FUNÇÃO EXPONENCIAL. Note que uma função exponencial tem uma base constante e um expoente variável.

Tamanho: px
Começar a partir da página:

Download "FUNÇÃO EXPONENCIAL. Note que uma função exponencial tem uma base constante e um expoente variável."

Transcrição

1 FUNÇÃO EXPONENCIAL DEFINIÇÃO: Chama-se função exponencial qualquer função f: R R dada por uma lei da forma f(x) =a x, em que a é um número real dado, a>0 e a 1. Exemplos: y = 2 x ; f(x)=(1/3) x ; f(x) = (1 + x) 1/x Note que uma função exponencial tem uma base constante e um expoente variável. GRÁFICO DE UMA FUNÇÃO EXPONENCIAL Esse gráfico representa uma função exponencial crescente onde a > 1. Esse gráfico representa uma função exponencial decrescente onde 0 < a < 1. Os dois tipos de gráficos possuem características semelhantes: 1) O gráfico (curva) de uma função exponencial nunca irá interceptar o eixo x, pois esta função não possui raiz. 2) O gráfico (curva) irá cortar apenas o eixo y e sempre será no ponto 1, sendo que os valores de y sempre serão positivos. 3) O domínio natural de cada função exponencial é (-, + ) e a imagem de f(x) = a x é (0, + ), admitindo por suposição que o gráfico de y = a x seja uma curva sem quebras, lacunas ou buracos. A função exponencial natural (e x ) é utilizada para modelagem de fenômenos naturais, físicos e econômicos. Sua base é número e, que é 2, para nove casas decimais. A função exponencial mais simples é a função. Cada ponto do gráfico é da forma pois a ordenada é sempre o resultado de ex, ou seja, a exponencial de base e do número x.

2 O domínio da função é e a imagem é o conjunto. PROBLEMAS: 1) Duas populações, designadas por F e G, têm os respectivos crescimentos expressos por f(t) = 36 + t 2 e g(t) = 10(2 t ), sendo t o número não negativo que representa o tempo em meses. Então analise as seguintes afirmações: a) A população G duplica a cada mês. b) g(51) g(50) = g(50) c) Quando t=1 a população F é menor do que a população G. d) Em nenhum tempo a população F será igual à população G. 2) (Uneb-BA) A expressão P(t) = k. 2 0,05t fornece o número P de milhares de habitantes de uma cidade, em função do tempo t, em anos. Se em 1990 essa cidade tinha habitantes, quantos habitantes, aproximadamente, ela possuia no ano 2 000? a) b) c) d) e) ) (UFPA) Uma reserva florestal possui árvores. Determine em quantos anos a quantidade de árvores estará reduzida à oitava parte, se a função que representa a quantidade de árvores por ano é y(t) = t.

3 4) Esboce o gráfico de e de, comparando-os com o gráfico de. 5) Esboce o gráfico da função. 6) Resolva as equações exponenciais: a) b) 7) Determine o conjunto solução da desigualdade LOGARITMOS e FUNÇÃO LOGARÍTMICA Do grego: logos (razão) + arithmos (número) Definição Sejam a e b dois números reais. O logaritmo de a na base b é o expoente a que b deve ser elevado para que o resultado seja a. Em símbolos: Dizemos que b é a base e a é o logaritmando. É importante, contudo, definir algumas restrições à base e ao logaritmando: i) A base deve ser positiva. Determinar, por exemplo, o logaritmo de 2 na base -10 é impossível no universo dos números reais, já que apenas as potências de expoentes inteiros estão definidas para bases negativas. ii) A base deve ser diferente de um. Como 1 elevado a qualquer número dá 1, o único logaritmando possível (com base 1) seria 1. iii) O logaritmando deve ser positivo. Nenhum número real positivo tem potências negativas. CONSEQUENCIAS - O logaritmo de 1 em qualquer base a é igual a 0. log a 1 = 0, pois a 0 = 1 - O logaritmo da base, qualquer que seja ela é igual a 1. log a a = 1, pois a 1 = a - A potência de base a e expoente log a b é igual a b. a log a b = b Pois o logaritmo de b na base a é justamente o expoente que se deve dar à base a para que a potência fique igual a b. - Se dois logaritmos em uma mesma base são iguais, então os logaritmandos também são iguais. log a b = log a c b = c

