GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é"

Transcrição

1 GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS) A figur bixo represent plnificção de um sólido () 180 (b) 60 (c) 480 (d) 70 (e) 1440 O volume desse sólido, de cordo com s medids indicds, é 1

2 4) N figur, M é o ponto médio d rest. Qul probbilidde de um ponto escolhido o cso n superfície do cubo pertencer à região sombred? M () 1/ (b) 1/6 (c) 1/8 (d) 1/10 (e) 1/1 5) (UFRGS) N figur, O é o centro do cubo. Se o volume do cubo é 1, o volume d pirâmide de bse ABCD e vértice O é () 1/ (b) 1/ (c) 1/4 (d) 1/6 (e) 1/8 O D C B A 6) (UFRGS) Um cubo e um hexágono regulr estão representdos n figur bixo. Os vértices do hexágono são pontos médios ds rests do cubo. () 6 (b) 410 (c) 68 (d) 610 (e) 1 Se o volume do cubo é 64 cm, então áre d região sombred é

3 7) (VUNESP) Um copinho de sorvete, em form de cone, tem 10 cm de profundidde, 4 cm de diâmetro no topo e tem í colocds dus conchs semiesférics de sorvete, tmbém de 4 cm de diâmetro. Se o sorvete derreter pr dentro do copinho, podemos firmr que () não trnsbordrá. (b) trnsbordrá. (c) os ddos são insuficientes. (d) os ddos são incomptíveis. (e) tods s firmções nteriores são flss. 8) (UFRGS) Um octedro tem seus vértices loclizdos nos centros ds fces de um cubo de rest. O volume do octedro é () / (b) 4/ (c) (d) 8/ (e) 10/ 9) (VUNESP) Um esfer E de rio r está inscrit em um cubo e outr F está circunscrit esse mesmo cubo. Então rzão entre os volumes de F e de E é igul () (b) (c) / (d) (e) 4/

4 10) (UFGRS) N figur bixo está representd plnificção de um prism hexgonl regulr de ltur igul à rest d bse. Se ltur do prism é, seu volume é () 4. (b) 6. (c) 8. (d) 10. (e) 1. 11) Um copinho cônico circulr reto de 10 cm de ltur contém sorvete, conforme figur. Quer-se dividir igulmente o sorvete entre dus pessos segundo um corte reto prlelo à bse. A que distânci do vértice deve ser feito o corte? () 5 cm (b) 5,5 cm (c) 5 cm (d) 5 cm (e) 5 4 cm 1) No Mottol, um copo de cfezinho tem o formto d figur, onde os diâmetros dos círculos ds bses medem cm e 5 cm e ltur mede 5 cm. A lterntiv que contém o vlor mis próximo d cpcidde do copo, em ml, é () 8 (b) 16 (c) (d) 64 (e) 18 4

5 1) (UFRGS) Um sólido é totlmente mergulhdo em um cilindro contendo águ, cusndo elevção do nível d águ em 1,5 cm. Se o rio d bse do cilindro mede 5 cm, o volume do sólido é de () 6,5 cm (b) 10 cm (c) 15 cm (d) 5 cm (e) 7,5 cm 14) (PUC) Um cubo de rest é seciondo por um plno conforme figur bixo. O volume do sólido que foi retirdo é () /6 (b) (c) /6 (d) /1 (e) 8 / 15) (UFGRS) Dus esfers de rio r form colocds dentro de um cilindro circulr reto com ltur 4r, rio d bse r e espessur desprezível, como n figur bixo. Nesss condições, rzão entre o volume do cilindro não ocupdo pels esfers e o volume ds esfers é () 1/5. (b) 1/4. (c) 1/. (d) 1/. (e) /. 5

6 16) Um quário tem form de um prlelepípedo reto retângulo com s seguintes dimensões interns: 50cm de comprimento, 0cm de lrgur e 40cm de ltur. Esse quário contém águ té ltur de 0 cm. Desej-se colocr nesse quário objetos cilíndricos mciços e idênticos de densidde mior do que densidde d águ. Sbendo-se que ltur e o diâmetro desses cilindros medem 10 cm e considerndo π =,14, quntidde máxim desses objetos que pode ser colocd no quário, de modo que águ nele contid não trnsborde, é () 15 (b) 16 (c) 19 (d) 0 (e) 1 17) (FFFCMPA)Um esfer metálic de rio cm é colocd dentro de um recipiente cilíndrico que contém águ, cujo rio d bse é de 6 cm. Supondo que não hj trnsbordmento de águ, pode-se firmr que o nível d águ sobe () cm (b),5 cm (c) cm (d) 1,5 cm (e) 1 cm 18) (FFFCMPA) Dus esfers tngentes estão press por um fio um hste verticl, tocndo-, como mostr figur. O ponto A, onde o fio é preso à hste, e os centros B e C ds dus esfers estão linhdos. Sendo d(b,c) = d(a,b), rzão entre o volume d esfer menor e o volume d esfer mior é () 1/7 (b) 1/16 (c) 1/9 (d) 1/8 (e) 1/4 A B C 6

