1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2"

Transcrição

1 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine o coeficiente angular da reta que passa pelos pontos: a) (-2,0) e (3,1) c) (0,4) e (1,-1) m = = m = = = b) (-1,2) e (2,2) d) (3,4) e (3,1) m = = = 0 m = = não definido 3º) Determine a equação da reta que passa pelo ponto (2,-1) e é paralela à reta 2-3 = 5-3 = = + b = -7 ou 2-3 = 7 = -1 = + b = - -3 = 4 + 3b -3b = 7 b = 1

2 4º) Determine a equação da reta que passa pelos pontos abaio e plotar seu gráfico: a) (4,3) e (0,-5) b) (0,0) e (-1,3) (:4) = = 2 5 c) (2,3) e (2,-2) d) (1,-2) e (3,-2) = - 4 = 2 = - 2 5º) Qual a área de um círculo de raio r (r>0)? Solução: A = r² 2

3 6º) A tabela abaio indica o custo de produção de certo número de peças para informática: Número de peças Custo (R$) 1 1,20 2 2,40 3 3,60 4 4,80 5 6,00 6 7,20 7 8,40 8 9,60 Solução: O custo de produção (C) é dado em função do número de peças (). A fórmula matemática que associa com C é C = 1,20. O custo de 10 peças; = 10, C = 1,20 10 = 12, logo o custo é de R$12,00 O custo de 50 peças; = 50, => C = 1,20 * 50 logo o custo é de R$ 60,00 Com um custo de R$120,00, foram produzidas 100 peças, pois: C = 120 => 1,20 = 120 => 120/1,20 = 100 peças Com um custo de R$ 960,00, foram produzidas quantas peças? C = 960 => 1,20 = 960 => 960/1,20 = 800 peças 7º) Uma livraria vende uma revista por R$ 5,00 a unidade. Seja a quantidade vendida. a) Obter a função receita R() R() = 5,00 b) Calcule R(40) R(40) = 5,00*40 R(40) = R$ 200,00 c) Qual a quantidade que deve ser vendida para dar uma receita igual a R$ 700,00? 700 = 5,00 = 700/5 = 140 8º) No diagrama seguinte, A, B e C são três conjuntos não vazios. Associe V ou F a cada uma das sentenças: a) A B V b) C B V c) B A F d) A C F e) B A V f) A C V 3

4 9º) Uma editora estuda a possibilidade de relançar as publicações: Helena, Iracema e A Moreninha. Para isso, efetuou uma pesquisa de mercado e concluiu que, em cada pessoas consultadas: I H 600 leram A Moreninha leram Helena I 300 leram Iracema leram A Moreninha e Helena 150 leram A Moreninha e Iracema leram Iracema e Helena leram as 3 obras. M 130 Calcule: a) o número de pessoas que leu apenas uma das 3 obras = 460 pessoas b) o número de pessoas que não leu nenhuma das 1000 ( ) = 130 c) o número de pessoas que leu 2 ou mais obras = º) Numa prova constituída de dois problemas, 300 alunos acertaram somente um dos problemas, 260 acertaram o segundo, 100 alunos acertaram os dois e 210 erraram o primeiro. Quantos alunos fizeram à prova? A B U º) Numa pesquisa são consumidos os tipos de leite A, B e C. Feita uma pesquisa de mercado com 530 consumidores, os resultados obtidos foram: 100 consomem A 40 consomem B e C 150 consomem B 30 consomem A e C 200 consomem C 160 nenhum dos 3 20 consomem A e B U A B Determine: a) Consomem apenas 2 tipos = b) Não consomem o leite do tipo B = 370 C