4 EXEMPLOS log 2 4 log 3 81 log 2 1/8 log 7 7 log 5 1 log 1/ log 8 5 log 5 (2x+1) = log 5 (x+3) log 16 0,25 log 2 5 = 2,32 log 5 = 0,699 O logaritmo mais importante nas aplicações é o de base e, que é chamado logaritmo natural, já que a função é a inversa da função exponencial natural e x. É comum denotar o logaritmo natural de x por ln x. Assim: ln 1 = 0 ln e = 1 ln 1/e = -1 ln (e²) = 2 ln(e x ) = x ou e ln x = x PROPRIEDADES DOS LOGARITMOS LOGARITMO DO PRODUTO: Em qualquer base, o logaritmo do produto de dois números reais e positivos é igual à soma dos logaritmos dos números. log a (b. c) = log a b + log a c LOGARITMO DO QUOCIENTE: Em qualquer base, o logaritmo do quociente de dois números reais e positivos é igual à diferença entre o logaritmo do dividendo e o logaritmo do divisor. log a b/c = log a b - log a c LOGARITMO DA POTÊNCIA: Em qualquer base, o logaritmo de uma potência de base real e positiva é igual ao produto dos expoentes pelo logaritmo da base da potência. log a b r = r. log a b PROPRIEDADES DOS LOGARITMOS 1) log 2 (3. 4) = log log 2 4 2) log 210 3) log 2 ¾ 4) log 6/5 5) log ) log 3 1/16 MUDANÇA DE BASE: Converter um logaritmo de certa base para outra base. log a b = log c b/ log c a

5 FUNÇÃO LOGARÍTMICA Dado um número real a (com 0<a 1), chama-se função logarítmica de base a a função de dada pela lei: f(x) = log a x. Exemplos: y = log 2 x, y = log 10 x e y = log e x. Principais Características Função logarítmica 0 < a < 1 g: lr+ lr Função logarítmica a > 1 g: lr+ lr x loga x x loga x Domínio = lr+ Contradomínio = lr g(x) = 0 <=> x = 1 A função é estritamente decrescente. x = 0 é assíntota vertical Domínio = lr+ Contradomínio = lr g(x) = 0 <=> x = 1 A função é estritamente crescente. x = 0 é assíntota vertical A função logaritmo natural mais simples é a função y=f0(x)=lnx. Cada ponto do gráfico é da forma (x, lnx) pois a ordenada é sempre igual ao logaritmo natural da abscissa.

6 O domínio da função ln é e a imagem é o conjunto. O eixo vertical é uma assíntota ao gráfico da função. FUNÇÃO LOGARÍTMICA - aplicação LEI DO RESFRIAMENTO DE NEWTON A temperatura T de um corpo colocado num ambiente cuja temperatura é T0 obedece à seguinte relação: T = T0 + ke -ct Nesta relação, T é a medida na escala Celsius, t é o tempo medido em horas, a partir do instante em que o corpo foi colocado no ambiente, e k e c são constantes a serem determinadas. PROBLEMAS 1) Considere uma xícara contendo café, inicialmente a 100º C, colocada numa sala de temperatura 20º C. Vinte minutos depois, a temperatura do café passa a ser de 40ºC. Calcule a temperatura do café 50 minutos depois após a xícara ter sido colocada na sala. Considerando ln 2 = 0,7 e ln 3 = 1,1, estabeleça o tempo aproximado em que, depois de a xícara ter sido colocada na sala, a temperatura do café se reduziu à metade. 2) Um laboratório iniciou a produção de certo tipo de vacina com um lote de x doses. Se o planejado é o que o número de doses produzidas dobre a cada ano, após quanto tempo esse número passará a ser igual a 10 vezes o inicial? (Use log 2= 0,30) a) 1 ano e 8 meses b) 2 anos 3 meses c) 2 anos e 6 meses d) 3 anos e 2 meses e) 3 anos e 4 meses 3) A expressão N(t) = ,2t permite o cálculo do número de bactérias existentes em uma cultura, ao completar t horas do início de sua observação (t=0). Após quantas horas da primeira observação haverá bactérias nessa cultura? Dados: log 2 = 0,30; log 3 = 0,48. 4) Na escala Richter, a violência de um terremoto de intensidade I é dada por. (a) Determine a intensidade do terremoto de 1908 em San Francisco, que atingiu 8,3 na escala Ritchter.

7 (b) Quantas vezes mais intenso foi o terremoto de 1908 em San Francisco que o terremoto de 1995 em Kobe, no Japão, que atingiu 7,1 na escala Richter. 5) Encontre x tal que: a) b) ln(x+1)=5 c) 5 x = 7 6) Resolva para x. 7) Use as propriedades dos logaritmos para reescrever a expressão em termos de r, s e t onde a) b) c) d) 8) Resolva para x: a) e) ln 4x 3 ln (x²) = ln 2 b) f) 3 x = 2 c) ln ( x²) = 4 g) 5-2x = 3 d) h) =7 9) Esboce o gráfico de y=2. ln x e o gráfico de 10) No sistema cartesiano abaixo, estão representadas as funções y = 3, onde a é número real diferente de zero. Determine o valor de a.

FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!!

FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!! Matemática Matemática Avançada 3 o ano João mar/1 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є!! - {1}, a função f: R!! definida por f(x) =!! Definições - O gráfico

Leia mais

FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) =

FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) = Matemática Matemática Avançada 3 o ano João mar/11 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є f: R definida por f(x) = - {1}, a função Definições - O gráfico da função

Leia mais

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada?

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada? Professor Habib Lista de Matemática 1. (G1) Resolva a equação 2Ñ = 128 2. (G1) Calcule x de modo que se obtenha 10 Ñ = 1 3. (Uff) Resolva o sistema ý3ñ + 3Ò = 36 þ ÿ3ñ Ò = 243 4. (Ufsc) Determinar o valor

Leia mais

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:

Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a: Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)

Leia mais

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Função Modular Função é uma lei ou regra que associa cada elemento de um conjunto A a um único elemento de um conjunto B. O conjunto A é chamado

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota

Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota LISTA 03 FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL, FUNÇÃO LOGARITMICA - EQUAÇÕES E INEQUAÇÕES. Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1 - (UFBA) Considerando-se a função

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Matemática I Capítulo 13 Logaritmos

Matemática I Capítulo 13 Logaritmos Nome: Nº Curso: Controle Ambiental Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /2017 Matemática I Capítulo 13 Logaritmos 13.1 - Logaritmos Chamamos de logaritmo de b na base a o expoente

Leia mais

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a

Leia mais

COLÉGIO APROVAÇÃO LTDA. (21)

COLÉGIO APROVAÇÃO LTDA. (21) COLÉGIO APROVAÇÃO LTDA. ( 635-75 ALUNO/A: DATA: PROFESSOR: Victor Daniel Carvalho TURMA: PRÉ-VESTIBULAR DISCIPLINA: Matemática LISTA DE EXERCÍCIOS 7 (Logaritmos (UEPB A equação x + x + log (m + 3 = 0 não

Leia mais

Podemos verificar as duas condições [1) e 2)] na figura abaixo.

Podemos verificar as duas condições [1) e 2)] na figura abaixo. ROTEIRO: 1. Função exponencial 2. Logaritmo e propriedades 3. db, dbm. Função Exponencial: Na função exponencial, a variável x encontra-se no expoente, por exemplo, y=2 x, y=3 x+ 4, ou y=0,5 x. Podemos

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010 . Logaritmos Definição: O logaritmo de um número real x na base n, denotado por log n x, é definido como o expoente ao qual devemos elevar o número n para obtermos como resultado o número x, ou seja log

Leia mais

Função Exponencial e Logaritmica

Função Exponencial e Logaritmica QUESTÕES. (UFRJ) Dados a e b números reais positivos, b 0, define-se logaritmo de a na base b como o número real x tal que b x = a, ou seja,. Para, um número real x log positivo, a tabela ao lado fornece

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1.

1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1. 1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1. TEXTO PARA AS PRÓXIMAS 2 QUESTÕES. (Uerj 2001) Em um município, após uma pesquisa de

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Exercícios de exames e testes intermédios 1. Seja g uma função contínua, de domínio R, tal que: para todo o número real x, (g g)(x) = x para um certo

Leia mais

(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0.

(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0. Lista de Exercícios de Cálculo I para os cursos de Engenharia - Funções 1. Dado o gráfico de uma função: (a) Obtenha o valor de f( 1). (b) Estime o valor de f(). (c) f(x) = para quais valores de x? (d)

Leia mais

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 e 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2015 Sumário Equação Exponencial 1 Equação Exponencial 1 Exemplo 1 1 Método da redução à base comum

Leia mais

a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a...

a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a... Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL 1 1) Revisão de Potência Assim: a 1 = a e a n = a.a.a.....a a n+1 = (a.a.a.....a).a 2) Propriedades das Potências P1) a m.a n = a m+n Demonstração: a m.a

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 13 FUNÇÃO LOGARÍTMICA

MATEMÁTICA - 3 o ANO MÓDULO 13 FUNÇÃO LOGARÍTMICA MATEMÁTICA - 3 o ANO MÓDULO 13 FUNÇÃO LOGARÍTMICA y a > 1 0 < a < 1 y 0 1 x 0 1 x Função crescente Função decrescente y a > 1 0 < a < 1 y 0 + 1 x - + 0 1 x - 0 < x < 1 log a x < 0 x = 1 log a x = 0 x >

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Crescimento da dívida

Crescimento da dívida Valores em reais LOGARITMO CONTEÚDOS Logaritmo Propriedades dos logaritmos AMPLIANDO SEUS CONHECIMENTOS Uma empresa que trabalha com empréstimo, cobra juros absurdos. Se o devedor atrasar o pagamento da

Leia mais

Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA

Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1,

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

Hewlett-Packard LOGARITMO. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard LOGARITMO. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard LOGARITMO Aulas 0 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano 06 Sumário LOGARITMO... PRELIMINAR... LOGARITMO... EXERCÍCIOS FUNDAMENTAIS... CONSEQUÊNCIAS... CONSEQUÊNCIAS...

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...

Leia mais

Prof. Valdex Santos. ph = log[h]

Prof. Valdex Santos. ph = log[h] Aluno: Lista 1 - Prof. Valdex Santos I unidade Turmas 41/1 1. O ph de uma solução aquosa é definido pela expressão: ph = log[h] onde [H] representa a concentração em mol/l de íons de hidrogênio na solução.

Leia mais

Funções e Limites - Aula 08

Funções e Limites - Aula 08 Funções e Limites - Aula 08 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Março de 2013 Primeiro Semestre de 2013 Turma 2013104 - Engenharia de Computação Definição

Leia mais

6. Sendo A, B e C os respectivos domínios das

6. Sendo A, B e C os respectivos domínios das 1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,

Leia mais

Aulas n o 22: A Função Logaritmo Natural

Aulas n o 22: A Função Logaritmo Natural CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos

Leia mais

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log

Leia mais

Matemática Caderno 5

Matemática Caderno 5 FUNÇÃO LOGARÍTMICA: Dado um número real a positivo e diferente de um (a > 0 e a 1), denominados função logarítmica de base a à função f() = log a definida para todo real positivo. D (f) = IR * + Im (f)

Leia mais

Soluções dos Problemas do Capítulo 3

Soluções dos Problemas do Capítulo 3 48 Temas e Problemas Soluções dos Problemas do Capítulo 3. A cada período de 5 anos, a população da cidade é multiplicada por,0. Logo, em 0 anos, ela é multiplicada por,0 4 =,084. Assim, o crescimento

Leia mais

Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES

Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES número de bactérias Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES. Um biólogo, ao estudar uma cultura bacteriológica, contou o número de bactérias num determinado instante ao qual chamou

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

FUNÇÃO EXPONENCIAL & LOGARITMOS

FUNÇÃO EXPONENCIAL & LOGARITMOS FUNÇÃO EXPONENCIAL & LOGARITMOS MÓDULO 10 FUNÇÃO EXPONENCIAL MÓDULO 11 LOGARITMOS FUNÇÃO EXPONENCIAL Dado um número real a (a > 0 e a = 1) denomina-se função exponencial de base a uma função f : R R *

Leia mais

EXPONENCIAL E LOGARITMO

EXPONENCIAL E LOGARITMO EXPONENCIAL E LOGARITMO 1) (ENEM) Suponha que o modelo exponencial y = 363 e 0,03x, em que x = 0 corresponde ao ano 2000, x = 1 corresponde ao ano 2001, e assim sucessivamente, e que y é a população em

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Diagramas de Bode. Introdução

Diagramas de Bode. Introdução Diagramas de Bode Introdução Sistemas e Sinais Diagramas de Bode Escala Logarítmica de Amplitude Escala Logarítmica de Frequência Análise dos Termos das Funções de Resposta em Frequência Composição do

Leia mais

Unidade II. Unidade II

Unidade II. Unidade II Unidade II Unidade II 5 Funções 5.1 Conceitos introdutórios Neste tópico, alguns conceitos preliminares ao estudo de funções serão apresentados, tais como plano cartesiano e relações entre conjuntos. 5.1.1

Leia mais

Matemática Aplicada à Economia LES 201. Aulas 19 e 20 Funções exponenciais e logarítmicas. Luiz Fernando Satolo

Matemática Aplicada à Economia LES 201. Aulas 19 e 20 Funções exponenciais e logarítmicas. Luiz Fernando Satolo Matemática Aplicada à Economia LES 201 Aulas 19 e 20 Funções exponenciais e logarítmicas Luiz Fernando Satolo Funções Exponenciais e Logaritmicas Chiang, cap. 10 Funções exponenciais e logarítmicas várias

Leia mais

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E. UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Mat.Semana 8. Alex Amaral (Rodrigo Molinari)

Mat.Semana 8. Alex Amaral (Rodrigo Molinari) Alex Amaral (Rodrigo Molinari) Semana 8 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/04

Leia mais

Resolução - Lista 3 Cálculo I

Resolução - Lista 3 Cálculo I Resolução - Lista 3 Cálculo I Exercício 1 página 61: Encontre as funções compostas,,, e determine o domínio de cada uma delas, para cada par de funções e dados: c) = e = + 2 Calculando : = = Encontrando

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira) 10 PC Sampaio Alex Amaral Rafael Jesus Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.

Leia mais

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;

Leia mais

LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T

LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T HISTÓRIA No início do século XVII, os cálculos envolvidos nos assuntos de Astronomia e Navegação eram longos e trabalhosos. Para simplificar

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

A definição pode ser estendida para os seguintes casos particulares: e, com.

A definição pode ser estendida para os seguintes casos particulares: e, com. FUNÇÃO EXPONENCIAL REVISÃO: POTENCIAÇÃO Dados um número real a e um número natural n, a expressão a n representa a operação de potenciação onde a é chamado base e n é o expoente, e cujo resultado é obtido

Leia mais

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

Material Didático. Matemática Elementar. Maio Universidade Federal do Pará. Equipe de Matemática: José Benício da Cruz Costa (Coordenação)

Material Didático. Matemática Elementar. Maio Universidade Federal do Pará. Equipe de Matemática: José Benício da Cruz Costa (Coordenação) Matemática Elementar Material Didático Equipe de Matemática: (PCNA - Maio de 016) José Benício da Cruz Costa (Coordenação) Maio 016 Universidade Federal do Pará Monitores: Daniel de Souza Avelar da Costa

Leia mais

( x) = +. Qual dos seguintes. x = (B) o contradomínio é ],2] f é uma função par

( x) = +. Qual dos seguintes. x = (B) o contradomínio é ],2] f é uma função par Ficha de Trabalho n.º 7 página 5. Indique quantos são os pontos comuns aos gráficos das funções f e g definidas por f ( x) = x e g( x) = x (A) 0 (B) 1 (C) (D) 3 6. Pretende-se desenhar um retângulo com

Leia mais

16 - Funçã o Exponenciãl e Funçã o Logãrí tmicã

16 - Funçã o Exponenciãl e Funçã o Logãrí tmicã 16 - Funçã o Exponenciãl e Funçã o Logãrí tmicã Lista de Exercícios 1 01) (ESPCEX 2002) A solução de 2 (48/x) = 8 a) múltiplo de 16. b) múltiplo de 3. c) número primo. d) divisor de 8. e) divisor de 9.

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,

Leia mais

MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof.

MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof. MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Eponencial Função Logarítmica a SÉRIE ENSINO MÉDIO 009 Prof. Rogério Rodrigues =======================================================================

Leia mais

Equações Exponenciais e Logarítmicas. Equações Exponenciais e Logarítmicas. Exemplos: Exemplos: a x = b x= log a b. 1) Resolva as equações: ) 5 = 3

Equações Exponenciais e Logarítmicas. Equações Exponenciais e Logarítmicas. Exemplos: Exemplos: a x = b x= log a b. 1) Resolva as equações: ) 5 = 3 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Eponenciais e Logarítmicas.

Leia mais

Lista de exercícios Função Logaritmica

Lista de exercícios Função Logaritmica Lista de exercícios Função Logaritmica 1- Calcule os logaritmos: ) log 36 ) log 216 ) log 243 ) log ) log 128 )log10000 )log 16 h)ln )ln 2- Assumindo que x, y, e z são números positivos, use as propriedades

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

Simulado 1 (Corrigido no Final)

Simulado 1 (Corrigido no Final) Simulado 1 (Corrigido no Final) Mottola Resolver em horas, sem interrupções e sem consulta. Após este tempo, as questões não respondidas devem ser marcadas de forma aleatória. 1) O menor ângulo formado

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Kamila Gomes Ludmilla Rangel Cardoso Silva Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

Exercícios de Matemática Funções Função Inversa

Exercícios de Matemática Funções Função Inversa Exercícios de Matemática Funções Função Inversa 4. (Ufes) A função cujo gráfico está representado na figura 1 a seguir tem inversa. O gráfico de sua inversa é: TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s)

Leia mais

As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.

As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. Módulo 4 FUNÇÕES QUADRÁTICAS 1. APRESENTAÇÃO As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. - Modelagem de trajetórias na

Leia mais

Lista 0: Revisão Números Reais e Funções Elementares

Lista 0: Revisão Números Reais e Funções Elementares GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/ BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO DIFERENCIAL E INTEGRAL I Lista 0: Revisão

Leia mais

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE: Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5

Leia mais

Logaritmos Profº Adriano

Logaritmos Profº Adriano Logaritmos Profº Adriano Propriedades gerais dos logaritmos Os logaritmos considerados em uma base qualquer a, gozam de propriedades gerais: I) Em qualquer sistema de logaritmos, o logaritmo da própria

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

Logaritmo e Função Logarítmica

Logaritmo e Função Logarítmica Logaritmo e Função Logarítmica. (Unifor 04) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t) Q 0

Leia mais

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a

Leia mais

Exercícios de Matemática Funções Função Polinomial

Exercícios de Matemática Funções Função Polinomial Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Funções Exponenciais e Logarítmicas Roteiro no.4 - Atividades didáticas de 2007 Versão compilada no dia 27 de Abril de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré

Leia mais

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática Apostila 5: Função do º grau 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Plano Cartesiano. Relação Binária

Plano Cartesiano. Relação Binária Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

2 36) pertence ao. a) { 5, 1, 7, 25} b) { 3, 1, 6, 20} c) { 5, 2, 7, 25} d) { 5, 1, 25} f (1) 9. Calcule f (2). 10. (UFRN) Seja f : D R,

2 36) pertence ao. a) { 5, 1, 7, 25} b) { 3, 1, 6, 20} c) { 5, 2, 7, 25} d) { 5, 1, 25} f (1) 9. Calcule f (2). 10. (UFRN) Seja f : D R, 0. Para que valores de k o ponto eio das abscissas? k 3 b) k k ou k 4 k 0 ou k e) k ou k A (k, 4k 36) pertence ao 06. Seja g a função de domínio A,, 0,,, 3 e contradomínio R tal que de g. {,, 7, } b) {

Leia mais

SISTEMA DE EIXOS COORDENADOS

SISTEMA DE EIXOS COORDENADOS PET FÍSICA SISTEMA DE EIXOS COORDENADOS Aula 6 TATIANA MIRANDA DE SOUZA VICTOR ABATH DA SILVA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL

MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL a >1 f(x) f(x) = a x 1 x f(x) = a x f(x) 1 x Como pode cair no enem Em setembro de 1987, Goiânia foi palco do maior acidente radioativo ocorrido no Brasil,

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS. EQUAÇÕES EXPONENCIAIS Uma equação onde a incógnita está no expoente é chamada

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Funções e Modelos Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil Quatro maneiras de representar uma função Verbalmente (Descrevendo-a

Leia mais

Onde usar os conhecimentos os sobre função?

Onde usar os conhecimentos os sobre função? II FUNÇÃO E LOGARITMO Por que aprender função?... As funções exponenciais e logarítmicas estão presentes no estudo de fenômenos que envolvem taxas de crescimento e de decrescimento. Onde usar os conhecimentos

Leia mais

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa. LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais