H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:"

Transcrição

1 H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo é (A) y = x. 20 (B) y = x (C) y = x 200 (D) y = 5x. 400 Q2 - O comprimento C de uma circunferência é uma função do diâmetro d, no caso, C é diretamente proporcional a d, e temos C = f(d) = π d. Então, a constante de proporcionalidade (k) é: (A) k = 2d (B) k = π (C) k = 2/π (D) k = 2 π Q3 - As variáveis x e y assumem valores conforme a tabela a seguir: A relação entre x e y é dada pela expressão: (A) y = x + 2 (B) y = 2x + 1 (C) y = 2x (D) y = x + 3 Q4 - Quando uma pessoa compra um tecido (de largura constante), ela paga um preço P que depende do comprimento L adquirido. Suponha que 1 m de tecido custasse R$50,00. a) Completar a tabela deste exercício com os valores de P correspondentes aos de L indicados. b) Ao duplicar o valor de L, o valor de P duplicou? c) E ao triplicar o valor de L? d) Então, que tipo de relação existe entre P e L? Q5 - Com relação à tabela do exercício anterior: a) Dividir cada valor de P pelo correspondente valor de L. O quociente P/L varia ou é constante? b) Qual o valor da constante de proporcionalidade K entre P e L? c) Como podemos expressar matematicamente a relação entre P e L? Q6 - Uma pessoa verifica que entre duas grandezas X e Y existe a seguinte relação matemática: Y= 4X. a) Podemos dizer que Y é diretamente proporcional a X? b) Se o valor de X passar de X=2 para X=10, por qual fator será multiplicado o valor de Y?

2 c) Qual o valor da constante de proporcionalidade entre Y e X? d) Qual é a forma do gráfico YxX? e) Qual é o valor da inclinação deste gráfico? Q7 - Observando a tabela abaixo, responder: a) Quando o valor de X é duplicado, por quanto fica dividido o valor de Y? b) E quando o valor de X é triplicado, o que acontece com o valor de Y? c) Então que tipo de relação existe entre Y e X? d) Construir o gráfico YxX, usando os valores da tabela anterior. e) Como se denomina a curva que você obteve? Q8 - A tabela abaixo apresenta distâncias percorridas por um automóvel e o consumo de gasolina correspondente a cada distância. a) Usando os valores, construir o gráfico d x V. b) Que tipo de relação existe entre d e V? c) Calcular a inclinação do gráfico. d) Interpretar o significado dessa inclinação. Q9 A distância entre duas cidades é 160 km e Jair vai percorrê-la num tempo t com uma velocidade média v. Por exemplo, se Jair for a 80 km/h, isto é, percorrer 80 quilômetros em cada hora, ele demorará 2 horas para completar os 160 quilômetros. Assinale a alternativa que mostra a relação entre v e t. (A) v= 160t (B) v = t/160 (C) v = t (D) v = 160 t (E) v = 160/t Q10 Uma jovem tem uma bicicleta equipada com velocímetro. Ela registra numa tabela, a velocidade v que desenvolve para ir de casa a escola, e o respectivo intervalo de tempo t necessário para completar o percurso. v (km/h) 5,0 10,0 15,0 20,0 t (min) ,5 A função que relaciona a velocidade v com o tempo t é: (A) v = 210 t (B) v = t. 210 (C) v = 210.t 2 (D) 210/t

3 H2 - Identificar o gráfico que expressa uma proporcionalidade direta entre grandezas Q1 - Existe uma relação de proporcionalidade direta entre duas grandezas x e y. Se x é diretamente proporcional a y, então, também y será diretamente proporcional a x. O gráfico que representa uma relação de proporcionalidade direta entre as duas grandezas é: Q2 - Considere os gráficos a seguir: Considerando as constantes de proporcionalidade encontradas em cada uma das funções e organizando-as em ordem crescente, obtemos a seguinte sequência: (A) IV, III, I e II. (B) II, I, III e IV. (C) III, IV, I e II. (D) I, II, III e IV.

