7) + f ( ) ) f ( ) ) ( ) f ) f ( ) 9 + 6) ( + f ) + 8) f ( ) 9) 9 f ( ) 4 f ( ) + + f ( ) ) f ( ) + ) + C) Determine o domínio de cada função definida por: ) ) ( ) f { R/ e 4} f ( ) + ) + 4 D ) f ( ) + D { R/,, } 4) 4 ) ( ) ln ( ) f { R/ >} 7) f ( ) ln (6. + ) { R/ < ou > 8} D) Determine o domínio de cada função definida por: f ( ) 9 D R f ( ) f ( ) + 4 D R / < D 6) f ( ) ln ( ) D { R / < < } D 8) f ( ) ln D { R / 4 < < ou > 4} 6 + ) f ( ) + ) f ( ) ) f ( ) + 4) f ( ) ) f ( ) 6) f ( ) ) f ( ) + 8) f ( ) + 9) f ( ) + ) f ( ) + ) f 4 + ( ) ) f ( ) + ) f ( ) 4) f ( ) + 4 BIBLIOGRAFIA: BOULOS, P. Cálculo Diferencial e Integral, Volume. São Paulo, Pearson 6. DEMANA, F. D. Pré cálculo. São Paulo: Pearson, 9. GIOVANNI, J. R. Matemática Fundamental: º Grau: Volume Único. São Paulo: FTD, 994. LEITHOLD, L. Matemática Aplicada a Economia e Administração. São Paulo: Harbra,. MACHADO, A.S. Matemática Temas e Metas: 6 Funções e Derivadas. São Paulo: Atual, 988. SILVA, S.M. Matemática Básica para Cursos Superiores. São Paulo: Atlas,. 8 Prof.Ms.Carlos Henrique

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Lista de exercícios: Funções do 1º Grau

Lista de exercícios: Funções do 1º Grau Lista de eercícios: Funções do º Grau. Marque quais são as funções do º grau: (R= a, b, d, f, h, j, k) a. 7 e. i. 5 b. 4 f. j. c. 6 g. k. 5 6 d. 4 5 h.. Calcule o zero de cada uma das seguintes funções:

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial

Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial Lista de Eercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Eponencial Professor: Anderson Benites FUNÇÃO POLINOMIAL DO 1º GRAU Uma função é chamada de função do 1º grau (ou

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES Licenciatura em Matemática Fundamentos de Matemática Elementar o /05 Professora Adriana FUNÇÕES. Determine a e b de modo que os pares ordenados a seguir sejam iguais: a) (a, b + ) e (a + 5, b 7) b) (a,

Leia mais

A função y = ax + b. Na Aula 9, tivemos um primeiro contato

A função y = ax + b. Na Aula 9, tivemos um primeiro contato A UA UL LA A função = a + b Introdução Na Aula, tivemos um primeiro contato com a equação = a + b e aprendemos que seu gráfico é uma reta. Vamos então recordar algumas coisas. l Se a = 0, a nossa equação

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

Função Afim Fabio Licht

Função Afim Fabio Licht Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65

FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65 FUNÇÃO DO 1º GRAU INTRODUÇÃO Larissa toma um táxi comum que cobra R$ 2,60 pela bandeirada e R$ 0,65 por quilômetro rodado. Ela quer ir à casa do namorado que fica a 10 km de onde ela está. Quanto Larissa

Leia mais

Quanto ela receberá de salário se ela vender um total de R$ ,00?

Quanto ela receberá de salário se ela vender um total de R$ ,00? Uma vendedora recebe um salário mínimo R$ 788,00 mais comissão de 5% sobre o total de suas vendas durante o mês. Se X é o quanto ela vendeu no mês, qual a lei de formação que Melhor caracteriza a lei de

Leia mais

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é

Leia mais

PLANTÕES DE JULHO MATEMÁTICA

PLANTÕES DE JULHO MATEMÁTICA Página 1 Matemática 1 Funções do 1º e 2º grau PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 1º ANO Turma: Profª CAROL MARTINS Data: JULHO 2016 1) (UFPE) No gráfico a seguir, temos o nível da água armazenada

