Simulado OBMEP 2017 Nível 3 Ensino Médio

Tamanho: px
Começar a partir da página:

Download "Simulado OBMEP 2017 Nível 3 Ensino Médio"

Transcrição

1 Simuldo OBMEP 2017 Nível 3 Ensino Médio 1. ALTERNATIVA D O comprimento d mes é 8 22 = 176 centímetros; logo, o plmo de Crolin mede = 16 centímetros. 2. ALTERNATIVA C Como o multiplicr qulquer número por 0 o resultdo é 0, não contribuindo ssim pr mximizr o resultdo d expressão, devemos colocr sinis de dição dos dois ldos do 0: Entre multiplicr por 1 e somr 1, o mior resultdo é obtido no segundo cso, logo devemos tmbém colocr um sinl de dição ntes do 1: Finlmente, 2 3 é mior que e 8 9 é mior que 8 + 9, de modo que expressão que fornece o mior vlor é cujo vlor = ALTERNATIVA A Bst verificr que pós oito giros sucessivos o qudrdo menor retorn à su posição inicil. Como 2012 = , pós o 2012º giro o qudrdo cinz terá ddo 251 volts complets no qudrdo mior e mis qutro giros, prndo n posição que corresponde à lterntiv A. 4. ALTERNATIVA D Podemos orgnizr s informções num tbel: Se Andre estivesse cert, então Fernnd não certri nenhum ds informções. Logo, não é el que está cert, nem Fernnd (pelo mesmo motivo). Se Dniel estivesse cert, então Ttine tmbém nd certri. Logo Dniele e Ttine não estão certs. Se Ptríci certr tudo, s demis tmbém certrão lgum informção e, portnto, Ptríci é únic que está cert.

2 5. ALTERNATIVA D A figur mostr que os discos A e B girm no mesmo sentido, os discos B e C em sentidos opostos e os discos C e D no mesmo sentido. Assim, D gir no sentido ntihorário. Lembrmos que o perímetro p de um círculo de rio r é ddo por p = 2πr. Como o rio do disco A é qutro vezes o de D, segue que o perímetro de A tmbém é qutro vezes o perímetro de D. Logo D dá qutro volts pr cd volt de A. Usmos no rgumento cim o fto intuitivo de que os rios dos discos B e C são irrelevntes pr resolução dest questão; é interessnte mostrr isto rigorosmente. No cso gerl, podemos supor que os rios de A, B, C e D são, b, c e d, respectivmente. Se n, n b, n c e n d são os números de volts ddos pelos discos A, B, C e D, respectivmente, então n 2π = n b 2πb = n c 2πc = n d 2πd. n 2π = n d 2πd n d n = d. Se n = 1 então n d = 8 2 = ALTERNATIVA A A som de tods s fces de um cubo é = 21. A som ds fces visíveis é então igul 6 21 = 126 ( som ds fces escondids). Logo, pr que som ds fces visíveis sej máxim, devemos posicionr os cubos de modo que som dos números ds fces escondids sej mínim. Vmos minimizr ess som considerndo um cubo de cd vez, de cordo com numerção d figur o ldo. Cubo 1: há pens um fce escondid, que deve ser de número 1. Cubos 2 e 4: em cd um há três fces escondids. Desss fces, dus são oposts e somm 7; terceir fce deve ser de número 1. A som desss fces é 2 (1 + 7) = 16. Cubos3 e 6: em cd um há dus fces vizinhs escondids, que devem ser s de número 1 e 2 (como esses números não somm 7, s fces correspondentes não são oposts, logo são djcentes). Esss fces somm. Cubo 5: há dois pres de fces oposts escondids, que somm 14. Logo, som máxim possível é 126 ( ) = = ALTERNATIVA D Cd figur é formd por 3 cópis d figur nterior, posicionds de modo colocr em contto pens dois pres de qudrdinhos ds cópis ds figurs. Em consequênci, o comprimento do contorno d nov figur é igul 3 vezes o comprimento do contorno d nterior, menos 4 cm (correspondentes os ldos em contto). A tbel bixo dá o comprimento do contorno ds sucessivs figurs. Portnto, o contorno d Figur 6 mede 488 cm.