7 19) (UFRGS) N figur bixo, P é o centro d fce superior de um cubo. A pirâmide de bse hchurd tem um de seus vértices em P. P () (b) (c) 4 (d) 6 (e) 8 Se o volume d pirâmide é 1, então o volume do cubo é 0) (UFRGS)A prtir de qutro dos vértices de um cubo de rest 6, constituído com mdeir mciç, form recortds pirâmides tringulres congruentes, cd um tendo três rests de medid, conforme representdo n figur 1, bixo. O sólido obtido pós retird ds pirâmides está representdo n figur, bixo. O volume do sólido obtido é () 198. (b) 04. (c) 08. (d) 1. (e) 16. 7

8 1) (UFGRS)A figur bixo represent um prism reto de bse hexgonl regulr. Considere s seguintes plnificções. Quis dels podem ser plnificções do prism? () Apens I. (b) Apens II. (c) Apens I e II. (d) Apens II e III. (e) I, II e III. 8

9 ) (UFRGS) A figur bixo represent plnificção de um pirâmide de bse qudrd com AB = 6 cm, sendo ADV triângulo equilátero. D C V A B O volume d pirâmide é () 1 (b) 7 (c) 6 (d) 7 (e) 108 ) (UFRGS) Um reservtório tem form de um cilindro circulr reto com dus semiesfers coplds em sus extremiddes, conforme representdo n figur bixo. O diâmetro d bse e ltur do cilindro medem, cd um, 4 dm, e o volume de um esfer de rio r é 4 πr. Dentre s opções bixo, o vlor mis próximo d cpcidde do reservtório, em litros, é () 50. (b) 60. (c) 70. (d) 80. (e) 90. 9

10 4) (UFRGS) Considere figur bixo, que represent plnificção de um cubo. Qul dos cubos presentdos ns lterntivs pode corresponder o desenho d plnificção? 10

11 5) (UFRGS) Observe o sólido S formdo por 6 cubos e representdo n figur bixo Dentre s opções seguir, o objeto que, convenientemente composto com o sólido S, form um prlelepípedo é () (b) (c) (d) (e) 11

12 Resolução 1) Em 1 triângulos há 1=6 ldos. Cd rest do dodecedro é união de ldos de triângulos. Logo, há 18 rests. Cd rest do sólido é comum dois ldos de triângulos. F=1 e A=18 V + F = A + V + 1 = 18 + V=8 ) Como um digonl do prism não pode estr contid em um fce, com um extremidde no vértice A há pens 5 digonis (AB, AC, AD, AE, AF). A B C F E D Pr cd um dos 8 vértices d bse superior há 5 digonis: Totl: 85=40. ) Dobr 15 Dobr Dobr Emend O retângulo de ldos 15 e 8 será bse do sólido. Dobrndo nos ldos indicdos e unindo os ldos de comprimento 1, temos: 1

13 É um pirâmide retngulr de bse B=158 ltur 1. V B H ) M M A áre do triângulo sombredo é metde d áre do qudrdo, fce do cubo. No cubo há 6 fces. Logo, áre totl do cubo corresponde à áre de 1 triângulos sombredos. Portnto, chnce de escolher um ponto no triângulo é 1 em 1, ou sej, 1/1. 5) C O volume d pirâmide de bse ABCD e vértice em O é um D terço do volume do semicubo. Logo, o seu volume é um sexto do O B volume do cubo. Se o volume do cubo é 1, então o volume d pirâmide é 1/6. A 6) O volume do cubo de rest é. Se =64, então =4. A x B C No triângulo retângulo d figur com vértices ABC, temos: x = + x = x = 8 x= 1