4 H3 - Identificar crescimento ou decrescimento de uma função de 1º grau por meio de seu gráfico Q1 - O valor a ser pago por uma pessoa para abastecer seu automóvel varia proporcionalmente em função da quantidade de litros de combustível utilizado. Tal função trata-se de uma relação de proporcionalidade direta. A partir das informações apresentadas no gráfico, pode-se afirmar que (A) a relação de litros (L) e preço (P) é decrescente, ou seja, quanto maior a quantidade de litros, menor o valor a ser pago. (B) a relação de litros (L) e preço (P) é crescente, ou seja, quanto maior a quantidade de litros, maior o valor a ser pago. (C) a relação de litros (L) e preço (P) é crescente e sua constante de proporcionalidade é k = 3,5. (D) a relação de litros (L) e preço (P) é decrescente e sua constante de proporcionalidade é k = 3,5. Q2 - O preço (P) a ser cobrado em uma corrida de taxi é composto por uma quantia fixa (bandeirada), igual para todas as corridas, mais uma parcela variável, que é diretamente proporcional ao número de quilômetros rodados: P = a + b. x (b é o custo de cada quilometro rodado). Em certa cidade, temos P = ,8. x (P em reais e x em quilômetros). O gráfico de P em função de x que atende à proposição é:

5 Q3 - O gráfico a seguir representa o consumo de combustível de um automóvel de acordo com a distância percorrida. Mantendo a proporcionalidade direta entre as duas grandezas, quantos quilômetros o automóvel percorrerá com 60 litros de combustível? (A) 440 (B) 460 (C) 500 (D) 600 Q4 - Mediram-se as massas de pequenas amostras de ferro de diversos volumes. A unidade de medida de massa foi o grama (g) e a de volume foi expressa em centímetros cúbicos (cm 3 ). Com os dados encontrados, construiu-se o gráfico a seguir: a) Qual é a massa de uma amostra de ferro cujo volume é 4 cm 3? b) Qual é o volume de uma amostra de ferro de 15 g de massa? c) Explique por que as grandezas volume e a massa de amostras de ferro representadas no gráfico são grandezas diretamente proporcionais. d) Qual é a constante de proporcionalidade? e) Escreva a relação entre a massa, m, e o volume, V, por meio de uma expressão. Q5 Dados os gráficos de retas abaixo determine os valores de a e b em cada um dos cinco casos apresentados e indique: a) o(s) que representa(m) a variação de grandezas diretamente proporcionais. b) os que representam uma função crescente e os que representam uma função decrescente.

6 Q6 - Assinale a alternativa que mostra corretamente o gráfico que representa a função y = x + 3. (A) (B) (C) (D) (E) Q7 - O gráfico abaixo representa a função de R em R dada por f(x) = ax + b. De acordo com o gráfico abaixo, conclui-se que: (A) a < 0 e b >0 (B) a < 0 e b < 0 (C) a > 0 e b > 0 (D) a > 0 e b < 0 (E) a > o e b = 0 H7 - Identificar a expressão algébrica que expressa uma regularidade observada em sequências de números ou figuras (padrões) Q1 - As variáveis x e n assumem valores conforme tabela abaixo. A relação entre x e n é dada pela expressão (A) n = x + 2. (B) n = 2x. (C) n = 2x + 2. (D) n = x + 4. Q2 - Os veículos são as principais fontes de poluição por partículas finas nas grandes cidades. O quadro compara os níveis de emissão desses poluentes por parte de caminhões, motos e carros.

7 No caso específico das partículas finas, é correto afirmar, de acordo com o quadro, que: (A) carros são duas vezes mais poluentes do que motos. (B) dois carros juntos emitem 1/6 das partículas emitidas por um caminhão. (C) motos são seis vezes menos poluentes que carros. (D) caminhões emitem 1/6 das partículas emitidas por motos. Q3 - As variáveis x e y assumem valores conforme a tabela a seguir: A relação entre x e y é dada pela expressão: (A) y = x + 2 (B) y = 2x + 1 (C) y = 2x (D) y = x + 3 Q4 - A sequência numérica, representada na tabela abaixo, pode ser definida por uma expressão algébrica que relaciona o valor do termo à sua posição nessa sequência. A expressão algébrica que permite determinar o n-ésimo termo dessa sequência é (A) n + 2 (B) 4n- 1 (C) 5n + 4 (D) n (E) (n + 1) 2-1 Q5 - (UNISINOS-RS) Certo dia de janeiro, a temperatura, em São Leopoldo, subiu uniformemente desde 23 o C, às 10 h, até 38 o C, às 15 h. Fazendo-se um gráfico cartesiano que representa tal situação térmica, onde se marquem os tempos (em h) nas abscissas e as temperaturas (em o C) nas ordenadas, se obtém um segmento de reta como se mostra na figura. A equação da reta que corresponde ao segmento AB é: (A) y = 3x 4 (B) y = 2x 5 (C) y = 3x 7 (D) y = 2x + 1 (E) y = 4x 15