3 8. ALTERNATIVA A Escrevendo 24 como produto de inteiros positivos de tods s mneirs possíveis, podemos investigr tods s possibiliddes pr e b em b = ( + 1) (b 1) = 24 e testá-ls em b = (b + 1) ( 1) = 30 pr chr os possíveis vlores de e b. Vmos lá: Logo = 7 e b = 4, donde + b = 11. De modo mis lgébrico, podemos resolver este problem como segue. Temos b = ( + 1)(b 1) = b + b 1 = 24 e b = (b + 1)( 1) = b + b 1 = 30. Somndo ests dus expressões, obtemos 2b 2 = 54 e segue que b = 28. De modo nálogo o nterior, germos s possibiliddes (1,28), (2,14), (4,7), (7,4), (14,2) e (28,1) pr (, b) e verificmos que pens = 7 e b = 4 stisfzem b = 24 e b = 30. Alterntivmente, notmos que subtrindo b + b 1 = 24 de b + b 1 = 30 obtemos 2 2b = 6, ou sej, b = 3. Logo = b + 3 e substituindo em b = 28 temos b 2 3b 28 = 0. Est equção tem rízes b = 4 e b = 7, como só nos interess riz positiv, temos b = 4 e então = ALTERNATIVA E A expressão dd pode ser escrit como n 17 2 = , sendo n o número de prcels 17 2 que precem dentro do rdicl. Elevndo os dois ldos dess expressão o qudrdo, temos n 17 2 = , donde n = = ALTERNATIVA E Sejm R e r os rios dos semicírculos mior e menor, respectivmente; o ldo do qudrdo tem então medid 2R = 36, ou sej, R = 18. Como os centros dos semicírculos e o ponto de tngênci estão linhdos, o triângulo destcdo n figur é um triângulo retângulo de ctetos R e 2R r e hipotenus R + r. O teorem de Pitágors nos dá (R + r) 2 = R 2 + (2R r) 2. Simplificndo, obtemos 6Rr = 4R 2 e segue que r = 2 3 R = = 12 cm. 11. ALTERNATIVA A Notmos primeiro que som dos números de 1 25 é 25 (25+1) = 325; som dos números em um linh, colun ou 2 digonl [e então 325 = 65. As css brncs do tbuleiro consistem de um linh, de um colun e ds dus digonis, 6 tods se cruzndo n cs centrl. Denotndo por x o número d cs centrl e lembrndo que som dos números ds css cinzents é 104, temos x = e segue que x = 13.

4 12. ALTERNATIVA D Como n! = , tem-se n 13. Por outro ldo 13! = 13 (2 2 3) 11 (2 5) (2 3) = E, portnto = = Logo, n! = 13! = 16!, ou sej, n = 16. n! 13! = 13. ALTERNATIVA C Coloquemos origem de coordends no ponto O. O teorem de Pitágors mostr que distânci de um ponto (x, y) à origem de coordends é x 2 + y 2 ; logo, pr que (x, y) estej n região delimitd pels circunferêncis de rios 4 e 5, devemos ter 16 = 4 2 x 2 + y = 25. Observmos tmbém que se (x, y) está nest região, o mesmo se pode dizer todos os pontos d form (±x, ±y) e (±y, ±x). Assim, podemos restringir noss nálise pontos (x, y) com x, y 0, e x y. Como 16 x 2 + y 2 25, devemos ter 0 x, y 5, e estmos interessdos pens em vlores inteiros de x e y. Procedemos gor por listgem diret, e obtemos tbel seguir. 14. ALTERNATIVA A Cd um ds três pessos, em princípio, pode beber águ ou suco, logo há = 8 possibiliddes pr considerr, conforme tbel. Devemos gor nlisr s condições do problem pr decidir qul ds possibiliddes é corret. A primeir condição (se Ari pede mesm bebid que Crlos, então Brun pede águ) elimin s possibiliddes 3 e 8. A segund condição (se Ari pede um bebid diferente d de Brun, então Crlos pede suco) elimin possibilidde 2. A terceir condição (se Brun pede um bebid diferente d de Crlos, então Ari pede águ) elimin s possibiliddes 4 e 6. Até o momento, restm s possibiliddes 1, 5 e 7. e como pens um deles pede sempre mesm bebid, chegmos Ari, que sempre pede águ.

5 15. ALTERNATIVA D Vmos representr o número de sls e o número de lunos d Escol Municipl de Pirjub, no no de 2011, respectivmente, por s e por (observe que o vlor de é o mesmo pr os nos de 2011, 2012 e 2013). Como o número de lunos por sl nos nos de 2011 e 2012 é o mesmo, temos = 6 ou, equivlentemente, s+5 s 6s2 + 30s = 5. Anlogmente, como número de lunos por sl nos nos de 2012 e 2013 tmbém é o mesmo, temos 5, ou = s+10 s+5 sej, s s + 50 =. Logo 6s s = 5(s s + 50) e concluímos que o número s de sls stisfz equção s 2 45s 250 = 0 cujs soluções são s = 50 e s = 5. Como s > 0, temos s = 50. Logo, o número totl de lunos d escol é = = Outr solução envolve considerr médi m = de lunos por sl em 2011: observmos que = ms. D informção s do enuncido sobre 2012 tirmos m 6 =, ou sej, = (m 6)(s + 5); informção sobre 2013 é m 11 = s+10 s+5, ou sej, = (m 11)(s + 10). Temos então s equções ms = (m 6)(s + 5) e ms = (m 11)(s + 10), que nos dão o sistem liner 5m 6s = 30 { 10m 11s = 110 cuj solução é s = 50 e m = 63. O número de lunos é então = ms = = ALTERNATIVA B Denotremos por AF áre de um figur F e por ~ relção de semelhnç de triângulos. Sejm b medid d bse do prlelogrmo e h su ltur. Então: AABC = 24 cm 2 b h = 24 cm 2 ΔGCF~ΔGDA h 1 = b/2 h 2 b h 1 = 1 h 2 2 h 2 = 2h 1 3h 1 = h h 1 = h 3 b 2 Portnto, AGFC = h 3 = b h = 24 = cm2. D mesm form, tmbém podemos concluir que AAHE = 2 cm 2. Vmos clculr gor áre ABEF, lembrndo que triângulos semelhntes possuem áres relcionds com o qudrdo d constnte de proporcionlidde: ΔEBF~ΔABC AEBF 2 AABC = (b/2 b ) = ( ) = 1 AABC AEBF = = cm2. Agor vmos clculr áre do qudrilátero EFGH por diferenç: AEFGH = AABC AGFC AAEH AEBF = = 5 cm 2. Outr solução: ADFC = 1 4 AABCD = 6, ADEA = 1 4 AABCD = 6, ABFE = 1 8 AABCD = 3. Dí, ADEF = = 9. Temos que ΔDEF~ΔDHG e rzão entre sus lturs é 3BD/4 BD/2 = 3 2 Portnto, ADHG = 4 9 ADEF = 4. A áre procurd é diferenç 9 4 = 5 cm2.

6 17. ALTERNATIVA D Antes de chegr o centro, rnh tem s seguintes escolhs em cd vértice de um pentágono: ir direto pr o próximo nível, sem pssr pels rests do pentágono em que se encontr; cminhr no sentido horário pels rests do pentágono em que se encontr por no máximo 5 segmentos, pssndo então pr o próximo nível, e cminhr no sentido nti-horário pels rests do pentágono em que se encontr por no máximo 5 segmentos, pssndo então pr o próximo nível. Assim, em cd pentágono rnh tem 11 escolhs pr pssr pr o próximo nível; como são três os pentágonos, rnh tem um totl de = 11 3 cminhos possíveis pr chegr o centro d tei 18. ALTERNATIVA C Como o diâmetro do círculo é 2, seu rio é 1. Aplicndo o teorem de Pitágors o triângulo OMA, obtemos AM 2 = 1 2 (1 x) 2 = 2x x 2. Est é áre de um qudrdo de ldo AM = AB 2 : áre do qudrdo de ldo AB é então y = 4(2x x2 ) = 8x 4x 2. Notmos que como x vri em OR, temos 0 x 1; pr x = 0 temos y = 0 e pr x = 1 temos y = 4. O gráfico de y = 8x 4x 2 é um prábol com concvidde pr bixo, pois o coeficiente de x 2 é negtivo; este gráfico está representdo n lterntiv C. 19. ALTERNATIVA D Numermos s qutro bolinhs de 1 4, do menor pr o mior vlor. Há = 24 ordens possíveis pr retird ds bolinhs, tods igulmente prováveis. Desss retirds, Pedro fic com o prêmio de mior vlor nos seguintes csos: 1. bolinh 4 si n 3ª retird; neste cso, seu número é necessrimente mior que os ds dus primeirs; 2. bolinh 4 si n 4ª retird, desde que bolinh 3 si em um ds dus primeirs retirds (cso contrário, ou sej, se el sir n 3ª retird, Pedro ficrá com el, por seu número ser mior que o ds dus primeirs). O número de possibiliddes pr o primeiro cso é = 6. Pr o segundo cso, há 2 possibiliddes pr posição em que si bolinh 3 (1ª ou 2ª), 2 possibiliddes pr bolinh que si n 3ª posição e 1 possibilidde pr bolinh que si n 4ª retird, num totl de = 4 possibiliddes. Logo, o número de csos fvoráveis é = 10 e probbilidde de que Pedro tire o prêmio de mior vlor é = Outr solução é como segue. Pedro tir o prêmio máximo em dus situções: qundo bolinh 4 si n 3ª posição ou qundo el si n 4ª posição e bolinh 3 si em um ds dus primeirs. A probbilidde do primeiro evento é 1 4 e do segundo é = 1 6. Logo, probbilidde de ele tirr o prêmio máximo é = ALTERNATIVA E Observmos inicilmente que em qulquer qudrdinho, qundo o número de trocs de cor é um múltiplo de 3, voltmos à cor originl. Assim, pr sber, em qulquer momento, qul cor de um qudrdinho, bst conhecer o resto n divisão por 3 do número de trocs de cor. Pr isso, identificmos cd qudrdinho cinz com o número 0 (o que signific que o número de trocs de cor tem resto 0 n divisão por 3, ou sej, cor pode não ter sido trocd ou foi trocd em um número múltiplo de 3); identificmos um qudrdinho zul com o número 1 (o que signific que o número de trocs de cor tem resto 1 n divisão por 3); e, finlmente, identificmos um qudrdinho mrelo com o número 2 (o número de trocs de cor tem resto 2 n divisão por 3). Observmos gor que, sempre que trocmos cor de um qudrdinho d primeir ou d terceir colun, trocmos tmbém cor do qudrdinho seu ldo n colun do meio. Portnto, som do número de trocs de cor dos qudrdinhos de um mesm linh, que estão n primeir e terceir coluns, é igul o número de trocs de cor do

7 qudrdinho d colun do meio que está nest mesm linh. Em prticulr, o resto d divisão do número de trocs de um qudrdinho d colun do meio por 3 é igul o resto d divisão por 3 d som dos restos ds divisões por 3 do número de trocs de cores dos qudrdinhos vizinhos que estão n primeir e n terceir colun d mesm linh. Comentário nálogo vle pr os qudrdinhos d linh do meio. Esss observções nos permitem reconstruir o qudriculdo completo, conforme figur bixo. O problem não cb qui, pois ind não mostrmos que esse qudriculdo pode, de fto, ser obtido por um sequênci de Adão. Que isso de fto contece pode ser visto bixo.

QUESTÃO 1 ALTERNATIVA D. centímetros.

QUESTÃO 1 ALTERNATIVA D. centímetros. Solução d prov d fse OBMEP 03 Nível 3 QUESTÃO O comprimento d mes é centímetros. 8 7 centímetros; logo, o plmo de Crolin mede 7 QUESTÃO ALTERNATIVA B Observemos que + 0+ + 3, ou sej, som dos lgrismos do

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 ) C 6) B ) C 6) D ) D ) C 7) B ) D 7) A ) D 3) C 8) B 3) A 8) D 3) D 4) A 9) B 4) C 9) D 4) E 5)

Leia mais

Solução da prova da 1 fase OBMEP 2013 Nível 1

Solução da prova da 1 fase OBMEP 2013 Nível 1 Solução d prov d fse OBMEP 0 Nível QUESTÃO Qundo brir fit métric, Don Céli verá o trecho d fit representdo n figur; mnch cinzent corresponde à porção d fit que estv em volt d cintur de Mrt. A medid d cintur

Leia mais

8 é possível preencher o quadriculado inicial de exatamente duas maneiras distintas.

8 é possível preencher o quadriculado inicial de exatamente duas maneiras distintas. OBMEP 011 Fse 1 Questão 1 Solução ) Primeiro notmos que é possível preencher o qudriculdo de cordo com o enuncido; um exemplo está o ldo. Oservmos gor que, qulquer que sej mneir de preencher o qudriculdo,

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

( 3. a) b) c) d) 10 5 e) 10 5

( 3. a) b) c) d) 10 5 e) 10 5 Pré-F 207 Simuldo # 26 de bril de 207 2 Q. (EsS) Em um progressão ritmétic cujo primeiro termo é, 87 e rzão é 0, 004, temos que som dos seus dez primeiros é igul : () 8, 99 () 9, 5674 () 8, 88 (D) 9, 5644

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

11

11 01 O vlor de 8 6 0,15 é : (A) 8 (B) (C) (E) 6 0 Os números x, y e z são diretmente proporcionis, 9 e 15respectivmente. Sendo que o produto desses números é xyz 960, som será : (A) 5 (B) 8 (C) 6 7 (E) 0

Leia mais

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles AULA - GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Rets prlels cortds por um trnsversl São queles que possuem dois ldos iguis. Ligndo o vértice A o ponto médio d bse BC, germos dois triângulos

Leia mais

Assim, temos: Logo: igual a. de Z. Solução: Seja z a bi, com a, b. De log3 2z 2z 1 2, temos: 2z 2z 1 9. Calculando. b 4 b 4 (não convém) com

Assim, temos: Logo: igual a. de Z. Solução: Seja z a bi, com a, b. De log3 2z 2z 1 2, temos: 2z 2z 1 9. Calculando. b 4 b 4 (não convém) com ssim, temos: f 0 () fo () 0. Os inteiros,,,..., estão P com rzão não nul. Os termos, e 0 estão em PG, ssim, j e. Determine j. f 0 (0) 0 0 0. 0 r 9r Sej Z um número compleo tl que e log Z Zi. Determine

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

facebook/ruilima

facebook/ruilima MATEMÁTICA UFPE ( FASE/008) 01. Sej áre totl d superfície de um cubo, e y, o volume do mesmo cubo. Anlise s firmções seguir, considerndo esss informções. 0-0) Se = 5 então y = 7. 1-1) 6y = 3 -) O gráfico

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR isciplin: Mtemátic Professor: Mrcello mdeo Série: 9º no / EF lun(o): Turm: LIST 3 SEMELHNÇ FIGURS SEMELHNTES Em Mtemátic, qundo usmos medids proporcionis pr desenhr

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 07 GABARITO COMENTADO 1) Se o resto d divisão de 47 por x é 7, então x divide 47 7 = 40 D mesm mneir, x divide

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

Soluções Nível 3 Ensino Médio

Soluções Nível 3 Ensino Médio 1. (lterntiv D) Cinco volts n prç correspondem 5 = 0 ldos do qudrdo. Sueli ciu qundo fltvm 7 pr completr esse percurso, ou sej, depois de percorrer 5 5 100 98 1 = do trjeto totl. Isto equivle 0 = = + =

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

XXXIV Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXIV Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXIV Olimpíd Brsileir de Mtemátic GABARITO Segund Fse Soluções Nível 3 Segund Fse Prte A PARTE A N prte A serão tribuídos 4 pontos pr cd respost corret e pontução máxim pr ess prte será 0. NENHUM PONTO

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

"Bem-vindos ao melhor ano de suas vidas #2018"

Bem-vindos ao melhor ano de suas vidas #2018 COLÉGIO SHALOM Ensino Fundmentl 8ª no ( ) 65 Profº: Wesle d Silv Mot Disciplin: Mtemátic Aluno ():. No. Trblho de recuperção Dt: 17 /12/ 2018 "Bem-vindos o melhor no de sus vids #2018" 1) Sobre s proprieddes

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 10º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 5. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 10º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 5. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA 10º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº Grupo I As cinco questões deste grupo são de escolh múltipl. Pr cd um dels são indicds qutro lterntivs,

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

a, pois dois vértices desse triângulo são pontos

a, pois dois vértices desse triângulo são pontos UFJF MÓDULO DO PSM TRÊNO 0-0 REFERÊNC DE CORREÇÃO D PROV DE MTEMÁTC PR O DESENVOLVMENTO E RESPOST DS QUESTÕES, SÓ SERÁ DMTDO USR CNET ESFEROGRÁFC ZUL OU PRET Questão Um empres promoveu um concurso pr que

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

outras apostilas de Matemática, Acesse:

outras apostilas de Matemática, Acesse: Acesse: http://fuvestibulr.com.br/ N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um

Leia mais

Unidade 8 Geometria: circunferência

Unidade 8 Geometria: circunferência Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano Mteril Teórico - Módulo Teorem de itágors e plicções lgums demonstrções do Teorem de itágors - rte 2 Nono no utor: rof. Ulisses Lim rente Revisor: rof. ntonio minh M. Neto 27 de ril de 2019 1 lgums plicções

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

Matemática B Extensivo V. 8

Matemática B Extensivo V. 8 Mtemátic B Extensivo V. 8 Resolv Aul 9 9.01) = ; b = c = + b c + 9 c = Distânci focl = c 0 9.0) x = 0 0 x = ; b = c = + b c = + c = Como o eixo rel está sobre o eixo e o centro é (0, 0), então F 1 (0,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 2

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 2 Mteril Teórico - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio minh M.

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições.

Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições. DETERMINANTES INTRODUÇÃO Funções determinnte, são funções reis de um vriável mtricil, o que signific que ssocim um número rel (X) um mtriz qudrd X Sus plicções envolvem crcterizção de mtriz invertível,

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

15 aulas. Qual o número m ximo de faltas que ele ainda pode ter? (A) 9 (B) 10 (C) 12 (D) 16 (E) 24

15 aulas. Qual o número m ximo de faltas que ele ainda pode ter? (A) 9 (B) 10 (C) 12 (D) 16 (E) 24 Pré-AFA 2017 Simuldo A 28 de junho de 2017 Questão 1 (CFN) Qul é o número nturl que elevdo o qudrdo é igul o seu triplo somdo com 0? (A) 5 (B) 6 (C) 8 (D) 9 Questão 2 (CFN) Sbendo-se que tn(0 ) =, o vlor

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13 Mtemátic UNICAMP QUESTÃO 1 Em 1 de outubro de 01, Felix Bumgrtner quebrou o recorde de velocidde em qued livre. O slto foi monitordo oficilmente e os vlores obtidos estão expressos de modo proximdo n tbel

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I scol Secundári com º ciclo. inis 0º no de Mtemátic TM MTRI N PLN N SPÇ I s questões 5 são de escolh múltipl TP nº 5 entregr no di 0 ª prte Pr cd um dels são indicds qutro lterntivs, ds quis só um está

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. O número de csos possíveis é. Como se pretende que o número sej pr, então pr o lgrismo ds uniddes existem

Leia mais

Introdução às funções e à trigonometria

Introdução às funções e à trigonometria Introdução às funções e à trigonometri Antes de dr prosseguimento o estudo do movimento, cinemátic, precismos rever lguns conceitos muito importntes d mtemátic. Mis especificmente, vmos relembrr o que

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2. Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b

Leia mais

MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações:

MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações: MATEMÁTICA Considere os conjuntos S = {0,,, 6}, T = {,, } e U = {0, } e s firmções: I. {0} S e S U. II. {} S \ U e S T U = {0,}. III. Eiste um função f : S T injetiv. IV. Nenhum função g: T S é sobrejetiv.

Leia mais

( ) Resolução: Seja e a excentricidade da hipérbole dada: + + = = 8, que é a equação de uma circunferência de centro ( 0, 2)

( ) Resolução: Seja e a excentricidade da hipérbole dada: + + = = 8, que é a equação de uma circunferência de centro ( 0, 2) 010 IME "A mtemátic é o lfbeto com que Deus escreveu o mundo" Glileu Glilei Questão 01 Sejm os conjuntos P1, P, S1 e S tis que ( P S1 ) P1, ( P1 S ) P e ( S1 S ) ( P1 P ). Demonstre que ( S1 S ) ( P1 P

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO... TRIGONOMETRIA TRIÂNGULO RETÂNGULO... 6 RELAÇÕES FUNDAMENTAIS DA TRIGONOMETRIA... 10 ÂNGULOS NOTÁVEIS... 14 TABELA DE RAZÕES TRIGNOMÉTRICAS... 16 RESPOSTAS...

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

< 9 0 < f(2) 1 < 18 1 < f(2) < 19

< 9 0 < f(2) 1 < 18 1 < f(2) < 19 Resolução do Eme Mtemátic A código 6 ª fse 08.. (B) 0 P = C 6 ( )6 ( ).. (B) Como f é contínu em [0; ] e diferenciável em ]0; [, pelo teorem de Lgrnge, eiste c ]0; [tl que f() f(0) = f (c). 0 Como 0

Leia mais

Revisão EXAMES FINAIS Data: 2015.

Revisão EXAMES FINAIS Data: 2015. Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele

Leia mais