14 A região sombred é um hexágono regulr de ldo x, formdo por 6 triângulos equiláteros de ldo x. x 8 A A su áre é ) 10 As dus semiesfers formm um esfer de rio, cujo volume é 4 4 V r. O copinho é um cone de rio e ltur 10, cujo volume é B H r H V 40. Como o volume do sorvete é menor do que o volume do copinho, qundo derreter não trnsbordrá. 8) 1 1 Visão Superior O qudrdo de ldo l= e áre B=( ) = é bse d pirâmide superior. A ltur d pirâmide superior é H=1. B H 1 Logo, o volume d pirâmide superior V. O octedro é formdo por dus pirâmides dests. 4 Logo, o seu volume é V 14

15 9) I. O ponto O pertence o plno BDE: Flso. O plno que pss por B, D e E, que é um superfície infinit, contém o triângulo sombredo BDE. Se O não pertence o triângulo, então tmbém não pertence o plno. E D O B II. O ponto O pertence o plno ACG: Verdde. Os pontos A, O e G estão em um digonl do cubo. Logo, são colineres. Assim, O pertence o ldo AG do triângulo sombredo ACG. Se está no triângulo, está no plno que contém o triângulo. G A O C III. Qulquer plno contendo os pontos O e E tmbém contém C: Verdde. Os pontos E, O e C estão em um digonl do cubo. Logo, são colineres. Assim, O pertence à ret r que contém E e C. Qulquer plno que contém O e E, tmbém contém r. Se Or e r, então Oα. E O C r 15

16 10) No prism hexgonl B regulr ltur igul à rest d bse. Ambs vlem. H= A bse é um hexágono regulr de ldo. Logo, o volume do prism é V B H ) Este hexágono é formdo por 6 triângulos equiláteros de ldo. 4 Su áre vle B x V V V x V 10 1 x x =500 x ) h h h 5 5 5h = h+15 h=15 5 1,5 V h=15/=7,5. (,5) 1,5 81,77 5 V (1,5) 7,5 1 17,66 V V 1 = 81,77-17,66 =64,11 16

17 1) O volume do sólido é o mesmo volume do líquido deslocdo, ou sej, o do cilindro ssinldo, de rio 5 e ltur 1,5. 1,5 5 O volume deste cilindro é V r H 5 1,5,7. 14) Pr um melhor visulizção vmos seccionr em outro ldo, ou ind, vmos virr o cubo: O sólido retirdo é um pirâmide não ret com ltur H= e bse tringulr. H= bse h= B O seu volume é b h B b= V B H 6 17

18 15) r r 4r Volume do Cilindro: BH = r 4r = 4r. Volume ds dus esfers: 4 r 8 r r Volume do Cilindro não ocupdo pels esfers: 4 r 4 r 4 r 4 (1 ) r Rzão entre o volume do cilindro não ocupdo pels esfers e o volume ds esfers: 4 r 8 r ) Volume do cilindro: V 1 =r H = 5 10=510. Volume d prte do quário que está sem águ: V = V A quntidde de cilindros será 0. V 510 Se fosse, dri 0. Como é um pouco mis que, dá um pouco menos do que 0. Pels lterntivs, sem necessitr efetur conts, observmos que é

19 17) h 6 6 O volume d esfer é V = 4πR = 4π = 6π O Volume do líquido deslocdo, que corresponde um cilindro, é V = R h = 6h. Pr que os volumes sejm iguis, h=1. 18) A x D r B x x E R C Os triângulos ABD e ACE são semelhntes: x x = R r Logo, R = r A rzão entre o volume V 1 d esfer menor e o volume V d esfer mior é V 1 V = 4πr 4πR = r R = r (r) = r 7r =

20 19) P Se bse d pirâmide coincidisse com bse do cubo, então o volume do cubo seri vezes o volume d pirâmide. Como bse d pirâmide é metde d bse do cubo, então o volume do cubo é 6 vezes o volume d pirâmide, ou sej, 6 1 = 6. 0) Cd pirâmide retird tem ltur H= e como bse B um triângulo retângulo, conforme figur: Dest form, B = ( ) / = 9/ O volume de cd pirâmide retird é V = (B H)/ = (9/) / = 9/. O volume do sólido é o volume do cubo, descontds 4 dests pirâmides: 6 4 9/ = =

21 1) Considere s seguintes plnificções. (F) (I) Não pode ser, um vez que n plnificção, os pentágonos estão ligdos e no sólido, s bses estão distntes. (V) (II) Ligndo-se os ldos esquerdo e direito do retângulo centrl n plnificção, obtemos superfície lterl do cilindro. Os pentágonos d plnificção formrão s bses do cilindro. (V) (III) Mesmo rgumento do item (II). 1

22 ) D C V A B V H 6 D C M A 6 B A bse B pirâmide é um qudrdo de ldo 6, logo su áre é 6. Sendo o triângulo ADV equilátero, AM= e AV=6. A ltur H d pirâmide é um cteto do triângulo retângulo AMV. Por Pitágors, 6 = + H 6 = 9 + H H = 7 H = 7 = O volume d pirâmide é V = B H = 6 = 6.

23 ) O diâmetro do cilindro é 4, logo o rio é. Se ltur é 4, então o volume do cilindro é V 1 = R H = 4 = 16. As dus semiesfers formm um esfer de rio e volume V = 4 πr = 4 π = π. Assim, o volume do reservtório é V 1 + V = 16 + / 48 + = 80 4) P b Ao fechr figur, os segmentos e b irão coincidir e um extremidde será o ponto P, situd no vértice do qudrdo sombredo com prte clr. P coincide com b P no vértice do qudrdo sombredo com prte clr.

24 5) Pr formr um prlelepípedo, é necessário um L idêntico o d bse pr sobrepô-lo. Além disto, no meio do L é necessário ter um prism com cubos, idêntico o d figur. Prism com cubos L d bse L idêntico o d bse () Prism com cubos no meio do L (b) (c) (d) (e) 4

25 RESPOSTAS 1) B ) D ) C 4) E 5) D 6) E 7) A 8) B 9) D 10) E 1) E 1) E 14) E 15) A 16) D 17) C 18) E 19) A 0) D 1) A ) D ) C 4) D 5) A 5

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Curso de linguagem matemática Professor Renato Tião. b) Sua diagonal

Curso de linguagem matemática Professor Renato Tião. b) Sua diagonal urso de lingugem mtemátic Professor Rento Tião 1. s dimensões de um prlelepípedo reto-retângulo são m, 4m e 1m. lcule: ) Su áre totl. b) Seu volume. c) Su digonl.. s dimensões x, y, z de um prlelepípedo

Leia mais

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles AULA - GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Rets prlels cortds por um trnsversl São queles que possuem dois ldos iguis. Ligndo o vértice A o ponto médio d bse BC, germos dois triângulos

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais).

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais). unifmu Nome: Professor: Ricrdo Luís de Souz Curso de Design Mtemátic Aplicd Atividde Explortóri V Turm: Dt: SÓLIDOS GEOMÉTRICOS: CÁLCULO DE ÁREA SUPERFICIAL E DE VOLUME Objetivo: Conecer e nomer os principis

Leia mais

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :... SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.

Leia mais

Unidade 8 Geometria: circunferência

Unidade 8 Geometria: circunferência Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16 MATEMÁTICA 77 Num bolão, sete migos gnhrm vinte e um milhões, sessent e três mil e qurent e dois reis. O prêmio foi dividido em sete prtes iguis. Logo, o que cd um recebeu, em reis, foi: ) 3.009.006,00

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB? 0 Num prov de vinte questões, vlendo meio ponto cd um, três questões errds nulm um cert. Qul é not de um luno que errou nove questões em tod ess prov? (A) Qutro (B) Cinco (C) Qutro e meio (D) Cindo e meio

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0

Leia mais

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 8 no E.F. Professores Cleer Assis e Tigo Mirnd Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 1 Exercícios Introdutórios

Leia mais

a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1

a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1 A AVALIAÇÃO ESPECIAL UNIDADE I -0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 Sejm n n b e bn b n. Se P = b, então P é um número: 0) inteiro

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: Nº: Turm: Professor: FÁBIO LUÍS Série: 1ª Dt: / / 01 LISTA DE EXERCÍCIOS TRIGONOMETRIA PARTE I 1 Os ctetos de um triângulo retângulo medem cm e 18cm

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mis Aprov n GV FGV ADM 04/dezembro/016 MATEMÁTICA APLICADA 01. ) Represente grficmente no plno crtesino função: P(t) = t 4t + 10 se t 4 1 t se t > 4 Se função P(t), em centens de reis,

Leia mais

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros Relções Métrics e Rzões Trigonométrics no Triângulo Retângulo - bombeiros Os ctetos de um triângulo retângulo medem cm e 8cm Nesss condições determine: ) medid "" d ipotenus b) medid "" d ltur reltiv à

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que Revisão Primeiro Semestre 01 prof. Less Auls 1 1. (ESPM) A metde de vlem, respectivmente: A) 0,6 1 e e 1. Se 1 e 9 e 9 8 e 1, e o triplo de x =, então o vlor de x é: A) 6. (FUVEST) Rcionlizr o denomindor

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Mtemátic Versão Teste Intermédio Mtemátic Versão Durção do Teste: 90 minutos 09.0.0.º no de Escolridde Decreto-Lei n.º 74/004, de 6 de mrço N su folh de resposts, indique de form legível

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

QUESTÃO 01. QUESTÃO 02.

QUESTÃO 01. QUESTÃO 02. PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

MATEMÁTICA 1. Resolução: S B = p R 2 S L = 2 p R. h = 2 p R. 3 = 6 p R S T = 2. S B + S L = 2 p R p R = 2 p R (R + 3)

MATEMÁTICA 1. Resolução: S B = p R 2 S L = 2 p R. h = 2 p R. 3 = 6 p R S T = 2. S B + S L = 2 p R p R = 2 p R (R + 3) MTEMÁTI Geometri Espcil 0. Um cilindro reto tem cm de ltur e su áre lterl vle d áre totl. etermine o seu volume. S = p S L = p. h = p. = p S T =. S + S L = p + p = p ( + ) omo S L = S T então p = p ( +

Leia mais

cpv especializado na espm

cpv especializado na espm 0 espm 05/07/009 cpv especilizdo n espm Mtemátic. O vlor d epressão. + pr = 0 é igul : ), b) c) d) 0 e). + = + = +. ( + ) = =. = ( + ). + Substituindo = 0 = 0,, temos: + 0, +, = = = 0, 0, = +. Sobre o

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

a) a amplitude de cada um dos ângulos externos do triângulo regular de que o segmento de reta BF é um dos lados;

a) a amplitude de cada um dos ângulos externos do triângulo regular de que o segmento de reta BF é um dos lados; EXTERNATO JOÃO ALBERTO FARIA Fich de Mtemátic 9º ANO 1- N figur estão representds três circunferêncis congruentes, tngentes dus dus. Sendo-se que CB 16 cm, determin áre d região colorid. Apresent o resultdo

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13 Mtemátic UNICAMP QUESTÃO 1 Em 1 de outubro de 01, Felix Bumgrtner quebrou o recorde de velocidde em qued livre. O slto foi monitordo oficilmente e os vlores obtidos estão expressos de modo proximdo n tbel

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

Exercícios. 0,24mm b) 0,24m

Exercícios. 0,24mm b) 0,24m Geometri Espcil I Exercícios 1. (Enem 01) Mri quer inovr em su loj de emblgens e decidiu vender cixs com diferentes formtos. Ns imgens presentds estão s plnificções desss cixs. O produto ds três dimensões

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Falando. Matematicamente. Teste Intermédio. Escola: Nome: Turma: N.º: Data:

Falando. Matematicamente. Teste Intermédio. Escola: Nome: Turma: N.º: Data: Mtemticmente Flndo lexndr Conceição Mtilde lmeid Teste Intermédio vlição MTEMTICMENTE FLNDO LEXNDR CONCE ÇÃO MT LDE LME D lexndr Conceição Mtilde lmeid VLIÇÃO Escol: Nome: Turm: N.º: Dt: MTEMÁTIC.º NO

Leia mais

Solução: Alternativa: A. Solução: Mas, 3 x, Daí, 2 cos x. Ora, tgx 7. Então, 14 senx. Assim, Alternativa: B

Solução: Alternativa: A. Solução: Mas, 3 x, Daí, 2 cos x. Ora, tgx 7. Então, 14 senx. Assim, Alternativa: B 0. Considere s seguintes firmções: I. A função f() = log 0 ( ) é estritmente crescente no intervlo ] [ II. A equção + = possui um únic solução rel. III. A equção ( + ) = dmite pelo menos um solução rel

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

4 SISTEMAS DE ATERRAMENTO

4 SISTEMAS DE ATERRAMENTO 4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Simulado OBMEP 2017 Nível 3 Ensino Médio

Simulado OBMEP 2017 Nível 3 Ensino Médio Simuldo OBMEP 2017 Nível 3 Ensino Médio 1. ALTERNATIVA D O comprimento d mes é 8 22 = 176 centímetros; logo, o plmo de Crolin mede 176 11 = 16 centímetros. 2. ALTERNATIVA C Como o multiplicr qulquer número

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Aos pais e professores

Aos pais e professores MAT3_015_F01_5PCImg.indd 9 9/09/16 10:03 prcels ou termos som ou totl Pr dicionres mentlmente, podes decompor os números e dicioná-los por ordens. 136 + 5 = (100 + 30 + 6) + (00 + 50 + ) 300 + 80 + 8 MAT3_015_F0.indd

Leia mais

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x DESAFIOS ENZO MATEMÁTICA 01-(FUVEST) Sejm x e y dois números reis, com 0

Leia mais

Solução da prova da 1 fase OBMEP 2013 Nível 1

Solução da prova da 1 fase OBMEP 2013 Nível 1 Solução d prov d fse OBMEP 0 Nível QUESTÃO Qundo brir fit métric, Don Céli verá o trecho d fit representdo n figur; mnch cinzent corresponde à porção d fit que estv em volt d cintur de Mrt. A medid d cintur

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes:

Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes: Questão 01 O polinômio P ( ) 10 0 81 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do polinômio. p ( ) 10 0 81 z bi z bi 1 z bi z ( ) bi z rel

Leia mais

QUESTÃO 1 ALTERNATIVA D. centímetros.

QUESTÃO 1 ALTERNATIVA D. centímetros. Solução d prov d fse OBMEP 03 Nível 3 QUESTÃO O comprimento d mes é centímetros. 8 7 centímetros; logo, o plmo de Crolin mede 7 QUESTÃO ALTERNATIVA B Observemos que + 0+ + 3, ou sej, som dos lgrismos do

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Colégio Marista Diocesano. Lista de Exercícios de Trigonometria 2 Ano Prof. Maluf

Colégio Marista Diocesano. Lista de Exercícios de Trigonometria 2 Ano Prof. Maluf Colégio Mrist Diocesno List de Exercícios de Trigonometri Ano Prof. Mluf 01 - (UEG GO) Um luno de mtemátic desenhou em um crtolin um plno crtesino e colocou sobre el um rod de biciclet de form que o centro

Leia mais

Revisão EXAMES FINAIS Data: 2015.

Revisão EXAMES FINAIS Data: 2015. Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos Nome: n o : Ensino: Médio érie: ª. Turm: Dt: rofessor: Márcio esumo TIGNMETI/GEMETI rcos e ângulos. Elementos: C: centro d circunferênci CB = C = : rio d circunferênci CB ˆ : ângulo centrl B : rco. Medid

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Geometria plana. Resumo teórico e exercícios.

Geometria plana. Resumo teórico e exercícios. Geometri pln. Resumo teórico e eercícios. 3º olegil / urso tensivo. utor - Lucs ctvio de Souz (Jec) Relção ds uls. Págin ul 01 - onceitos iniciis... 0 ul 0 - Pontos notáveis de um triângulo... 18 ul 03

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Cnguru Mtemático sem Fronteirs 2010 Durção: 1h30min Destintários: lunos do 9 Ano de Escolridde Nome: Turm: Não podes usr clculdor. Há pens um respost correct em cd questão. As questões estão grupds em

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO AO 1 O ANO DO CPCAR de AGOSTO de 2005

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO AO 1 O ANO DO CPCAR de AGOSTO de 2005 www.concursosmilitres.com.br COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA ESCOLA PREPARATÓRIA DE CADETES-DO-AR CONCURSO DE ADMISSÃO AO O ANO DO CPCAR 006 PROVA DE MATEMÁTICA 0 de AGOSTO

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO... TRIGONOMETRIA TRIÂNGULO RETÂNGULO... 6 RELAÇÕES FUNDAMENTAIS DA TRIGONOMETRIA... 10 ÂNGULOS NOTÁVEIS... 14 TABELA DE RAZÕES TRIGNOMÉTRICAS... 16 RESPOSTAS...

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Turma 3.a série Professor(a)

Turma 3.a série Professor(a) Caderno de Questões Bimestre.o Questões 10 Disciplina Geometria Espacial Testes 00 Páginas 10 Turma 3.a série Professor(a) Período M Data da Prova 0/06/01 Verifique cuidadosamente se sua prova atende aos

Leia mais