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática. Tempo (x) Vazão (y)

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática. Tempo (x) Vazão (y) EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 6 Data / / Escola Aluno Questão A tabela a seguir informa

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª Série do Ensino Médio Turma º bimestre de 015 Data / / Escola Aluno Questão 1 Na embalagem de uma marca de café, consta a informação de que, para 8 cafezinhos

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15 AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/15 Ficha 3 Sequências e proporcionalidade direta NOME N.º Turma 1. Em relação às sequências seguintes escreva os cinco primeiros termos e

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS

COLÉGIO ARQUIDIOCESANO S. CORAÇÃO DE JESUS QUESTÃO 01 Um triângulo ABC está inscrito numa semicircunferência de centro O. Como mostra o desenho abaixo. Sabe-se que a medida do segmento AB é de 12 cm. QUESTÃO 04 Numa cidade a conta de telefone é

Leia mais

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno Unidade I MATEMÁTICA APLICADA Profa. Ana Carolina Bueno Números reais Fonte: http://infomaticando.blogspot.com.br/2012/12/numeros-irracionais.html Expressões algébricas São expressões matemáticas que apresentam

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

Matemática I Lista de exercícios 02

Matemática I Lista de exercícios 02 Matemática I 2011.1 Lista de exercícios 02 1. O conjunto {( 1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {( x, y) R R x = y} (B) {( x, y) R R x > y} (C) {( x, y) R R x y} (D) {(

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:

Leia mais

FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65

FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65 FUNÇÃO DO 1º GRAU INTRODUÇÃO Larissa toma um táxi comum que cobra R$ 2,60 pela bandeirada e R$ 0,65 por quilômetro rodado. Ela quer ir à casa do namorado que fica a 10 km de onde ela está. Quanto Larissa

Leia mais

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei

Leia mais

Não fujas da Matemática!

Não fujas da Matemática! Não fujas da Matemática! Problema: O pai do Filipe decidiu propor ao seu filho um negócio, que consistia em lavar o seu carro pagando-lhe assim uma quantia de 1,5 euros por hora. Se o Filipe demorar 3

Leia mais

Matemática I Lista de exercícios 03

Matemática I Lista de exercícios 03 Matemática I 2014.1 Lista de exercícios 03 1. O conjunto {(1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {(x, y)î R R x = y} (B) {(x, y)î R R x > y} (C) {(x, y)î R R x ³ y} (D) {(x,

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 20 PROFESSOR (a) DISCIPLINA BRUNO REZENDE PEREIRA MATEMÁTICA ALUNO (a) SÉRIE

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO Nome Nº Turma 1 cn02 e cn07 Data / / Nota Disciplina Matemática Prof. Elaine Valor 30 Instruções: TRABALHO DE RECUPERAÇÃO ANUAL; Este

Leia mais

8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5.

8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. 8º Ano Ficha de Trabalho 16 fevereiro de 2012 1) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. a) No enunciado são referidas duas variáveis, a quantidade (em kg) e o preço a

Leia mais

Sala de Estudo Acompanhado Municipal

Sala de Estudo Acompanhado Municipal Sala de Estudo Acompanhado Municipal 9º Ano º Teste Intermédio (Modelo) Lê com atenção as questões que se seguem e responde de forma correcta. Bom trabalho! "Cada problema que resolvi, tornou-se numa regra,

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Função polinomial do 1 grau ou função afim