5 12º) Um banco de sangue catalogou 60 doadores assim distribuídos: 29 com sangue do tipo O; 30 com fator Rh negativo; 14 com fator Rh positivo diferente de O. Quantos doadores possuem tipo sanguíneo diferente de O e fator Rh negativo? a) 19 O Rh+ b) 16 c) 20 d) 17 e) Rh º) De acordo com o diagrama abaio, assinale a alternativa correta: a) A c = E b) A B = A c) A C = B C d) A B A C = B C e) A B A C = 14. Dado o conjunto A = { / - 3 < 5} o número de subconjuntos de A é: a) 64. b) 128. c) 256. d) 512. e) n = 2 8 = Construa o gráfico da função ² = 0, determine o domínio e a imagem: D(f) = Im(f) = { / - 4} 16º) A união dos intervalos A = { / 2 } e B = { / 1 9} é dada por: B = { / 1 9} 5

6 17. Seja f() =, encontre o domínio de f e calcule f(-2), f (-1), f(0), f(2) D(f) = - {1} f(-2) = = f(-1) = = f(0) = = = -1 f(2) = = = Determine o valor de m para que os pares ordenados (3m 1; 2) e ( m 3; 2) sejam iguais. 3m 1 = m 3 2m = - 2 m = Sendo f() = 5 +10, determine f(-1) + f(0) f(2). (5(-1) +10) + (5*0 +10) (5*2 +10) = Seja f() =, encontre o domínio de f e calcule f(-2), f(0), f (3.01) D(f) = - {3} f(-2) = = = f(0) = = = 0 f(3,01) = = = Encontre o domínio das seguintes funções: a) f() = b) f() = D(f) = - {-2} D(f) = / < -1 ou 2} c) f() = d) f() = - D(f) = - {-1} D(f) = + 6

7 22. Para cada uma das funções abaio encontre o domínio, esboce o gráfico e determine a imagem: a) f() = + 3 b) f() = ² + 9 D(f) = D(f) = Im(f) = Im(f) = { / 9} c) f() ² d) f() = D(f) = D(f) = * Im(f) = { / -0,25} Im(f) = * e) f() = 1/3 f) f() = + 2 D(f) = D(f) = Im(f) = Im(f) = + 7

8 g) f() = h) f() = { D(f) = { / - 2} D(f) = Im(f) = + Im(f) = { / -0,25} i) f() = D(f) = - {- 1} Im(f) = - {1} 23º) Determine f*g, f/g, f+g, gof(), e fof(), para: a) f() + 5 e g() = ² - 1 f*g = ( + 5)( ² - 1) f/g = f*g = ³ + 5² - 5 f + g = ² gof() = ( + 5)² - 1 fof() = gof() = ² fof() =

9 gof() = ² b) f() ² + 9 e g() = + 3 f*g = (² + 9)( + 3) f/g = f*g = ³ + 3² f + g = ² gof() = ² fof() = (² + 9)² + 9 gof() = ² + 12 fof() = ² fof() = ² b) f() = e g() = 2-3 f*g = (2 3) f/g = f + g = gof() = 2-3 fof() = fof() = 24. Para cada uma das funções seguintes verifiquem se f é par, impar ou nenhuma das duas: a) f() = 2 4 3² + 1 b) f() = 5³ - 7 c) f(s) = s² + 2s + 2 f(-) = 2(-) 4 3(-)² + 1 f(-) = 5(-)³ - 7(-) f(-s) = (-s)² + 2(-s) + 2 f(-) = 2 4 3² + 1 f-() = -(5³ - 7) c) f(-s) s² - 2s + 2 função par função impar não é par e nem impar 25. Encontrem as inversas das funções abaio com seus respectivos domínios: a) f() = b)g() = = = = = 6 = 8 + = - 3 = = D(f) = R ( 1) = - -3 = D(g) = R {1} 26. Eiste alguma função f: que seja simultaneamente par e impar? Sim. Eiste a função nula. 9

