Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2"

Transcrição

1 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA... 5 No final das séries de exercícios podem aparecer sugestões de atividades complementares. Estas sugestões referem-se a exercícios do livro Matemática de Manoel Paiva fornecido pelo FNDE e adotado pelo IFMG Campus Ouro Preto durante o triênio Todos os exercícios sugeridos nesta apostila se referem ao volume. MATEMÁTICA I FUNÇÃO QUADRÁTICA PARTE

2 Terminamos a apostila anterior construindo de gráficos da função do º grau. Vamos começar esta apostila tratando de mais alguns elementos importantes acerca destes gráficos. EIXO DE SIMETRIA O gráfico da função quadrática admite um eixo de simetria perpendicular ao eixo horizontal e que passa pelo vértice da parábola. A afirmação acima está presente no livro Fundamentos da Matemática Elementar e vamos demonstrá-la abaixo. Os pontos de uma reta vertical que passa pelo vértice de uma parábola obedecem à equação b x pois a b todos os pontos têm abscissa. a Para provarmos que a parábola tem um eixo de simetria, na reta b x devemos mostrar que se o a ponto b A k,y a pertence ao gráfico, então o ponto b B k,y a também pertence. f x Vamos considerar a função ax bx c na sua forma b f x a x a 4a b e também que o ponto A k,y a pertence a f(x), assim, f b a a a f x k y a x k a k b a k a 4a b a b a b a 4a 4a k b a 4a f 4a b a k logo, podemos ver que o ponto b B k,y a também pertence ao gráfico. Esta conclusão nos permite construir apenas um ramo da parábola (à esquerda ou direita do vértice) e simetrizar este ramo em relação ao eixo de simetria construir o outro ramo. COEFICIENTES a, b E c NO GRÁFICO Os parâmetros a, b e c de uma função quadrática apresentada sob a forma f(x) = ax + bx + c nos dão informações interessantes e importantes sobre a natureza do gráfico. Vamos ver nos acasos a seguir: CASSIO VIDIGAL IFMG CAMPUS OURO PRETO

3 . Parâmetro c O coeficiente c indica o ponto onde a parábola cruza o eixo vertical. º caso: b < 0 Quando b < 0, a parábola cruza o eixo vertical com seu ramo decrescente. A parábola cruzo o eixo das ordenadas no ponto (0, c).. Parâmetro b 3º caso: b = 0 Quando b = 0, a parábola cruza o eixo vertical no vértice, onde a função não é crescente nem decrescente. Este coeficiente indica se a parábola cruza o eixo das ordenadas com seu ramo crescente ou decrescente. Veja cada um dos casos nos exemplos abaixo. º caso: b > 0 Quando b > 0, a parábola cruza o eixo vertical com seu ramo crescente. 3. Parâmetro a O parâmetro a é responsável pela concavidade e abertura da parábola. Como já vimos na página 3 da apostila 6, se a > 0, a parábola tem a concavidade voltada cima e se a < 0, a concavidade estará voltada baixo. Porém, mais do que isso, este parâmetro determina a parábola. Quanto maior o valor absoluto de a, menor será sua abertura ou, em outras palavras, mais fechada ela será independente da direção da concavidade. Veja nos exemplos a seguir: MATEMÁTICA I 3 FUNÇÃO QUADRÁTICA PARTE

4 SINAL DA FUNÇÃO QUADRÁTICA Como já vimos em funções do primeiro grau, estudar o sinal de uma função é determinar quais valores de x a função assume valores positivos, negativos ou mesmo zero. Estas informações são úteis, entre outras coisas, verificar se construção do gráfico está correta. Dada uma função quadrática do tipo f(x) = ax + bx + c, sabemos que f(x) pode apresentar duas, uma ou nenhuma raiz e o sinal do coeficiente a determina a concavidade da parábola. Para estudar o sinal de uma função do º grau, fazer um esboço do gráfico baseado nas raízes, caso existam, e no sinal do coeficiente a. Veja, nos exemplos, alguns casos. CASSIO VIDIGAL 4 IFMG CAMPUS OURO PRETO

5 b) f(x) = x + 3x + Ex.: Vamos estudar o sinal das seguintes funções: a) f(x) = x x 6 x = -/, x = e a = - < 0 b) f(x) = x + 3x + c) f(x) = x x + d) f(x) = x + 8x - 8 e) f(x) = x x + f) f(x) = x + x fx 0 x ou x fx 0 x ou x fx 0 x c) f(x) = x x + x = x = e a = > 0 Resolução: a) f(x) = x x 6 As raízes são x = - e x = 3 e a = > 0, assim a parábola corta o eixo OX em dois pontos e possui concavidade cima. O esboço a seguir mostra isto e apresenta os sinais em cada intervalo. f f x x 0 0 x x d) f(x) = x + 8x - 8 x = x = e a = > 0 Logo, podemos afirmar que: f x 0 x ou x 3 f x 0 x ou x 3 f x 0 x 3 f f x x 0 0 x x MATEMÁTICA I 5 FUNÇÃO QUADRÁTICA PARTE

6 e) f(x) = x x + a = > 0 e f(x) não possui raízes. Faça agora alguns exercícios envolvendo estudo de sinais e inequações. Logo, f x 0 x ) Faça o estudo do sinal das seguintes funções: a) fx 6x 5x f) f(x) = x + x a = - < 0 e f(x) não possui raízes. Assim, f x 0 x CASSIO VIDIGAL 6 IFMG CAMPUS OURO PRETO

7 b) fx x x 3 d) f x x x c) fx x 4x 4 e) fx x 9 MATEMÁTICA I 7 FUNÇÃO QUADRÁTICA PARTE

8 f) fx x 43x h) fx x x g) fx x x i) fx x x CASSIO VIDIGAL 8 IFMG CAMPUS OURO PRETO

9 j) f x 3 x INEQUAÇÕES DO º GRAU Sendo f(x) = ax + bx + c com a, b e c reais e a 0, chamamos de INEQUAÇÃO DO º GRAU às sentenças do tipo f(x) > 0 ou f(x) 0 ou f(x) < 0 ou ainda f(x) 0. Resolver uma inequação significa determinar os valores reais de x que satisfazem a condição pedida e isto é feito analisando-se o sinal da função. Veja no exemplo a seguir. ) Determine os valores de c os quais temos x 4x c 0, x Ex.. Qual a solução da inequação x 5x + >0. Resolução: Em princípio devemos determinar as raízes da função e a seguir esboçar o gráfico. As raízes são x e a = > 0. x e ATIVIDADES COMPLEMENTARES Pág. 8 Exercícios R.6 e R.7 Pág 84 Exercícios 5 e 6 Observando o esboço do gráfico, podemos notar que a função é positiva x ou x assim: S x x ou x MATEMÁTICA I 9 FUNÇÃO QUADRÁTICA PARTE

10 Ex.: Resolver a inequação x 6x 7 0. b) 6x x 0 As raízes são x = - e x = 7 e a > 0. S x x 7 Ex.3: Quais valores de x satisfazem a inequação x 6x + 9 > 0? Raízes: x = x = 3 e a > 0 S x x 3 c) x 4 3) Determine o conjunto solução de cada uma das inequações a seguir: a) x 9x 0 0 CASSIO VIDIGAL 0 IFMG CAMPUS OURO PRETO

11 d) x 36 x f) x x x 8 e) x x g) m m m m MATEMÁTICA I FUNÇÃO QUADRÁTICA PARTE

12 CASSIO VIDIGAL IFMG CAMPUS OURO PRETO h) t t t i) 6 4x 4 x x j) 6 k 3 k k k) 4 a x

13 4) Num laboratório, uma substância sofre um processo de mudança de temperatura. Sabe-se que após t segundos após o inicio do experimento, a temperatura C, em graus Celsius, é dada por C(t) = t t c) Em que instante isto ocorre? a) Qual a temperatura inicial da substância? b) Qual a temperatura mínima que a substância atinge? d) Durante quanto tempo a temperatura fica negativa? MATEMÁTICA I 3 FUNÇÃO QUADRÁTICA PARTE

14 e) Em que intervalo de tempo a temperatura ficou abaixo de 4ºC? INEQUAÇÕES PRODUTO E QUOCIENTE Resolver uma inequação produto e/ou quociente do segundo grau é semelhante ao que fazemos com aquelas que envolvem apenas funções do primeiro grau. Veja o exemplo. Ex.: Resolver a inequação (x + x 3)(4x ) > 0 Resolução: Devemos estudar o sinal de cada uma das funções. f(x) = x + x 3 g(x) = 4x S x 3 x ou x 4 Como não há novidades em relação ao que já vimos em inequações produto/quociente do primeiro grau, podemos passar direto aos exercícios. ATIVIDADES COMPLEMENTARES Pág. 84 Exercícios 7 a 9 CASSIO VIDIGAL 4 IFMG CAMPUS OURO PRETO

15 5) Resolva as inequações: x 5x 4 x x a) 0 c) xx 3x 0 d) x 3x 3x 0 x 0 b) x x5x 0 MATEMÁTICA I 5 FUNÇÃO QUADRÁTICA PARTE

16 4x 3x e) 0 x x 6) Resolva as duas inequações a seguir: x x a) x x 4 x f) 0 x 6x 5 b) x x CASSIO VIDIGAL 6 IFMG CAMPUS OURO PRETO

17 7) Seja fx x. Determine os x valores de x em cada caso: a) que se tenha f(x) = 8) Dado fx x x 3x x calcule os valores de x em cada caso: a) que se tenha f(x) = 0 b) que se tenha f(x) > 0 b) que se tenha f(x) > MATEMÁTICA I 7 FUNÇÃO QUADRÁTICA PARTE

18 SISTEMA DE INEQUAÇÕES DO º GRAU Resolver um sistema de inequações do º grau ou um sistema de inequações simultâneas do º grau é semelhante àquele envolvendo apenas inequações do primeiro grau. 9) Resolva os sistemas: x x a) x x x x 3 Devemos lembrar que a solução de um sistema é a INTERSECÇÃO das soluções de cada uma das inequações que o formam. x x Ex.: Resolver o sistema. x x Resolução: Devemos resolver cada inequação sedamente e, em seguida, fazer a intersecção entre as soluções. x x x x x x x 0 e x x x x 0 e x S [ ; ] [; ] CASSIO VIDIGAL 8 IFMG CAMPUS OURO PRETO

19 b) x x x 8x 9 8x 9 0) Indique o conjunto solução de cada um dos três sistemas de inequações simultâneas a seguir: a) 4x x 5x 4 MATEMÁTICA I 9 FUNÇÃO QUADRÁTICA PARTE

20 b) x x x 5 x c) 3x x x 3x x x 3 CASSIO VIDIGAL 0 IFMG CAMPUS OURO PRETO

21 ) Sejam fx x 5 gx 3x. Determine x tal que: a) < f(x) < 5 e ) Calcule m de modo que fx mx mx tenha raízes reais e o gráfico seja uma parábola voltada cima. b) f(x) g(x) MATEMÁTICA I FUNÇÃO QUADRÁTICA PARTE

22 3) Construir o gráfico da função: x 4 3 x 3 fx x 4 x 3 ou x 3 4) Construir o gráfico da função: f x x 7 x - x² + x - 3 x x x CASSIO VIDIGAL IFMG CAMPUS OURO PRETO

23 RESPOSTAS ) a) b) f f f x x x f f f x x x x 3 ou x x ou x 3 x 3 3 x x 3 ou x x 3 ou x ) c > 4 i) j) 3) a) f x f f x x x x 3 x S x x ou x b) S x 0 x 6 c) d) e) f f f f f f f f x x x x x x x x x x 0 x x 0 ou x x 0 ou x x 3 ou x 3 x 3 ou x 3 3 x 3 c) S x x ou x d) S x x 6 e) f) 5 S x S g) S m m x 5 f) f f f x x x x ou x 3 x ou x 3 x 3 h) S = Ø i) S 4 j) S k k 3 ou k g) f f f x x x x x ou x x ou x h) f x 0 x k) S = Ø 4) a) 35ºC b) -ºC c) t = 6 s MATEMÁTICA I 3 FUNÇÃO QUADRÁTICA PARTE

24 5) a) d) durante segundos e) < t < b) S x x ou x 485 S x x ou 0 x 5 S x x ou x 0 S {x x ou c) d) e) f) x ou 3 S {x x x 5} ou x ou x } 4 S {x x 5 ou x ou x 3} ) a) - < x <0 b) x - ou x ) m 4 3) 6) a) S x x b) S x x ou x 0 ou x 7) a) x = 0 ou x = b) x 0 ou x 4) 8) a) x ou x ou x 3 b) x ou x ou x 3 9) a) S x 0 x b) S x x 3 ou x 9 0) a) S x x ou x 4 b) S = Ø c) S x x CASSIO VIDIGAL 4 IFMG CAMPUS OURO PRETO

25 REFERÊNCIA BIBLIOGRÁFICA MACHADO, Antônio dos Santos; Matemática, Temas e Metas. São Paulo, Atual, 988. IEZZI, Gelson e outros; Fundamentos da Matemática Elementar, Volume. São Paulo, Atual, 5ª edição, 977. RUBIÓ, Angel Pandés; Matemática e suas tecnologias; Volume. São Paulo, IBEP, 005. PAIVA, Manoel; Matemática; Volume. São Paulo, Moderna, 995. Links as vídeos-aulas sugeridas Pág coef-a-b-c-grafico/ Pág est-sinal-fg/ MATEMÁTICA I 5 FUNÇÃO QUADRÁTICA PARTE

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. DEFINIÇÃO... GRÁFICO... ZEROS ou RAÍZES... 3 DISCUSSÃO DAS RAÍZES... 5 RELAÇÕES ENTRE COEFICIENTES E RAÍZES... 8 VÉRTICE... CONCAVIDADE... MÁXIMO OU MÍNIMO... IMAGEM... 3 FORMA CANÔNICA... 8 CONSTRUÇÃO

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Inequação do Segundo Grau Vitor Bruno Santos Pereira - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO

EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO =========================================================================================== 1) Seja a função f(x)

Leia mais

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA: C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22 Resolução das atividades complementares Matemática M7 Função do o grau p. 0 Estude os sinais da função quadrática ƒ dada por: a) 5 x 8x c) 5 x 4x 4 b) 5 x x d) x x a) zeros de f: x 8x 5 0 x 4x 5 0 (x )?

Leia mais

f x x x f x x x f x x x f x x x

f x x x f x x x f x x x f x x x Página 1 de 7 I. FUNÇÃO DO º GRAU (ou QUADRÁTICA) 1. Definição Chama-se função do º grau (ou função quadrática) a toda função do tipo onde a, e c são números reais e a 0. São exemplos: f ( x) ax x c =

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU :

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU : IFSP - EAD _nº 5 FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES : FUNÇÃO CONSTANTE : Uma função f: R R é chamada constante se puder ser escrita na forma y = f() = a, onde a é um número real

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

Nivelamento Matemática Básica

Nivelamento Matemática Básica Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga

Leia mais

FUNÇÃO DO 2º GRAU. y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e. O gráfico de uma função quadrática é uma parábola

FUNÇÃO DO 2º GRAU. y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e. O gráfico de uma função quadrática é uma parábola FUNÇÃO DO 2º GRAU A função do 2º grau está presente em inúmeras situações cotidianas, na Física ela possui um papel importante na análise dos movimentos uniformemente variados (MUV), pois em razão da aceleração,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

1 Completando Quadrados

1 Completando Quadrados UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Completamento de quadrados, Função e Equação quadrática, Função Inversa.

Leia mais

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. 1- ( VUNESP) A parábola de equação y = ax² passa pelo vértice da parábola y = 4x - x². Ache o valor de a: a) 1 b) 2

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo

Leia mais

Lista de exercícios sobre função quadrática Prof. Márcio Prieto

Lista de exercícios sobre função quadrática Prof. Márcio Prieto 1. (Fgv) O preço de ingresso numa peça de teatro (p) relaciona-se com a quantidade de frequentadores (x) por sessão através da relação; p = - 0,2x + 100 a) Qual a receita arrecadada por sessão, se o preço

Leia mais

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula A UA UL LA A função do º grau Introdução Na aula anterior, estudamos a função do 1º grau ( = a + b) e verificamos que seu gráfico é uma reta. Nesta aula, vamos estudar outra função igualmente importante:

Leia mais

INEQUAÇÕES : Conceito:

INEQUAÇÕES : Conceito: INEQUAÇÕES : Conceito: Toda inequação é uma desigualdade aberta, o que significa que ela contém ao menos uma incógnita Trabalharemos a seguir com inequações de º e de º graus com uma só incógnita, e para

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

ALUNO(A): Prof.: Andre Luiz 04/06/2012

ALUNO(A): Prof.: Andre Luiz  04/06/2012 1. FUNÇÃO 1.1 Definição A função dada por ( ), com a, b, c reais e a 0. Vejamos alguns exemplos: a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) d) ( ) ( ) e) ( ) ( ) Vamos a outro exemplo: Ex2.: Um objeto que se desloca

Leia mais

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

INEQUAÇÕES ESPECIALIZAÇÃO EM INSTRUMENTAÇÃO PARA O ENSINO DE MATEMÁTICA. Prof. M.Sc. Armando Paulo da Silva 1

INEQUAÇÕES ESPECIALIZAÇÃO EM INSTRUMENTAÇÃO PARA O ENSINO DE MATEMÁTICA. Prof. M.Sc. Armando Paulo da Silva 1 ANÁLISE DE MÉTODOS M MÁTEMÁTICOSTICOS INEQUAÇÕES Prof. M.Sc. Armando Paulo da Silva 1 ANÁLISE DE MÉTODOS M MÁTEMÁTICOS TICOS I INEQUAÇÕES 1º GRAU Prof. M.Sc. Armando Paulo da Silva 2 INEQUAÇÕES DE 1º 1

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Kamila Gomes Ludmilla Rangel Cardoso Silva Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

Matemática Básica. Atividade Extra

Matemática Básica. Atividade Extra Matemática Básica Atividade Extra Assunto: Funções do 1º e º grau Professor: Carla Renata 1)Construir os gráficos das funções abaixo: ) 3) 4) 5) Classifique cada função em crescente ou decrescente. 6)

Leia mais

Aula 5 Exercícios e Aplicações de Funções Quadráticas. Fabio Licht

Aula 5 Exercícios e Aplicações de Funções Quadráticas. Fabio Licht Aula 5 Exercícios e Aplicações de Funções Quadráticas Fabio Licht Construção do gráfico da função do 2.º grau Passo a passo 1º passo: determinar as raízes da função 2º passo: estudo da concavidade 3º passo:

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f: FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ) g(x) = x 2 5x c) h(x)

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A):

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): 1. (Unisinos-RS) Suponha que o número de carteiros necessários

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,

Leia mais

Aula 15 Parábola. Objetivos

Aula 15 Parábola. Objetivos MÓDULO 1 - AULA 15 Aula 15 Parábola Objetivos Descrever a parábola como um lugar geométrico determinando a sua equação reduzida nos sistemas de coordenadas com eixo x paralelo à diretriz l e origem no

Leia mais

FUNÇAO DO 2 GRAU. é igual a:

FUNÇAO DO 2 GRAU. é igual a: 1. (Epcar (Afa)) O gráfico de uma função polinomial do segundo grau y f x, que tem como coordenadas do vértice (5, 2) e passa pelo ponto (4, 3), também passará pelo ponto de coordenadas a) (1, 18) b) (0,

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f: FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ( a = 3, = -5 e c = 6 )

Leia mais

CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado

CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação FUNÇÕES POLINOMIAIS Função polinomial de 1º grau Professora: Walnice Brandão Machado O gráfico de

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

Apêndice I Funções e Gráficos

Apêndice I Funções e Gráficos http://www.medeirosjf.net/fisica Física I Apêndice I: Funções e Gráficos pág.i 1 - Introdução Apêndice I Funções e Gráficos Neste apêndice, iremos trabalhar com alguns pré-requisitos básicos para que você

Leia mais

Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo

Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira

Leia mais

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47 ÍNDICE Números e operações Geometria e medida Relação de ordem em R 4 Intervalos de números reais 8 Valores aproimados de resultados de operações Eercícios resolvidos 6 Eercícios propostos 0 Eercícios

Leia mais

Funções quadráticas. Matemática - UEL Compilada em 18 de Março de 2010.

Funções quadráticas. Matemática - UEL Compilada em 18 de Março de 2010. Matemática Essencial Funções quadráticas Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 A função quadrática

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Inequação do Primeiro Grau Bárbara Simionatto - Engenharia Civil Definição Equação x Inequação Uma equação é uma igualdade entre dois membros e por

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 1

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 1 DEFINIÇÃO... GRÁFICO... ZEROS ou RAÍZES... 4 DISCUSSÃO DAS RAÍZES... 5 RELAÇÕES ENTRE COEFICIENTES E RAÍZES... 8 VÉRTICE... CONCAVIDADE... 3 MÁXIMO OU MÍNIMO... 3 IMAGEM... 4 FORMA CANÔNICA... 9 CONSTRUÇÃO

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

TESTE DE DIAGNÓSTICO

TESTE DE DIAGNÓSTICO TESTE DE DIAGNÓSTICO 9.º 10.º ANO NOME: N.º: TURMA: ANO LETIVO: / DURAÇÃO DO TESTE: 90 MINUTOS DATA: / / O teste é constituído por dois grupos. No Grupo I, são indicadas quatro opções de resposta para

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Aula 06: Funções e seus Gráficos

Aula 06: Funções e seus Gráficos GST1073 Fundamentos de Matemática Aula 06: Funções e seus Gráficos Fundamentos de Matemática Aula 6 Funções e seus Gráficos Objetivos Gerais: Modelar e solucionar vários tipos de problemas com o uso do

Leia mais

Módulo 1 Potenciação, equação exponencial e função exponencial

Módulo 1 Potenciação, equação exponencial e função exponencial Módulo 1 Potenciação, equação exponencial e função exponencial 1. Potenciação e suas propriedades 1.1. Potência de expoente natural Potenciação nada mais é do que uma multiplicação de fatores iguais. Casos

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA DEPARTAMENTO DE ENSINO CURSO TÉCNICO INTEGRADO EM ELETROTÉCNICA 1ºANO

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA DEPARTAMENTO DE ENSINO CURSO TÉCNICO INTEGRADO EM ELETROTÉCNICA 1ºANO UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA DEPARTAMENTO DE ENSINO CURSO TÉCNICO INTEGRADO EM ELETROTÉCNICA 1ºANO DISCIPLINA: Matemática SIGLA: MAT Carga Horária anual:

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Matemática B Etensivo v. 8 Eercícios y = Eio real = a = a = C = A + B ( = ( + B B = a y b = D C y = y = 6 9 Daí, a = 6 e b = 9 c = a + b c = 9 + 6 c = c = c = Portanto, a distância focal é dada por: c

Leia mais

Lista de exercícios: Funções do 1º Grau

Lista de exercícios: Funções do 1º Grau Lista de eercícios: Funções do º Grau. Marque quais são as funções do º grau: (R= a, b, d, f, h, j, k) a. 7 e. i. 5 b. 4 f. j. c. 6 g. k. 5 6 d. 4 5 h.. Calcule o zero de cada uma das seguintes funções:

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 17 FUNÇÃO DO 2 O GRAU - DEFINIÇÃO

MATEMÁTICA - 1 o ANO MÓDULO 17 FUNÇÃO DO 2 O GRAU - DEFINIÇÃO MATEMÁTICA - 1 o ANO MÓDULO 17 FUNÇÃO DO 2 O GRAU - DEFINIÇÃO y c x y y x x x x x x y y x =x x x =x x y y x x eixo de simetria eixo de simetria y x x v x f(x) x y v y v y v v x x v x x Como pode cair

Leia mais

Aula Transformações

Aula Transformações Aula 6 6. Transformações O gráfico de uma função f permite obter os gráficos de outras funções, via transformações elementares. Para simplificar, nesta seção consideraremos somente funções cujo domínio

Leia mais

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada 1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

MÓDULO XI. INEQUAÇÕES 2x 20

MÓDULO XI. INEQUAÇÕES 2x 20 MÓDULO XI. Inequação INEQUAÇÕES < Logo, o conjunto solução será S. Vamos supor que, na nossa escola, a média mínima para aprovação automática seja 6 e que essa média, em cada matéria, seja calculada pela

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

Exercícios de Matemática Funções Função Modular

Exercícios de Matemática Funções Função Modular Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Matemática I Capítulo 10 Função Quadrática

Matemática I Capítulo 10 Função Quadrática Nome: Nº Curso: Manutenção e Suporte Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 10 Função Quadrática Chamamos de função polinomial do º grau ou função quadrática,

Leia mais

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f (

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

PLANO DE ENSINO OBJETIVOS

PLANO DE ENSINO OBJETIVOS PLANO DE ENSINO DADOS DO COMPONENTE CURRICULAR Nome do Componente Curricular: Matemática I Curso: Técnico de Nível Médio Integrado em Mineração Série/Período: 1º ano Carga Horária: 4 a/s - 160 h/a - 133

Leia mais

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem.

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Probabilidade A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Experimento Aleatório É aquele experimento que quando repetido em iguais

Leia mais

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1.

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1. COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Professor: Henrique Plínio Função Quadrática Lista 2 Data: / /2015 III Unidade Aluno: 1 Turma: 1º 1.Considere

Leia mais

A equação da reta. são números conhecidos. Seja então (x, y) um ponto qualquer dessa reta. e y 2. , x 2

A equação da reta. são números conhecidos. Seja então (x, y) um ponto qualquer dessa reta. e y 2. , x 2 A equação da reta A UUL AL A Vamos, nesta aula, retomar o assunto que começamos a estudar nas Aulas 9 e 30: a equação da reta. Aprenderemos hoje outra forma de obter a equação da reta e veremos diversas

Leia mais

FUNÇÃO DO 2 GRAU TERÇA FEIRA

FUNÇÃO DO 2 GRAU TERÇA FEIRA FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:

Leia mais

ESCOLA SECUNDÁRIA FERREIRA DIAS

ESCOLA SECUNDÁRIA FERREIRA DIAS ESCOLA SECUNDÁRIA FERREIRA DIAS ENSINO RECORRENTE DE NÍVEL SECUNDÁRIO POR MÓDULOS CAPITALIZÁVEIS CURSO DE CIÊNCIAS E TECNOLOGIAS DISCIPLINA : MATEMÁTICA A ANO: 10.º - CONJUNTO DOS MÓDULOS 1-2-3 DURAÇÃO

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

FICHA DE TRABALHO FUNÇÕES POLINOMIAIS. Matemática (10/11º ano) EXERCÍCIOS

FICHA DE TRABALHO FUNÇÕES POLINOMIAIS. Matemática (10/11º ano) EXERCÍCIOS FICHA DE TRABALHO FUNÇÕES POLINOMIAIS Matemática (10/11º ano) EXERCÍCIOS I. Questões de escolha múltipla 1. Das seguintes representações gráficas, quais são representativas de funções? (A) I e IV (B) II

Leia mais