Função polinomial do 1 grau ou função afim Curso Matemática do Zero Professor Rodrigo Sacramento Matemática Função polinomial do 1 grau ou função afim Plano cartesiano O Plano Cartesiano é formado por dois eixos perpendiculares (dois eixos que

Leia mais

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) } TRABALHO º ANO REGULAR - MATEMATICA Conjuntos: Questão : Escreva o conjunto expresso pela propriedade: x é um número natural par; x é um número natural múltiplo de 5 e menor do que ; x é um quadrilátero

Leia mais

Mat.Semana 6. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)

Mat.Semana 6. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Semana 6 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

Engenharia Mecânica Física

Engenharia Mecânica Física Física Não devemos admitir mais causas para as coisas naturais do que as que são verdadeiras e suficientes para explicar suas aparências. Isaac Newton (1642-1727) Física Geral e Experimental I Profº Eder

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA PROF. ILYDIO PEREIRA DE SÁ UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA PROF. ILYDIO PEREIRA DE SÁ UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES CAp/UERJ Álgebra 1ª Série do Ensino Médio Prof Ilydio P de Sá 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA PROF ILYDIO PEREIRA DE SÁ UMA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES 1) Primeiras idéias

Leia mais

Conteúdos Exame Final e Avaliação Especial

Conteúdos Exame Final e Avaliação Especial Componente Curricular: Matemática Série/Ano: 7º ANO Professora: Fernanda S. Hamerski Conteúdos Exame Final e Avaliação Especial 1. Números Racionais 2. Números Inteiros 3. Equações do 1º grau 4. Sistemas

Leia mais

PLANTÕES DE JULHO MATEMÁTICA

PLANTÕES DE JULHO MATEMÁTICA Página 1 Matemática 1 Funções do 1º e 2º grau PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 1º ANO Turma: Profª CAROL MARTINS Data: JULHO 2016 1) (UFPE) No gráfico a seguir, temos o nível da água armazenada

Leia mais

Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 8ª Série / 9º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 A área do quadrado a seguir é 49 cm 2. O valor de X, em

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

LISTA DE EXERCÍCIOS DISCIPLINA FÍSICA I EXERCÍCIO 1 EXERCÍCIO 2

LISTA DE EXERCÍCIOS DISCIPLINA FÍSICA I EXERCÍCIO 1 EXERCÍCIO 2 DISCIPLINA FÍSICA I LISTA DE EXERCÍCIOS EXERCÍCIO 1 As extremidades de um segmento de reta AB tem coordenadas A(-80 cm, 80 cm) e B(80 cm, 160 cm). Trace o segmento de reta num referencial cartesiano (x,y)

Leia mais

Simulado enem. Matemática e suas Tecnologias. Volume 1 DISTRIBUIÇÃO GRATUITA

Simulado enem. Matemática e suas Tecnologias. Volume 1 DISTRIBUIÇÃO GRATUITA Simulado 06 enem G a b a r i t o 3 ạ série Matemática e suas Tecnologias Volume DISTRIBUIÇÃO GRATUITA Simulado ENEM 06 Questão Matemática e suas Tecnologias Gabarito: Alternativa C ( A ) Analisou apenas

Leia mais

Atividade extra. Exercício 1. Exercício 2 (PUC-SP Adaptada) Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2 (PUC-SP Adaptada) Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 O banco A cobra uma tarifa para manutenção de conta da seguinte forma: uma taxa de R$ 11,00 mensais e mais uma taxa de R$ 0,14 por cheque emitido. O banco B cobra como tarifa

Leia mais

PESQUISA. ATIVIDADE DE MATEMÁTICA Revisão de potências. Indique às respostas a caneta. Indique as resoluções a lápis no espaço indicado.

PESQUISA. ATIVIDADE DE MATEMÁTICA Revisão de potências. Indique às respostas a caneta. Indique as resoluções a lápis no espaço indicado. OSASCO, DE DE 2011 NOME: PROF. 9º ANO Data da entrega: 29/02/12 PESQUISA Faça uma pesquisa, sobre algoritmos matemáticos utilizados em redes sociais, esta pesquisa deve ter: capa, introdução, conclusão

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

Matemática I Função do 1 grau

Matemática I Função do 1 grau Matemática I Função do 1 grau UNEB - Universidade do Estado da Bahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Função do 1 grau Prof. Dra. Rebeca Dourado Gonçalves

Leia mais

MRUV Movimento Retilíneo Uniformemente Variado

MRUV Movimento Retilíneo Uniformemente Variado MRUV Movimento Retilíneo Uniformemente Variado MRUV é o movimento de qualquer móvel com as seguintes características: Aceleração constante e diferente de zero. O módulo da velocidade varia de modo uniforme

Leia mais

Movimento Unidimensional

Movimento Unidimensional Movimento Unidimensional Professor: Carlos Alberto Disciplina: Física Geral I Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever o movimento unidimensional em termos da velocidade

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo

01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo Aula n ọ 02 01. O preço do aluguel de um carro popular em uma locadora de Curitiba é dado pela tabela abaixo 100 km Taxa fixa de R$ 50,00 300 km Taxa fixa de R$ 65,00 500 km Taxa fixa de R$ 75,00 Considerando

Leia mais

Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios (Resolução) Exercício 1. Resolução. S 0 = 15 m Posição Inicial. V = 2 m/s Velocidade

Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios (Resolução) Exercício 1. Resolução. S 0 = 15 m Posição Inicial. V = 2 m/s Velocidade Física Professor Dutra / Movimento Retilíneo Uniforme Exercícios () Física Movimento Retilíneo Uniforme Resoluções dos Exercícios Professor Dutra Exercícios () 1)Um móvel parte da posição 15 m com velocidade

Leia mais

3º Ano do Ensino Médio. Aula nº08

3º Ano do Ensino Médio. Aula nº08 Nome: Ano: º Ano do E.M. Escola: Data: / / 1. Conceitos básicos 3º Ano do Ensino Médio Aula nº08 Assunto: Funções, Equações e Inequações do 1º grau Introdução: Representação de uma equação com 2 variáveis

Leia mais

FÍSICA 1ºTA REPOSICAÇÃO 2015 CINEMÁTICA ESCALAR DEFINIÇÕES E CONCEITOS

FÍSICA 1ºTA REPOSICAÇÃO 2015 CINEMÁTICA ESCALAR DEFINIÇÕES E CONCEITOS FÍSICA ºTA REPOSICAÇÃO 205 CINEMÁTICA ESCALAR DEFINIÇÕES E CONCEITOS O QUE É A CINEMÁTICA A Cinemática estuda o movimento dos corpos, independentemente das causas desse movimento. Seu objetivo é descrever

Leia mais

LISTA DE EXERCÍCIOS DISCIPLINA FÍSICA I EXERCÍCIO 1 EXERCÍCIO 2

LISTA DE EXERCÍCIOS DISCIPLINA FÍSICA I EXERCÍCIO 1 EXERCÍCIO 2 DISCIPLINA FÍSICA I LISTA DE EXERCÍCIOS EXERCÍCIO 1 As extremidades de um segmento de reta AB tem coordenadas A(-80 cm, 80 cm) e B(80 cm, 160 cm). Trace o segmento de reta num referencial cartesiano (x,y)

Leia mais

Equipe de Matemática

Equipe de Matemática Lista - O.M. I ( límpiada de Matemática do Integral )-015 Série: 1º ano Questões: Equipe de Matemática 1. Em um ginásio de esportes, uma quadra retangular está situada no interior de uma pista de corridas

Leia mais

Matemática do 9º ano FT 9 Data: / / 2012 Assunto: Funções: Proporcionalidade Direta e Função Afim

Matemática do 9º ano FT 9 Data: / / 2012 Assunto: Funções: Proporcionalidade Direta e Função Afim Escola Secundária de Lousada Matemática do 9º ano FT 9 Data: / / 01 Assunto: Funções: Proporcionalidade Direta e Função Afim Uma função é uma correspondência entre dois conjuntos (o domínio e o conjunto

Leia mais

Exercícios de matemática - 2º ano - Ensino Médio - 4º bimestre

Exercícios de matemática - 2º ano - Ensino Médio - 4º bimestre Exercícios de matemática - º ano - Ensino Médio - º bimestre Pergunta de 0 - Assunto: Álgebra [0 - FUVEST-USP] Considere a matriz a a + A = [ a a + ] em que aa é um número real. Sabendo que AA admite inversa