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) } TRABALHO º ANO REGULAR - MATEMATICA Conjuntos: Questão : Escreva o conjunto expresso pela propriedade: x é um número natural par; x é um número natural múltiplo de 5 e menor do que ; x é um quadrilátero

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

Matemática A Semiextensivo V. 2

Matemática A Semiextensivo V. 2 Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Questões para Prova Integrada Institucional Curso: Administração de Empresas Semestre: 2osem/3osem Disciplina: Matemática Aplicada à Administração

Questões para Prova Integrada Institucional Curso: Administração de Empresas Semestre: 2osem/3osem Disciplina: Matemática Aplicada à Administração Questões para Prova Integrada Institucional Curso: Administração de Empresas Semestre: 2osem/3osem Disciplina: Matemática Aplicada à Administração FÓRMULAS: q = a.p + b (oferta e demanda) R T = p v.q (p

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ANO 015 PROFESSOR (a) DISCIPLINA Aline Heloisa Matemática ALUNO (a) SÉRIE 1º Ano do Ensino Médio 1. OBJETIVO Quanto

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Matemática I Lista de exercícios 02

Matemática I Lista de exercícios 02 Matemática I 2011.1 Lista de exercícios 02 1. O conjunto {( 1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {( x, y) R R x = y} (B) {( x, y) R R x > y} (C) {( x, y) R R x y} (D) {(

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Matemática I Função do 1 grau

Matemática I Função do 1 grau Matemática I Função do 1 grau UNEB - Universidade do Estado da Bahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Função do 1 grau Prof. Dra. Rebeca Dourado Gonçalves

Leia mais

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA LISTA FUNÇÃO 1. Dados os conjuntos G 0,1,3, 4 e 1,3 elemento de G ao seu dobro mais um em H, é dada

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO Nome Nº Turma 1 cn02 e cn07 Data / / Nota Disciplina Matemática Prof. Elaine Valor 30 Instruções: TRABALHO DE RECUPERAÇÃO ANUAL; Este

Leia mais

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo

Leia mais

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2 2. Em cada caso abaio calcule o ite de f ), quando a. a) f ) = 2 + 5; a = 7 b) f ) = c) f ) = 2 + 3 0 + 5 e) f ) = 3 3 + + ; a = 0 ; a = 5 d) f ) = 2 4 3 + 2 2 ; a = 2 2 + 8 3 ; a = + 3 h) f ) = 9 ; a

Leia mais

Matemática I Lista de exercícios 03

Matemática I Lista de exercícios 03 Matemática I 2014.1 Lista de exercícios 03 1. O conjunto {(1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {(x, y)î R R x = y} (B) {(x, y)î R R x > y} (C) {(x, y)î R R x ³ y} (D) {(x,

Leia mais

21/08/ x + 2 y > 15. Considere a situação a seguir: Das sentenças matemáticas a seguir, quais são inequações?

21/08/ x + 2 y > 15. Considere a situação a seguir: Das sentenças matemáticas a seguir, quais são inequações? Considere a situação a seguir: Um retângulo tem metros de comprimento e y metros de largura, e um triângulo equilátero tem 5 m de lado. Supondo que o perímetro do retângulo seja maior que o perímetro do

Leia mais

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo.

= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo. QUESTÕES 01 E 0 Para responder a essas questões, analise a tabela abaio. Em um clube, cada um dos jogadores de um time de futebol tinha a seguinte idade (em anos): 17 0 0 16 18 19 17 16 18 17 16 17 0 16

Leia mais

Função polinomial do 1 grau ou função afim

Função polinomial do 1 grau ou função afim Curso Matemática do Zero Professor Rodrigo Sacramento Matemática Função polinomial do 1 grau ou função afim Plano cartesiano O Plano Cartesiano é formado por dois eixos perpendiculares (dois eixos que

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA As equações no contexto das funções: uma proposta para significação das letras no estudo

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Módulo e Função Modular

Módulo e Função Modular INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

Função Afim Função do 1º Grau

Função Afim Função do 1º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

Prof. Dr. Aldo Vieira

Prof. Dr. Aldo Vieira 1. Em uma determinada região do planeta, a temperatura média anual subiu de 13,35 ºC em 1995 para 13,8 ºC em 2010. Seguindo a tendência de aumento linear observada entre 1995 e 2010, a temperatura média

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Kamila Gomes Ludmilla Rangel Cardoso Silva Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

INEQUAÇÕES ESPECIALIZAÇÃO EM INSTRUMENTAÇÃO PARA O ENSINO DE MATEMÁTICA. Prof. M.Sc. Armando Paulo da Silva 1

INEQUAÇÕES ESPECIALIZAÇÃO EM INSTRUMENTAÇÃO PARA O ENSINO DE MATEMÁTICA. Prof. M.Sc. Armando Paulo da Silva 1 ANÁLISE DE MÉTODOS M MÁTEMÁTICOSTICOS INEQUAÇÕES Prof. M.Sc. Armando Paulo da Silva 1 ANÁLISE DE MÉTODOS M MÁTEMÁTICOS TICOS I INEQUAÇÕES 1º GRAU Prof. M.Sc. Armando Paulo da Silva 2 INEQUAÇÕES DE 1º 1

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi A função afim, proporcionalidade e a função linear

LISTA DE EXERCÍCIOS. Humberto José Bortolossi  A função afim, proporcionalidade e a função linear GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 10 A função afim, proporcionalidade e a função linear [01] Considere

Leia mais

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU :

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU : IFSP - EAD _nº 5 FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES : FUNÇÃO CONSTANTE : Uma função f: R R é chamada constante se puder ser escrita na forma y = f() = a, onde a é um número real

Leia mais

Aplicações: Funções marginais

Aplicações: Funções marginais Eercícios propostos ) Calcular dy da função y= f ( ) = e no ponto = para =,. ) Obtenha a diferencial de y= f ( ) = no ponto = para =,. 3) Seja a função y= f ( ) = 5. Calcular y e dy para = e =,. Aplicações:

Leia mais

ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE

ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Disciplina: Matemática Curso: Ensino Fundamental II Professor: Aguinaldo Série: 8 Ano Aluno (a): ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Número: 1 - Conteúdo: Expressões algébricas redutíveis

Leia mais

Matemática Básica. Atividade Extra

Matemática Básica. Atividade Extra Matemática Básica Atividade Extra Assunto: Funções do 1º e º grau Professor: Carla Renata 1)Construir os gráficos das funções abaixo: ) 3) 4) 5) Classifique cada função em crescente ou decrescente. 6)

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

MATEMÁTICA E SUAS TECNOLÓGIAS

MATEMÁTICA E SUAS TECNOLÓGIAS MTEMÁTIC E SUS TECNOLÓGIS Lista de Eercícios / º ano Professor(a): Data: //6. De sonhos e luno(a):. Dê as coordenadas cartesianas dos pontos assinalados na figura abaio: H C D E F I G J. Observe o diagrama

Leia mais

ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I. Trabalho 1 (T1)

ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I. Trabalho 1 (T1) ALGORITMOS E PROGRAMAÇÃO DE COMPUTADORES I Trabalho 1 (T1) Grupo de até três acadêmicos; Entregar os algoritmos; Entregar as implementações dos algoritmos (arquivos.c), organizados em uma pasta (denominada

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tarefa nº do plano de trabalho nº 7. Considere a função f() -. a. Encontre a epressão analítica da função inversa de f.

Leia mais

Matemática Régis Cortes GEOMETRIA ANALÍTICA

Matemática Régis Cortes GEOMETRIA ANALÍTICA GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE

Leia mais

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma

Leia mais

CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA

CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada FUNÇÃO RECEITA Conforme Silva (1999), seja U uma utilidade (bem ou serviço) cujo preço de venda por unidade seja um preço

Leia mais

Elasticidade e Análise Marginal

Elasticidade e Análise Marginal GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA A ADM 2015.2 Discentes CPF

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

1) Se o preço de um fogão da marca XYZ é de R$ 500,00, determine a receita total para venda de 20 fogões.

1) Se o preço de um fogão da marca XYZ é de R$ 500,00, determine a receita total para venda de 20 fogões. RESUMO Ponto de equilíbrio de mercado é o ponto de intersecção do gráfico entre a () e a (qo), ou seja é o ponto onde ocorre a igualdade entre () e (qo). Suas coordenadas são preço de equilíbrio (pe) e

Leia mais

Matemática. Resolução das atividades complementares. M5 Função polinomial do 1 o grau

Matemática. Resolução das atividades complementares. M5 Função polinomial do 1 o grau Resolução das atividades complementares Matemática M5 Função polinomial do o grau p. 8 O perímetro p de um quadrado é função linear de seu lado. Qual a sentença que define essa função? p 5 O perímetro

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Curso de Engenharia Civil Período 2014.1 Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc E-mails: damasceno12@hotmail.com damasceno12@uol.com.br damasceno1204@yahoo.com.br Site: www.damasceno.info damasceno.info

Leia mais

MATEMÁTICA. Projeto Vestibular MÓDULO I PARTE I FUNÇÃO AFIM. f(x) = ax + b. b a. f: R R. Prof. Bruno Vianna FUNÇÃO AFIM. (ii) Função Constante:

MATEMÁTICA. Projeto Vestibular MÓDULO I PARTE I FUNÇÃO AFIM. f(x) = ax + b. b a. f: R R. Prof. Bruno Vianna FUNÇÃO AFIM. (ii) Função Constante: - Definição - Raíz ou zero f: R R f() = a + b f() =0 a + b = 0 - Representação Gráfica: (i) O (ii) O (0,b) b, 0, a 0 a b = a (ii) Função Constante: f: R R f() = b b > 0 b = 0 b < 0 (iii) Função Linear:

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUENCIAIS Obs.: Os exercícios abaixo apresentam exemplos de entrada e saída considerando a linguagem Java. Os valores riscados

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : Introdução: a noção intuitiva de função. ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Leia mais

Nome: nº Data: / / FICHA DE TRABALHO MATEMÁTICA

Nome: nº Data: / / FICHA DE TRABALHO MATEMÁTICA Nome: nº Data: / / Professora: Tosca Regina Xocaira Hannickel FICHA DE TRABALHO MATEMÁTICA QUESTÃO 01 (Descritor: calcular o perímetro de um circuito utilizando a conseqüência do Teorema de Tales ) Assunto:

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES

Leia mais

Aula 5 - Parte 1: Funções. Exercícios Resolvidos

Aula 5 - Parte 1: Funções. Exercícios Resolvidos Aula 5 - Parte : Funções Exercícios Resolvidos Construção de Funções: a) O valor pago por usuário que acessou a internet por x horas em uma lan house é dado pela função y(x) = a +, 5x, em que a é o custo

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚLICO FEDERL Ministério da Educação Universidade Federal do Rio Grande Universidade berta do rasil dministração acharelado Matemática para Ciências Sociais plicadas I Rodrigo arbosa Soares Curso

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

FUNÇÕES E GRÁFICOS. 2 5 f (x) = x + 6 a = 1 b = 6 APROVA CONCURSOS MINISTÉRIO DA FAZENDA

FUNÇÕES E GRÁFICOS. 2 5 f (x) = x + 6 a = 1 b = 6 APROVA CONCURSOS MINISTÉRIO DA FAZENDA FUNÇÕES E GRÁFICOS Introdução Par ordenado Par ordenado dentro das funções será o par formado pelo representante do conjunto domínio com seu respectivo elemento do conjunto imagem. Veja no eemplo. f :

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1 Eercícios de Aprofundamento Matemática Equações e Inequações 1. (Mackenzie 013) A função f() a) S / 3 ou 1 3 b) S / 3 ou 1 3 c) S / 3 ou 1 3 d) S / 1 ou 1 3 e) S / 1 ou 1 3 9 tem como domínio o conjunto

Leia mais

2 LISTA DE MATEMÁTICA

2 LISTA DE MATEMÁTICA LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Vestibular 011 Utilize as informações a seguir para responder às questões de números e 3. Um

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica)

SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica) SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica) 1ª) As três figuras sobrepostas parcialmente, representam a cobertura de um Shopping de certa cidade. Deseja-se colocar a parte

Leia mais

Matemática em ação 9. Álgebra e Funções.

Matemática em ação 9. Álgebra e Funções. Matemática em ação 9 Álgera e Funções http://www.raizeditora.pt Matemática em ação 9 Fichas teóricas Conteúdos aordados: Equações do.º grau a uma incógnita Sistemas de equações Funções de proporcionalidade

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais