CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g"

Transcrição

1 CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas funções essenciais; Reconhecer, através do gráco, a função que ele representa; Reconhecer características de cada função. 1 Operações com Funções Duas funções f e g podem ser combinadas para formar novas operações, tais como f + g, f g, fg, f/g de forma semelhante àquelas operações com números reais, que denimos na Aula 01. Vejamos a seguir, como estas operações são denidas. Denição 1. Dada as funções: f : A R e g : B R, com A e B subconjuntos de R e A B o/, denimos as seguintes operações: 1.1 (Soma) A soma de f com g é a função: f + g : A B R, cuja regra é dada por (f + g)(x) = f(x) + g(x). 1.2 (Multiplicação por um escalar) O produto de f por um escalar (número real) c é a função: cf : A R, cuja regra é dada por (cf)(x) = c f(x). 1.3 (Produto) O produto de f com g é a função: fg : A B R, cuja regra é dada por (fg)(x) = f(x) g(x). 1.4 (Quociente) O quociente de f com g é a função: dada por f g ( ) f (x) = f(x) g g(x). Exemplo 1. Considere as funções f(x) = x 3 x 2 e g(x) = 4x 2 1, encontre: (a) f + g (b) 4f (c) fg : {x A B g(x) 0} R, cuja regra é 1

2 (d) f/g Solução: Note que f e g são funções cujo domínio é R, logo o domínio de f + g, 4f e fg será R. Entretanto, para f/g, o domínio será R { 1 2, 1 2}, tendo em vista que para a divisão de frações temos a restrição de que g(x) 0. Assim, temos que: (a) (f + g)(x) = f(x) + g(x) = (x 3 x 2 ) + (4x 2 1) = x 3 + 3x 2 1, x R. (b) 4f(x) = 4(x 3 x 2 ) = 4x 3 4x 2, x R. (c) (fg)(x) = f(x).g(x) = (x 3 x 2 ) (4x 2 1) = 4x 5 4x 4 x 3 + x 2, x R. ( ) f (d) (x) = f(x) g g(x) = x3 x 2 4x 2 1, x R { 1 2, 1 } 2. Existe outra maneira de combinar duas funções para obter uma nova função. Por exemplo, podemos escrever y em função de x quando, y = f(u) (y é uma função de u) e u = g(x) (u é uma função de x), a partir da substituição de uma função na outra. A este método, denominamos composição de funções. Segue a denição: Denição 2 (Composição de funções). Dada duas funções f e g, tal que a imagem de f é subconjunto do domínio de g, a função composta de f com g, denotada por g f(x) é denida por; g f : A R, cuja regra é dada por: Simbolicamente: (g f)(x) = g(f(x)). D(g f) = {x D(f) f(x) D(g)}. A gura 1 mostra como visualizar a composição de duas funções: f x f(x) g(f(x)) g f o g Figura 1: Composição de Funções Observação 1. É comum usar a notação f 2 para f f, f 3 para f f f. No geral, para um inteiro n 1, denimos f n = f n 1 f e f 0 = I, onde I é a função identidade de A. Exemplo 2. Sejam f(x) = x e g(x) = x 1. Encontre g f. Solução: Temos que: g f(x) = g(f(x)) = g( x) = x 1. Como D(f) = [0, + ) e Im(f) = [0, + ) D(g) = R, então D(g f) = D(f) = [0, + ). Prof. Edilson Neri Prof. André Almeida 2

3 Exemplo 3. Sejam f(x) = x + 1 x e g(x) = x + 1. Encontre (f g)(x) e seu respectivo domínio. x 4 Solução: Temos que: (f g)(x) = f(g(x)) = g(x) + 1 g(x) = x + 1 x 4 + x 4 x + 1 = (x + 1)2 + (x 4) 2 (x 4)(x + 1) = 2x2 6x + 17 (x 4)(x + 1). O domínio de (f g)(x) é R { 1, 4}. Exemplo 4. Sejam as funções: 0, se, x < 0 f(x) = x 2, se, 0 x 1 0, se, x > 1 1, se, x < 0 e g(x) = 2x, se, 0 x 1 1, se, x > 1 Determinar f g. Solução: Note que Se x < 0, (f g)(x) = f(g(x)) = f(1) = 1 2 = 1. Se 0 x 1, (f g)(x) = f(g(x)) = f(2x). Para 0 x 1 2, temos 0 2x 1. Logo, neste caso, (f g)(x) = f(2x) = 4x2. Para 1 2 x 1 temos 2x > 1. Assim, para este caso, (f g)(x) = 0. Se x > 1, (f g)(x) = f(g(x)) = f(1) = 1. Logo: O domínio de (f g)(x) é R. 1, se, x < 0 4x (f g)(x) = 2, se, 0 x 1/2 0, se, 1/2 < x 1 1, se, x > 1 2 Funções Elementares Existem vários tipos de funções que podem modelar problemas e situações do cotidiano. Apresentaremos, a seguir, algumas funções elementares e que serão muito utilizadas ao longo deste curso. 2.1 Funções Polinomiais Denição 3 (Função Polinomial). Uma função f cuja regra é dada por: f(x) = a n x n + a n 1 x n 1 + a n 2 x n a 2 x 2 + a 1 x + a 0 onde n é um número inteiro não negativo e a n, a n 1, a n 2,..., a 2, a 1, a 0 são números reais (ou constantes) chamados de coecientes do polinômio, é chamada polinomial. O número inteiro n é chamado grau do polinômio. Dependendo do grau do polinômio, temos algumas classes de funções polinomiais que são muito conhecidas e que já foram amplamente discutidas no ensino médio. A seguir, mostraremos algumas dessas funções e seus respectivos grácos. Prof. Edilson Neri Prof. André Almeida 3

4 Exemplo 5 (Função Polinomial do 1 o Grau ou Função Am). A função polinomial do 1 o grau (ou simplesmente função do 1 o grau) é toda função que associa um número real x ao valor númerico do polinômio ax + b, com a 0. Os números reais a e b são chamados, respectivamente, de coeciente angular e coeciente linear. Simbolicamente: f : R R x ax + b O gráco da funçãof(x) = ax + b é uma reta não paralela aos eixos coordenados. A depender do valor de a, a função f(x) pode ser dita crescente (para a > 0) ou decrescente (para a < 0). Observe, a seguir, o gráco da função do 1 o grau. Figura 2: Grácos da Função Am. À esqueda, temos o gráco de uma função crescente e à direita, o gráco de uma função decrescente. Exemplo 6 (Função Polinomial do 2 o Grau ou Função Quadrática). A função polinomial do 2 o grau (ou simplesmente função do 2 o grau) é denida por: f : R R x ax 2 + bx + c, com a 0. O gráco desta função é uma parábola, com eixo de simetria paralelo ao eixo y. Se o coeciente de x 2 for positivo (a > 0), a parábola tem concavidade voltada para cima, enquanto que, se o coeciente de x 2 for negativo (a < 0), a parábola tem concavidade voltada para baixo. Observe, a seguir o gráco da função do 2 o grau: Figura 3: Grácos da Função Quadrática. À esqueda, temos o gráco de uma função quadrática com a > 0 e à direita, o gráco de uma função quadrática com a < 0. Prof. Edilson Neri Prof. André Almeida 4

5 Na função quadrática, a interseção do gráco com o eixo de simetria é um ponto chamado vértice. Este ponto pode ser considerado máximo (quando a parábola tem concavidade voltada para baixo) ou mínimo (quando a parábola tem concavidade voltada para cima). Exemplo 7 (Função Polinomial do 3 o Grau ou Função Cúbica). A função polinomial do 3 o grau (ou simplesmente função do 3 o grau) é denida por: com a 0. f : R R x ax 3 + bx 2 + cx + d, O gráco da função cúbica será apresentado a seguir. Figura 4: Gráco da Função Cúbica 2.2 Funções Racionais Denição 4 (Função Racional). Uma função racional f é a razão de dois polinômios: f(x) = P (x) Q(x), em que P e Q são polinômios. O domínio consiste em todos os valores de x tais que Q(x) 0. Exemplo 8. A função f(x) = x 1 x + 1 é uma função racional, cujo domínio é R { 1}. Observe o gráco: Exemplo 9. A função f(x) = (x2 + 3x 4)(x 2 9) (x 2 é racional e seu domínio é R { 4, 3, 3}. Observe + x 12)(x + 3) o gráco: Prof. Edilson Neri Prof. André Almeida 5

6 Figura 5: Gráco da Função f(x) = x 1 x + 1 Figura 6: Gráco da Função f(x) = (x2 + 3x 4)(x 2 9) (x 2 + x 12)(x + 3) 2.3 Função Potência Denição 5 (Função Potência). Uma função da forma: f(x) = x α, onde α é uma constante, é chamada função potência. Se α = 1, 2, 3,..., dizemos que a função potência é uma função polinomial. Se α = 1/n, com n positivo, dizemos que a função é racional e se n é negativo, dizemos que o gráco é da função recíproca. Exemplo 10. A função f(x) = x é uma função raiz, onde α = 1/2. Observe o gráco: Prof. Edilson Neri Prof. André Almeida 6

7 Exemplo 11. A função f(x) = 1 x Figura 7: Gráco da Função f(x) = x é uma função potência. Entretanto, observe que para todo x > 0, o gráco da função encontra-se no 1 o quadrante do plano cartesiano e, podemos considerá-la como uma função raiz. Já para todo x < 0, o gráco da função encontra-se no 3 o quadrante do plano cartesiano e, podemos considerá-la uma função recíproca. Observe: Figura 8: Gráco da Função f(x) = 1 x Observação 2. Uma função f é dita algébrica se puder ser construída por meio de operações algébricas (soma, multiplicação, divisão e extração de raízes) envolvendo a função identidade e funções constantes. As funções não algébricas são chamadas de transcendentes. Como exemplo de funções transcendetes, podemos citar as funções trigonométricas, exponeciais e logarítmicas, que serão apresentadas a seguir. Prof. Edilson Neri Prof. André Almeida 7

8 2.4 Funções Trigonométricas Dado um número real θ, considere o ângulo orientado, em posição padrão, cuja medida em radianos é θ e P (x, y) a interseção do lado terminal deste ângulo com o círculo unitário x 2 + y 2 = 1. Deniremos a seguir, as funções trigonométricas. Figura 9: Círculo unitário x 2 + y 2 = 1 Denição 6 (Função Seno). A função seno é uma função f de R em R que associa cada x R ao número real y = sen x, isto é, f : R R x y = sen x. O domínio de f(x) = sen x é R e o conjunto imagem é o intervalo [ 1, 1]. Como esta função está denida no círculo unitário, é possível notar que existe um padrão de repetição da imagem, para cada x R. Este padrão de repetição é denominado de período e ocorre a cada 2π. O gráco de f(x) = sen x, denominado de senóide, pode ser visualizado a seguir. Figura 10: Gráco de f(x) = sen x. Denição 7 (Função Cosseno). A função cosseno é uma função f de R em R que associa cada x R ao número real y = cos x, isto é, f : R R x y = cos x. De forma semelhante à função seno, o domínio da função cosseno é R e o conjunto imagem é o intervalo [ 1, 1]. Como esta função também está denida no círculo unitário, é possível notar que existe um padrão de repetição da imagem, para cada x R. Este padrão de repetição é denominado de período e ocorre a cada 2π. O gráco de f(x) = cos x, denominado de cossenóide, pode ser visualizado a seguir. Figura 11: Gráco de f(x) = cos x. Prof. Edilson Neri Prof. André Almeida 8

9 As funções tangente, cotangente, secante e cosecante, apresentadas a seguir, serão denidas em termos de seno e cosseno. Denição 8 (Função Tangente). Para todo número real x, tal que cos x 0, denimos a função tangente (denotada por tg x) pela regra: f(x) = tg x = sen x cos x. O domínio da função tangente é o conjunto de todos os números reais x, para os quais cos x 0. Ou seja, para todo x na forma π 2 + kπ, com k Z, a função tangente não estará denida. Gracamente. Figura 12: Gráco de f(x) = tg x. Denição 9 (Função Secante). Para todo número real x, tal que cos x 0, denimos a função secante (denotada por sec x) pela regra: f(x) = sec x = 1 cos x. O domínio da função secante é o conjunto de todos os números reais x, para os quais cos x 0. Ou seja, para todo x na forma π 2 + kπ, com k Z, a função secante não estará denida. Gracamente: Figura 13: Gráco de f(x) = sec x. Denição 10 (Função Cotangente). Para todo número real x, tal que sen x 0, denimos a função secante (denotada por cotg x) pela regra: f(x) = cotg x = 1 tg x = cos x sen x. Prof. Edilson Neri Prof. André Almeida 9

10 O domínio da função cotangente é o conjunto de todos os números reais x, para os quais sen x 0. Ou seja, para todo x na forma kπ, com k Z, a função cotangente não estará denida. Gracamente: Figura 14: Gráco de f(x) = cotg x. Denição 11 (Função Cossecante). Para todo número real x, tal que sen x 0, denimos a função secante (denotada por cossec x) pela regra: f(x) = cossec x = 1 sen x. O domínio da função cossecante é o conjunto de todos os números reais x, para os quais sen x 0. Ou seja, para todo x na forma kπ, com k Z, a função cossecante não estará denida. Gracamente: Figura 15: Gráco de f(x) = cossec x. 3 Função Exponencial e Função Logarítmica Apresentaremos nesta seção a função exponencial e a sua inversa, a função logarítmica. 3.1 Função Exponencial Denição 12 (Função Exponencial). Seja a um número positivo diferente de 1. A função f(x) = a x é a função exponencial com base a. Prof. Edilson Neri Prof. André Almeida 10

11 Gracamente, temos: Figura 16: Grácos da Função Exponencial. À esqueda, temos o gráco de uma função exponencial com a > 1 e à direita, o gráco de uma função quadrática com 0 < a < 1. Note que o domínio de f(x) é R e a imagem é R +. Observação 3. As funções exponenciais seguem as regras dos expoentes: Regras de Exponenciação. Se a > 0 e b > 0, as armações a seguir são verdadeiras para quaisquer x, y R. 1. a x a y = a x+y 2. a x a y = ax y 3. (a x ) y = a xy 4. a x b x = (ab) x 5. a x ( a ) x b x = b Observação 4. A função exponencial mais importante para a modelagem de vários fenômenos naturais, físicos, químicos e econômicos, é a função exponencial natural, cuja base é o famoso número e, que é aproximadamente igual a 2, Deniremos melhor o número e nas próximas aulas. 3.2 Função Logarítmica Se a é um número real qualquer positivo diferente de 1, a função exponencial f(x) = a x de base a é injetora e, portanto, possui uma função inversa. Sua função inversa é denominada função logarítmica de base a. Denição 13 (Função Logarítmica). A função logarítmica de base a f(x) = log a x é a função inversa da função exponencial y = a x (com a > 0 e a 1) de base a. O gráco de f(x) = log a x pode ser obtido reetindo-se o gráco de y = a x na reta y = x. Observe: Prof. Edilson Neri Prof. André Almeida 11

12 Figura 17: Na imagem, a curva vermelha representa o gráco de uma função logarítmica. Note que, o domínio da função logarítmica é R +, o que corresponde à imagem da função exponencial. Da mesma forma, a imagem da função logarítmica é R, o domínio da função exponencial. Os logaritmos de base e e base 10 possuem notações e nomes especícos: log 10 x é escrito como log x log e x é escrito como ln x. A função y = ln x é denominada função logaritmo natural, e a função y = log x é normalmente denominada como função logarítmica comum Propriedades dos Logaritmos Como as funções a x e log a x são inversas uma da outra, compô-las em qualquer ordem resulta na função identidade. Observe: Propriedades das Inversas para a x e log a x 1. Base a: a log a x, log a a x = x, a > 0, a 1 e x > Base e: e ln x = x, ln e x = x, x > 0. As funções logarítmicas possuem as propriedades aritméticas a seguir: Propriedades dos Logaritos Para qualquer número real x > 0 e y > 0, temos: 1. (Regra do Produto) log a xy = log a x + log a y ( ) x 2. (Regra do Quociente) log a = log y a x log a y 3. (Regra da Potenciação) log a x y = y log a x 4. (Mudança de Base) log a x = ln x ln a. Prof. Edilson Neri Prof. André Almeida 12

13 4 Funções Denidas por Partes As funções denidas por fórmulas distintas em diferentes partes de seus domínios são chamadas funções denidas por partes. Vejamos alguns exemplos. Exemplo 12. Seja a função denida por: { f(x) = x 2, se, x 1 1 x, se, x < 1 O domínio desta função é R e como imagem, o intervalo [0, + ). Gracamente: Figura 18: Gráco de f(x). O próximo exemplo de função denida por partes é a função modular. Lembre-se que, como mostramos na Aula 01, o módulo de um número real x é a distância de x até o 0, na reta real. Exemplo 13 (Função Modular). Seja: O gráco da função modular é: f(x) = x = { x, se, x 0 x, se, x < 0 Figura 19: Gráco de f(x) = x. Observe que o domínio da função modular é o conjunto R e a imagem desta função é o conjunto R +. Prof. Edilson Neri Prof. André Almeida 13

14 Exemplo 14 (Função Heaviside). A Função Heaviside, muito utilizada na eletricidade para representar chaves que ligam e desligam, é denida por: H(t) = { 0, se, t < 0 1, se, t 0 Note que o domínio desta função é R e a imagem é o conjunto {0, 1}, formado apenas de dois elementos. Representamos gracamente esta função a seguir. Figura 20: Gráco de H(t). Exemplo 15 (Função Maior Inteiro ou Função Escada). A função maior inteiro denotada entre colchetes e denida por: f(x) = [x], x R representa o maior inteiro que é menor que x. Atribuindo alguns valores para x, ela tem como imagem números inteiros. Por exemplo: [0, 8] = 0, [1, 5] = 1, [ 1, 75] = 2, [ 0, 4] = 1, [π] = 3, etc. Gracamente, temos: Figura 21: Gráco da Função Maior Inteiro. Resumo Faça um resumo dos principais resultados vistos nesta aula. Dena duas funções e efetue com estas todas as operações denidas nesta aula. Aprofundando o conteúdo Leia mais sobre o conteúdo desta aula no Capítulo 1 - Seções 1.2 e 1.3 e Apêndice D do livro texto. Prof. Edilson Neri Prof. André Almeida 14

15 Dica importante Caso você queira plotar computacionalmente alguns grácos, utilize o Widget Plotador de Funções, disponível em: Sugestão de exercícios Resolva os exercícios 1.2 e 1.3 e os do Apêndice D do livro texto. Prof. Edilson Neri Prof. André Almeida 15

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;

Leia mais

Pré-Cálculo ECT2101 Slides de apoio Funções II

Pré-Cálculo ECT2101 Slides de apoio Funções II Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais

Slides de apoio: Funções I

Slides de apoio: Funções I Pré-Cálculo ECT2101 Slides de apoio: Funções I Prof. Ronaldo Carlotto Batista 10 de março de 2017 Produto Cartesiano Denição Sejam dois conjuntos não vazios A e B, o produto cartesiano entre A e B é dado

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

AULA 1: PRÉ-CÁLCULO E FUNÇÕES

AULA 1: PRÉ-CÁLCULO E FUNÇÕES MATEMÁTICA I AULA 1: PRÉ-CÁLCULO E FUNÇÕES Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Conjuntos numéricos A reta real Intervalos Numéricos Valor absoluto de um número

Leia mais

CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e

CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e CÁLCULO I Aula 03: s, e. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 4 A Seja x > 0. Denimos a função logarítmica natural como sendo a função dada pela medida da área

Leia mais

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030152 Matemática Fundamental I DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 90 horas CARGA

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Funções e Modelos Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil Quatro maneiras de representar uma função Verbalmente (Descrevendo-a

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

Modelos Matemáticos: Uma Lista de Funções Essenciais

Modelos Matemáticos: Uma Lista de Funções Essenciais Modelos Matemáticos: Uma Lista de Funções Essenciais Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Um modelo matemático é a descrição matemática de um fenômeno do mundo real, como

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari amanda@fcav.unesp.br Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

9º Ano do Ensino Fundamental II:

9º Ano do Ensino Fundamental II: Conteúdos para III Simulado SDP/Outubro/2010 MATEMÁTICA 9º Ano do Ensino Fundamental II: CAPÍTULO I - NOÇÕES ELEMENTARES DE ESTATÍSTICA 1. Organizando os dados 2. Estudando gráficos 3. Estudando médias

Leia mais

Funções polinomiais, racionais e trigonométricas

Funções polinomiais, racionais e trigonométricas Aula 04 FUNÇÕES (continuação) UFPA, 5 de março de 05 Funções polinomiais, racionais e trigonométricas No inal desta aula, você seja capaz de: Dizer o domínio das unções polinomiais, racionais e trigonométricas;

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

CÁLCULO I. Calcular o limite de uma função composta;

CÁLCULO I. Calcular o limite de uma função composta; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 11 de Março de 2014 Funções - Aula 06 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 11 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica O principal objetivo do

Leia mais

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f(x) e F(x) definidas em um intervalo I R, para todo x I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F (x) = f(x) Exemplos: F(x) = x é uma antiderivada

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas. TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto. LISTA 1 - Revisão

MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto. LISTA 1 - Revisão Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto LISTA 1 - Revisão Questão 1: Se 2 x = 256, o valor de x

Leia mais

UNIVERSIDADE GAMA FILHO

UNIVERSIDADE GAMA FILHO UNIVERSIDADE GAMA FILHO Pró-Reitoria de Ciências Exatas e Tecnologia CÁLCULO BÁSICO Notas de Aula Simone Dutra Ramos Resumo Estas notas de aula têm por finalidade apresentar de forma clara e didática todo

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2 Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²

Leia mais

EXERCÍCIOS ADICIONAIS

EXERCÍCIOS ADICIONAIS EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo

Leia mais

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

PCNA - Matemática AULA 1

PCNA - Matemática AULA 1 PCNA - Matemática AULA 1 PCNA - Matemática Aritmética: Operações básicas com frações Potenciação Radiciação Módulo Necessário para o Cálculo 1: Polinômios Operações com expressões algébricas Intervalos,

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010 1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está

Leia mais

Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.

Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Função: parte 1. Prof. Santos Alberto Enriquez Remigio. 26 de março de 2018 FAMAT/UFU

Função: parte 1. Prof. Santos Alberto Enriquez Remigio. 26 de março de 2018 FAMAT/UFU Função: parte 1 Prof. Santos Alberto Enriquez Remigio FAMAT/UFU 26 de março de 2018 Denição Sejam os conjuntos A, B (conjunto vazio). Uma função de A em B é uma relação que associa a cada elemento a A

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 09: Regras de Derivação Objetivos da Aula Apresentar e aplicar as regras operacionais de derivação; Derivar funções utilizando diferentes

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica Aula Data Aula Detalhes 1 Qua 3 fev Introdução Apresentação e avisos 2 Sex 5 fev Revisão Resumo dos pré-requisitos Qua 10 fev Feriado Carnaval 3 Sex 12 fev Soma de Riemann Área, soma superior e inferior

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

LIMITES E CONTINIDADE

LIMITES E CONTINIDADE MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função

Leia mais

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.

Leia mais

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS 6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS Vamos agora estender a noção de seno, cosseno e tangente, já conhecidas no triângulo retângulo, e portanto, para ângulos agudos, para ângulos e arcos quaisquer.

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo 1 - Trigonometria e Funções Trigonométricas 1. Converta de graus para radianos: (a) 0 (b) 10 (c) 45 (d) 15 (e) 170 (f) 70 (g) 15 (h) 700 (i) 1080 (j) 6. Converta

Leia mais

Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013

Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 1ª série - volume 1 1. Conjuntos - Conceito de conjunto - Pertinência - Representação de um conjunto - Subconjuntos - União de conjuntos

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

Datas de Avaliações 2016

Datas de Avaliações 2016 ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:

Leia mais

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado.

CÁLCULO I. Extremos Relativos e Absolutos. Objetivos da Aula. Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 17: Extremos Relativos e Absolutos. Método do Intervalo Fechado. Objetivos da

Leia mais

CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função;

CÁLCULO I. 1 Velocidade Instantânea. Objetivos da Aula. Aula n o 04: Limites e Continuidade. Denir limite de funções; Calcular o limite de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 04: Limites e Continuidade Objetivos da Aula Denir ite de funções; Calcular o ite de uma função; Utilizar as propriedades operatórias do

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

Lista das Principais Funções

Lista das Principais Funções Lista das Principais Funções Laura Goulart UESB 24 de Maio de 2016 Laura Goulart (UESB) Lista das Principais Funções 24 de Maio de 2016 1 / 21 1)Função constante f (x) = c(c : cte ) Laura Goulart (UESB)

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

UENP - Universidade Estadual do Norte do Paraná CLM - Campus Luiz Meneghel / CCT - Centro de Ciências Tecnológicas Disciplina de Matemática Discreta

UENP - Universidade Estadual do Norte do Paraná CLM - Campus Luiz Meneghel / CCT - Centro de Ciências Tecnológicas Disciplina de Matemática Discreta Termos Semelhantes(redução) a) + (não há termos semelhantes) b) ²+3-5 (não há termos semelhantes) c) +3+ => 5+ d) 5 + (3 ) - ( 9) 5 + 3 + 9 5 + 3 + 9 6 + 5 e) 8 [ - + ( + 3 7)] 8 [ - + +3 7] 8 + 3 + 7

Leia mais

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto Capítulo 1 Limites nitos 1.1 Limite nito num ponto Denição 1. Seja uma função f : D f R R, x y = f(x, e p R tal que p D f ou p é um ponto da extremidade de D f. Dizemos que a função f possui ite nito no

Leia mais

MAT 0143 : Cálculo para Ciências Biológicas

MAT 0143 : Cálculo para Ciências Biológicas MAT 0143 : Cálculo para Ciências Biológicas Aula 3/ Segunda 10/03/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo Aula 2 1 Informações gerais: Email: sylvain@ime.usp.br Site: o link do MAT 0143 na pagina seguinte

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 0.03.08 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação

Leia mais