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que

Leia mais

No meio do caminho tinha uma Função, tinha uma Função no meio do caminho

No meio do caminho tinha uma Função, tinha uma Função no meio do caminho Professor Reforço escolar M ate mática No meio do caminho tinha uma Função, tinha uma Função no meio do caminho Dinâmica 8 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 1ª

Leia mais

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra. Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto

Leia mais

PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ

PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO. Professor Guilherme Neves. Aula 00 Aula Demonstrativa

AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO. Professor Guilherme Neves.  Aula 00 Aula Demonstrativa AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO Professor Guilherme Neves www.pontodosconcursos.com.br Aula 00 Aula Demonstrativa www.pontodosconcursos.com.br Professor Guilherme Neves 1 Aula Conteúdo Programático

Leia mais

MÓDULO 3 aula 21 (velocidade escalar média)

MÓDULO 3 aula 21 (velocidade escalar média) MÓDULO 3 aula 21 (velocidade escalar média) ACELERAÇÃO ESCALAR MÉDIA Nos movimentos em que a velocidade escalar é variável, pode-se definir a taxa de variação dessa velocidade como a razão entre a variação

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se

Leia mais

(A) (B) (C) (D) (E) (B) 5A e 10V (C) 5A e 25V (E) 6,25A e 15,625V. (D) 6,25A e 12,25V

(A) (B) (C) (D) (E) (B) 5A e 10V (C) 5A e 25V (E) 6,25A e 15,625V. (D) 6,25A e 12,25V 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

20 de setembro de MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas

20 de setembro de MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas 20 de setembro de 2015 Já vimos que se a seguinte equação s = f (t), representa a distância percorrida por uma partícula em um período de tempo

Leia mais

Exemplo: Algoritmo fundamental da divisão: Exemplo:

Exemplo: Algoritmo fundamental da divisão: Exemplo: RAZÃO E PROPORÇÃO Vamos revisar o conceito de divisão. A divisão é uma das quatro operações fundamentais da Matemática que pode ser representada da seguinte forma: Algoritmo da divisão: Exemplo: Algoritmo

Leia mais

Função Afim Fabio Licht

Função Afim Fabio Licht Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)

Leia mais

Fís. Semana. Leonardo Gomes (Arthur Vieira)

Fís. Semana. Leonardo Gomes (Arthur Vieira) Semana 2 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/02

Leia mais

Matemática: Funções Vestibulares UNICAMP

Matemática: Funções Vestibulares UNICAMP Matemática: Funções Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t,

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA As equações no contexto das funções: uma proposta para significação das letras no estudo

Leia mais

Quanto ela receberá de salário se ela vender um total de R$ ,00?

Quanto ela receberá de salário se ela vender um total de R$ ,00? Uma vendedora recebe um salário mínimo R$ 788,00 mais comissão de 5% sobre o total de suas vendas durante o mês. Se X é o quanto ela vendeu no mês, qual a lei de formação que Melhor caracteriza a lei de

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi A função afim, proporcionalidade e a função linear

LISTA DE EXERCÍCIOS. Humberto José Bortolossi  A função afim, proporcionalidade e a função linear GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 10 A função afim, proporcionalidade e a função linear [01] Considere

Leia mais

9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA

9ª ANO - QUESTÕES PARA O SITE MATEMÁTICA MATEMÁTICA. (ifce 04) Uma rampa faz um ângulo de 0 com o plano horizontal. Uma pessoa que subiu 0 metros dessa rampa se encontra a altura de do solo. a) 6 metros. b) 7 metros. c) 8 metros. d) 9 metros.

Leia mais

Cinemática Gráficos Cinemáticos 1- Na figura estão representados os diagramas de velocidade de dois móveis em função do tempo. Esses móveis partem de um mesmo ponto, a partir do repouso, e percorrem a

Leia mais

- MATEMÁTICA - PUC-MG

- MATEMÁTICA - PUC-MG Vestibulando Web Page 1. Uma empresa deve instalar telefones de emergência a cada 42 quilômetros, ao longo da rodovia de 2.184 km, que liga Maceió ao Rio de Janeiro. Considere que o primeiro desses telefones

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais

Lista de exercícios Derivadas

Lista de exercícios Derivadas Lista de exercícios Derivadas 1 - (ENADE 2011) - Os analistas financeiros de uma empresa chegaram a um modelo matemático que permite calcular a arrecadação mensal da empresa ao longo de 24 meses, por meio

Leia mais

Prova Escrita de Matemática

Prova Escrita de Matemática ESCOLA SECUNDÁRIA DE LOUSADA Prova Escrita de Matemática.º Ciclo do ensino Básico ; 7ºAno de escolaridade Duração da Prova: 90 minutos Versão 1 01 A PREENCHER PELO ALUNO Nome completo do aluno Nª Turma:

Leia mais

QUESTÃO 16 A moldura de um quadro de um excêntrico pintor moderno é formada por 5 trapézios, todos com altura igual a 5 cm.

QUESTÃO 16 A moldura de um quadro de um excêntrico pintor moderno é formada por 5 trapézios, todos com altura igual a 5 cm. Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM 016 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 A moldura de um quadro de um excêntrico pintor

Leia mais

Escola Secundária de Lousada Matemática do 9º ano FT 13 Data: / / 2013 Assunto: Resumo das funções Lições nº, e,

Escola Secundária de Lousada Matemática do 9º ano FT 13 Data: / / 2013 Assunto: Resumo das funções Lições nº, e, Escola Secundária de Lousada Matemática do 9º ano FT 1 Data: / / 01 Assunto: Resumo das funções Lições nº, e, 1. Considera as funções: ( ) = ; g ( ) = + 4 ; h ( ) ; i( ) = ; j ( ) = e l( ) f = 7 = 5 1.1.

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Caderno do Professor. 1ª série do Ensino Médio MATEMÁTICA

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Caderno do Professor. 1ª série do Ensino Médio MATEMÁTICA AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Caderno do Professor 1ª série do Ensino Médio MATEMÁTICA São Paulo Agosto de 2015 9ª edição Gabarito 1ª Série E.M. QUESTÃO A B C D 01 02 03 04 05 06 07 08 09 10 11

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 2 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 2 DISTRIBUIÇÃO GRATUITA Simulado enem 0 a. série e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM Simulado NM 0 lternativa: ) Incorreta. 7 + = + =, e não é primo. ) Incorreta. 7 + = + =, e não é primo. ) orreta. + = 6 + = 7, e 7 é

Leia mais

Prof. Luiz Felix. Unidade I MATEMÁTICA APLICADA

Prof. Luiz Felix. Unidade I MATEMÁTICA APLICADA Prof. Luiz Felix Unidade I MATEMÁTICA APLICADA Sistemas de numeração A vida do homem, há milhares de anos, era muito diferente da atual. Ele não tinha necessidade de contar, uma vez que não comprava, não

Leia mais

Fundamentos de Mecânica IGc, Licenciatura, Noturno (2016) Lista 01

Fundamentos de Mecânica IGc, Licenciatura, Noturno (2016) Lista 01 1. O prefixo giga significa: (a) 10 3 (b) 10 6 (c) 10 9 (d) 10 12 (e) 10 15 2. O prefixo mega significa: (a) 10-9 (b) 10-6 (c) 10-3 (d) 10 6 (e) 10 9 3. O prefixo pico significa: (a) 10-12 (b) 10-6 (c)

Leia mais

As funções crescendo e decrescendo

As funções crescendo e decrescendo Reforço escolar M ate mática As funções crescendo e decrescendo Dinâmica 7 1ª Série 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 1ª ano Algébrico Simbólico Funções DINÂMICA

Leia mais

Unidade 7 Estudo de funções

Unidade 7 Estudo de funções Sugestões de atividades Unidade 7 Estudo de funções 9 MATEMÁTICA 1 Matemática 1. Dada a função y 5 f (x) 5 x 10, determine: a) f (0); b) x tal que f (x) 5 0.. Num escritório de forma retangular, a parte

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Tipos, variáveis, operadores, e entrada e saída

Tipos, variáveis, operadores, e entrada e saída PUC-Rio, INF1005.33F, Programação 1, 2016.2 Lista 1: Introdução à linguagem de programação C Prof. Guilherme F. Lima 1. Refaça os exercícios da Lista 0 usando C no lugar de pseudocódigo. Tipos, variáveis,

Leia mais

9 ano E.F. Professores Cleber Assis e Tiago Miranda

9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Função Afim Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções Afim Resolução de Exercícios 1 Exercícios Introdutórios Exercício 7. Seja a função afim: f : R R x

Leia mais

Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a:

Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a: Questão 01 PROVA OBJETIVA MATEMÁTICA Considere uma compra de lápis e canetas no valor total de R$ 9,00. O preço de cada lápis é R$ 1,00 e o de cada caneta é R$,00. A probabilidade de que se tenha comprado

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

ALGUMAS RAZÕES ESPECIAIS

ALGUMAS RAZÕES ESPECIAIS ALGUMAS RAZÕES ESPECIAIS VELOCIDADE MÉDIA Se uma viagem de 210 km é realizada em 3 horas por um automóvel, podemos imaginar a viagem da seguinte maneira: Daí, dizemos que a velocidade média desenvolvida

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Professora FLORENCE. A aceleração pode ser calculada pelo gráfico através da tangente do ângulo α.

Professora FLORENCE. A aceleração pode ser calculada pelo gráfico através da tangente do ângulo α. 1. Um ponto material desloca-se sobre uma reta e sua velocidade em função do tempo é dada pelo gráfico. Pedem-se: a) a equação horária da velocidade (função de v = f(t)) v(m/s) b) o deslocamento do ponto

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Sabemos que

Leia mais

Equações do 2º grau 21/08/2012

Equações do 2º grau 21/08/2012 MATEMÁTICA Revisão Geral Aula 5 Parte 1 Professor Me. Álvaro Emílio Leite Equações do º grau Toda epressão que possui a forma + + =0, onde, e são números reais e 0, é uma equação do grau na incógnita.

Leia mais

Provão. Matemática 5 o ano

Provão. Matemática 5 o ano Provão Matemática o ano 21 Sabemos que o tempo pode ser contado e medido. Selecione as unidades de medida de tempo indicadas pelos ponteiros de um relógio: a) dias, meses e anos. b) horas, dias e minutos.

Leia mais

Matemática Básica. Atividade Extra

Matemática Básica. Atividade Extra Matemática Básica Atividade Extra Assunto: Funções do 1º e º grau Professor: Carla Renata 1)Construir os gráficos das funções abaixo: ) 3) 4) 5) Classifique cada função em crescente ou decrescente. 6)

Leia mais

MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega

MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega MATEMÁTICA 1 A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar as artes e poupar trabalho aos homens. (Renê Descartes Filósofo,

Leia mais

Fís. fevereiro. Leonardo Gomes (Arthur Vieira)

Fís. fevereiro. Leonardo Gomes (Arthur Vieira) 06 10 fevereiro Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Exame Nacional de a chamada

Exame Nacional de a chamada . A mãe, o pai e o filho mais velho da família Coelho ganharam três automóveis num concurso televisivo: um cinzento, um branco e um preto. Todos queriam o automóvel preto, por isso decidiram distribuir

Leia mais

GRÁFICO, DOMÍNIO, IMAGEM E TIPOLOGIA

GRÁFICO, DOMÍNIO, IMAGEM E TIPOLOGIA ALUNO(A): DATA: / / 2017 M A T E M Á T I C A Nº: PROFESSOR: MÁRIO PALHETA / CONVÊNIO GRÁFICO, DOMÍNIO, IMAGEM E TIPOLOGIA Um gráfico pode ser uma maneira útil de demonstrar uma informação, ajudando a resolver

Leia mais

Funções e gráficos num problema de freagem

Funções e gráficos num problema de freagem Funções e gráficos num problema de freagem Adaptado do artigo de Geraldo Ávila Há situações concretas das quais o professor pode extrair, de maneira espontânea e natural, conceitos importantes e muito

Leia mais