10 27. A função que representa o valor a ser pago após um acréscimo de 3% sobre o valor de uma mercadoria é: a) f() = 3 b) f()= 0,97 c) f()= 1,3 d) f()= - 3 e) f()= 1, Dados os pontos A=(1,7), B=(-1,1) e C=(7,7) a distância de A ao ponto médio do segmento BC é: Ponto médio BC= ; BC M = (3,4) = = = = 29. Seja a função f() = ² então suas raízes são: S = 4 = 1 e = 3 P = A representação da função = -3 é uma reta: a) paralela aos eio das ordenadas b) perpendicular ao eio das ordenadas c) perpendicular ao eio das abcissas d) que intercepta os dois eios 31. Encontre a inversa da função abaio com seu respectivo domínio. Faça o gráfico: g() = = g() -1 = - = + 3 = + 3 ( 1) = + 3 = D(g) = R {1} 32. Sejam A={0,1,2} e B={0,2,3,4,5}, de acordo com estes dois conjuntos, assinale a alternativa correta: a) A relação R={ (,) AB/ =+1} é uma função. b) Podemos dizer que B é o domínio da relação R={ (,) A B / = }. c) Seja a função f() = 2, definida de A em B, então o conjunto imagem é {0,2,4}. 10

11 d) Seja a relação R={ (,) A B / = + 2}; o conjunto dos pares ordenados desta relação é {(0,2),(1,2),(2,5)}. e) A função f() = 2 é sobrejetora. 33. Considerando a função f() =, pode-se afirmar que f() é uma função: a) crescente. b) identidade. c) decrescente. d) constante. e) par. 34. Qual das afirmações abaio é verdadeira: a) toda função admite inversa. b) toda relação é uma função. c) uma função sobrejetora é sempre injetora. d) uma função crescente tem coeficiente angular negativo. e) uma função injetora pode ser sobrejetora. 35. O gráfico abaio representa uma função. De acordo com o gráfico responda: Determine o domínio e a imagem. D(f) = R Im(f) = [0,3] a) A função é contínua? Função continua b) Classifique os intervalos onde a função é crescente, decrescente e constante. Crescente para 0 < < 2 Decrescente para -2 < < 0 Constante para < -2 e > 2 c) Classifique a função em injetora, sobrejetora e/ou bijetora. Não é injetora, sobrejetora e bijetora Desafio: Uma embalagem tem a base, as faces laterais e a tampa na forma de um quadrado de lado 20 cm. O material para a base custa 30 reais por m2, o material para as faces laterais custa 10 reais por m2, e o material para a tampa custa 20 reais por m2. Determine o custo da confecção da embalagem. 1,20 base 0,40 Face lateral 0,40 Face lateral 0,40 Face lateral 0,40 Face lateral 0,80 base 1,20 + 4*0,40 + 0,80 = R$ 3,60 11

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1.

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 4 Funções II. (OPM) Seja f uma função de domínio dada por + f() =. Determine o conjunto-imagem + + da função. O conjunto-imagem da

Leia mais

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1- Resolva a inequação 4 3 Resp: 1,4 - Dizemos que uma relação entre dois conjuntos não vazios A e B é uma função de A em B quando:

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

02. No intervalo [0, 1], a variação de f é maior que a variação de h.

02. No intervalo [0, 1], a variação de f é maior que a variação de h. LISTA DE EXERCÍCIOS FUNÇÕES: CONCEITOS INICIAIS PROFESSOR: Claudio Saldan CONTATO: saldanmat@gmailcom 0 - (UEPG PR) Sobre o gráfico abaio, que representa uma função = f() definida em R, assinale o que

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES Licenciatura em Matemática Fundamentos de Matemática Elementar o /05 Professora Adriana FUNÇÕES. Determine a e b de modo que os pares ordenados a seguir sejam iguais: a) (a, b + ) e (a + 5, b 7) b) (a,

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com. Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia

Leia mais

& ( $ + & ( U V $ QUESTÃO 01.

& ( $ + & ( U V $ QUESTÃO 01. Resolução da prova de Matemática do º Vestibular Simulado de 004 _ Colégio Anchieta-BA Elaboração; prof. Octamar Marques. Resolução e comentário: profa. Maria Antônia Gouveia. QUESTÃO 0. & ( 0 4 U V $

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

Teste de Matemática 2017/I

Teste de Matemática 2017/I Universidade Federal de Viçosa Departamento de Matemática Teste de Matemática 017/I 1. Os ovos de galinha são mais baratos do que os de perua. Não tenho dinheiro suficiente para comprar duas dúzias de

Leia mais

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno

Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno Unidade I MATEMÁTICA APLICADA Profa. Ana Carolina Bueno Números reais Fonte: http://infomaticando.blogspot.com.br/2012/12/numeros-irracionais.html Expressões algébricas São expressões matemáticas que apresentam

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178]

LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178] LISTA 1 1- Seja n N tal que n dividido por 5 deia resto 3, n dividido por 4 deia resto e n dividido por 3 deia resto 1. Os três primeiros números naturais que satisfazem as condições de n pertencem ao

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4 AUTOAVALIAÇÃO 0. Sobre a função f amplamente definida cuja lei de formação é f() = - 4 foram feitas as afirmações: 0 0 É uma função estritamente negativa. É uma função não-par e não-ímpar. É uma função

Leia mais

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000? PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos

Leia mais

Módulo e Função Modular

Módulo e Função Modular INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

CANDIDATO: DATA: 20 / 01 / 2010

CANDIDATO: DATA: 20 / 01 / 2010 UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0

Leia mais

AFA 006 LÍNGUA INGLESA E MATEMÁTICA CFOAV/CFOINT/CFOINF CÓDIGO 6 i - Considere o número compleo z = e calcule z n. No conjunto formado pelos quatro menores valores naturais de n para os quais z n é um

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998 PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1

A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1 MATEMÁTICA e A solução do sistema de equações lineares y z = z = 3 é: y z = a) = 5, y = e z =. b) = 5, y = e z =. c) = 5, y = e z =. d) = 5, y = e z =. e) = 5, y = e z =. y z = z = 3 y z = y z = y = z

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1 PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se

Leia mais

MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin

MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin MATEMÁTICA Módulo em IR Professor Marcelo Gonzalez Badin Módulo de um número real Chama-se módulo (ou valor absoluto) de um número real a distância da imagem desse número, na reta orientada, até a origem

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B. Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares 1 Matemática M3 Conjuntos p. 52 1 Considere os conjuntos A 5 {x M* x é par e x. 6}, 5 {x M* x é ímpar e x, 21} e C 5 {x M* x é par}. Então: a) A tem 2 elementos

Leia mais

Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).

Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ). O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.

Leia mais

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.

F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra. Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

www.cursoavancos.com.br

www.cursoavancos.com.br LISTA DE EXERCÍCIOS DE FIXAÇÃO - PROF.: ARI 0) (ANGLO) Sendo FUNÇÕES INVERSAS f a função inversa de f() = +, então f (4) é igual a : 2 a) 4 b) /4 c) 4 d) 3 e) 6 02) (ANGLO) Sejam f : R R uma função bijetora

Leia mais

Preparação para o Cálculo

Preparação para o Cálculo Preparação para o Cálculo Referencial cartesiano Representação gráfica Um referencial cartesiano é constituído por duas rectas perpendiculares (fias), com ponto de intersecção O: O diz-se a origem do referencial;

Leia mais

Lista de exercícios: Funções do 1º Grau

Lista de exercícios: Funções do 1º Grau Lista de eercícios: Funções do º Grau. Marque quais são as funções do º grau: (R= a, b, d, f, h, j, k) a. 7 e. i. 5 b. 4 f. j. c. 6 g. k. 5 6 d. 4 5 h.. Calcule o zero de cada uma das seguintes funções:

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UFBA A FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA UFBA A FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. RESOLUÇÃO DA PROVA DE MATEMÁTICA UFBA A FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. QUESTÕES de a 8 INSTRUÇÃO : Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3

FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3 FUNÇÕES QUADRÁTICAS 1) A lei da função do gráfico é y 3/ 3 9 (a) y = + 3-9 (b) y = - + 3-9 (c) y = - 3-9 (d) y = - - 3-9 (e) y = + 3 + 9 ) O vértice da parábola y = + b + 6 está no ponto (, k). O valor

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 2 a Lista de Exercícios Tópico: Conjuntos, Elementos, Subconjuntos e Conjuntos

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ.

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. SIMULADO DE MATEMÁTICA TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0

Leia mais

Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha

Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha SUMÁRIO 4 FUNÇÃO REAL DE UMA VARIÁVEL REAL 1 4.1 DEFINIÇÃO E NOTAÇÃO Definição Dados dois conjuntos

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem? 1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

2 LISTA DE MATEMÁTICA

2 LISTA DE MATEMÁTICA LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) O conjunto A = {1, 2, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaixo.

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) O conjunto A = {1, 2, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaixo. Questão 0) O conjunto = {,, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaio. Para definir uma função sobrejetora f :, uma pessoa ligou cada mento do diagrama com um único mento

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).

Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x). Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Inversa SUPERSEMI 0)(Aman 0) Na figura abaio está representado o gráfico de uma função real do º grau f(). A epressão

Leia mais

DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA GOUVEIA.

DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA GOUVEIA. RESOLUÇÃO DA AVALIAÇÃO FINAL DE MATEMÁTICA APLICADA EM 008 NO COLÉGIO ANCHIETA-BA, AOS ALUNOS DA a SÉRIE DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. 0. D C

Leia mais

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) } TRABALHO º ANO REGULAR - MATEMATICA Conjuntos: Questão : Escreva o conjunto expresso pela propriedade: x é um número natural par; x é um número natural múltiplo de 5 e menor do que ; x é um quadrilátero

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010 1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 2001

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 2001 PROV E MTEMÁTI 00 0 - ssinale a alternativa que contém a afirmação correta., y, e y, ( + y) = + y b), y, e y *, se y é inteiro, então y é inteiro, y, e y,, y, e y, + y + é um número racional + y + é um

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 16/novembro/2014

CPV especializado na ESPM ESPM Resolvida Prova E 16/novembro/2014 CPV especializado na ESPM ESPM Resolvida Prova E 6/novembro/04 MATEMÁTICA. O valor da epressão + + para = 400 é igual a: 3. Se = 4, y = 3 e y = z, o valor de z é igual a: a) 0,05 b) 0,50 c) 0,0 d) 0,0

Leia mais

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1)

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

QUESTÕES DE 01 A 08. Assinale as proposições verdadeiras, some os resultados obtidos e marque na Folha de Respostas.

QUESTÕES DE 01 A 08. Assinale as proposições verdadeiras, some os resultados obtidos e marque na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA AGOSTO_UIII_ DE 9. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE A 8. Assinale

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013. TEORIA DOS CONJUNTOS Professor: Marcelo Silva marcelo.silva@ifrn.edu.br Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

Erivaldo. UFSC Parte 02

Erivaldo. UFSC Parte 02 Erivaldo UFSC Parte 02 UFSC 2011 Análise Combinatória página 14 32.( ) O sangue humano pode ser classificado quanto ao sistema ABO e quanto ao fator Rh. Sobre uma determinada populac a o P, os tipos sangui

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA 2012

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA 2012 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA 2012 Aluno(a): Nº Ano: 9º Turma: Data: Nota: Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos Orientações gerais: 1) Número de questões desta prova: 17 2) Valor

Leia mais

Lista de Exercícios 01

Lista de Exercícios 01 OBS: O exercícios marcados com "*" devem ser entregues na aula seguinte Conjunto: representa uma coleção de objetos. Elemento: é um dos componentes de um conjunto. Lista de Exercícios 01 Pertinência: é

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais