Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura."

Transcrição

1 Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde é clculr o volume de lguns sólidos usndo integrl definid. Começmos definindo o volume de um sólido prticulr - o cilindro reto - e então clculremos volume de sólidos mis geris usndo proximções por cilindros. Consideremos dus regiões plns R e R 2, que tem mesm form e tmnho e estão situds em plnos prlelos. Chm-se cilindro reto o sólido delimitdo pels regiões R e R 2 e por um superfície lterl gerd por um segmento de ret que tem seus extremos ns fronteirs de R e R 2 e move-se de tl form que fique sempre perpendiculr os plnos de R e R 2. A ltur do cilindro é distânci entre os plnos que contém R e R 2 e bse é qulquer um ds regiões R ou R 2. Se bse R for região delimitd por um circunferênci temos o cilindro circulr. Se R for delimitd por um retângulo temos um prlelepípedo retngulr. Definição. (Volume do Cilindro) O volume V de um um cilindro reto é ddo pelo produto: re d bse ltur. No que segue, denominremos o cilindro reto pens por cilindro. Exercícios. () Clcule o volume do cilindro circulr com ltur h e rio d bse r. áre d bse ltur = áre do círculo h = πr 2 h. (2) Clcule o volume do prlelepípedo retngulr de ltur h e bse o retângulo de medids e b.

2 2 Cálculo I Prof. Nzré Bezerr áre d bse ltur = áre do retângulo h = bh. (3) Clcule o volume do cilindro de ltur 3 e bse região delimitd pel elípse x2 4 + y2 =. re d bse ltur. Rest então clculr áre d bse, que é região do plno delimitd pel elipse de equção x y2 =. 2 2 áre d bse é dd pel integrl: Are d bse = 4 2 x2 dx. 4 Resolveremos est integrl por substituição trigonométric. Fzendo θ = rcsen( x ) x = 2senθ dx = 2cosθdθ 2 Como novos limites de integrção teremos: θ() = rcsen( ) = e θ(2) = rcsen( 2) = π Portnto, x2 4 dx = π 2 sen2 θ2cosθdθ = π 2 2cos2 θdθ = π 2 ( + cos2θ) = [θ + 2 sen2θ] π 2 = π 2. Volume do cilindro = 4 π 2 3 = 6π. 2 Seções Trnsversis Ddo um ponto P (x, ) no eixo x, denotremos por P x o plno que pss por este ponto e é perpendiculr o eixo x.

3 UFPA Cálculo I 3 Plno P x Definição 2. (Seção trnsversl) Considere um sólido R situdo o longo do intervlo [, b] no eixo x. Ddo x [, b], chm-se seção trnsversl de R em x região do plno determind pel interseção de R com o plno P x. Plno P x cortndo o sólido R Seção Trnsversl R x d interseção o ldo Denotremos por R x seção trnsversl de R em x e por A(x) áre de R x. Observmos que pr cd x [, b] obtemos um vlor pr áre A(x), ssim est áre é um função de x. Exercícios 2. () Considere um esfer de rio r com centro n origem de um sistem de coordends. Ddo x [ r, r] determine áre d seção trnsversl R x. Sejm x [ r, r] fixdo e P x o plno perpendiculr o eixo x pssndo por x. A seção trnsversl R x é um círculo de rio y. Dí, Rest determinr y. A(x) = πy 2.

4 4 Cálculo I Prof. Nzré Bezerr Q r y x O P Como o ponto Q está sobre esfer, segue que d(q, O) = r. do triângulo retângulo OP Q, segue que x 2 + y 2 = r 2 y 2 = r 2 x 2. Logo áre de A(x) é dd por: A(x) = πy 2 = π(r 2 x 2 ). (2) Considere um cone circulr reto de ltur h e rio d bse r, posiciondo em um sistem de coordends, de modo que seu vértice estej n origem do sistem e seu eixo centrl sobre o eixo x. Ddo x [, h], determine áre A(x) d seção trnsversl R x. Pr cd x [, b] seção trnsversl R x é um círculo de rio y. áre A(x) é dd por: A(x) = πy 2 Pr determinr y usmos semelhnç dos triângulos OAB e OA B, de onde segue que: A A y r O B x B h

5 UFPA Cálculo I 5 h r = x y y = r h x A(x) = π( r h x)2 (3) Repit o exercício nterior, considerndo que o eixo centrl do cone estej sobre o eixo y. 3 Volume pelo Método ds Seções Trnsversis Vejmos gor como clculr o volume de um sólido R situdo o longo de um intervlo [, b] no eixo x, usndo seções trnsversis. O procedimento é nálogo o que foi feito pr o cálculo de áres. () Começmos dividindo o intervlo [, b] em n subintervlos com extremiddes x, x,..., x n e com lrgurs iguis x = b n ; (2) Pr cd i =, 2,..., n, sej R i fti do sólido posiciondo o longo do intervlo [x i, x i ] e V i seu volume. Então, o volume V deste sólido é ddo por: n V i () i= (3) Agor clculmos o volume V i d fti R i por proximção, usndo cilindros. Mis precismente, escolhe-se um ponto rbitrário x i [x i, x i ] e consider-se o cilindro C i, cuj ltur é x e bse é seção trnsversl R x i de R em x i. o volume do cilindro proximnte C i é ddo por: Volume do cilindro C i = re de R x i x = A(x i ) x. Se x é pequeno, então o volume do cilindro C i é um bo proximção pr V i. pr cd i =, 2,..., temos: V i A(x i ) x. Então, de () segue que: n V i i= n A(x i ) x. (2) i= Como som à direit é um som de Riemnn pr função áre A(x), se tomrmos o limite dest som qundo n, teremos integrl definid d função A(x). Temos ssim seguinte definição do volume de R. Definição 3. Volume por seções trnsversis Se o sólido R se dispõe o longo do intervlo [, b] no eixo x e pr cd x [, b] áre d seção trnsversl de R em x é dd por A(x), então o volume de R é ddo por: b A(x)dx.

6 6 Cálculo I Prof. Nzré Bezerr No cso de um sólido R disposto o longo do intervlo [c, d] no eixo y, com áre d seção trnsversl de R em y [c, d] dd por A(y), o volume do sólido é ddo por: Exercícios 3. d c A(y)dy. () Clcule o volume de um esfer de rio r. Colocndo esfer com centro n origem de um sistem de coordends, portnto posiciond no intervlo [ r, r], pel definiço cim temos: r r A(x)dx onde A(x) é áre d interseção do plno P x com esfer. Pelo questão do Exercicio (2) est áre é dd por A(x) = π(r 2 x 2 ). r r π(r 2 x 2 ) = 2π r (r 2 x 2 )dx = 2π[r 2 x x3 3 ]r = 4 3 πr3 (2) Clcule o volume de um cone circulr reto de ltur h e rio d bse r. Posicionndo o cone como n questão (2) do Exercício (2), segue que: h A(x)dx = h π r2 h 2 x2 dx = [π r2 h 2.x3 3 ]h = 3 πr2 h. 4 Sólidos de Revolução Chm-se Sólido de Revolução o sólido obtido pel rotção de um superfície em torno de um eixo. Considere f um função contínu, S superfície delimitd pels curvs y = f(x) e y = no intervlo [, b] e R o sólido obtido pel rotção de S em torno do eixo x. y = f(x) S Sólido obtido pel rotção de S em torno do eixo x

7 UFPA Cálculo I 7 Pel seção nterior o volume V deste sólido é ddo por: b A(x)dx onde A(x) é áre d seção trnsversl de R em x [, b]. Como o sólido é obtido pel rotção de S em torno do eixo x, pr cd x [, b], seção trnsversl R x é um disco circulr de rio f(x), logo A(x) = πf(x) 2 e ssim, Exercícios 4. b πf(x) 2 dx. () Encontre o volume do sólido obtido pel rotção d região S em torno ds ret especificd: () S = {(x, y) R 2 x 3, y 2x + }, em torno do eixo x. 3 A(x)dx, onde A(x) = πf(x)2 = π(2x + ) 2. π 3 (4x 2 + 4x + )dx = 58 3 π. (b) S = {(x, y) R 2 x 2, y }, em torno do eixo x. x A(x)dx, onde A(x) = πf(x)2 = π. x 2 π x 2 dx = π[ x ]2 = 2 π. (c) S = {(x, y) R 2 x 2, y x 2 }, em torno do eixo x. A(x)dx, onde A(x) = πf(x)2 = π(x 2 ) 2 = πx 4. π x 4 dx = π[ 5 x5 ] 2 = 32 5 π. (d) S = {(x, y) R 2 2 x 2, y x2 }, em torno do eixo x. 4 A(x)dx, onde A(x) = 2 πf(x)2 = π( x2 ). 4 Portnto, π 2 ( x2 4 )dx = 8 3 π.

8 8 Cálculo I Prof. Nzré Bezerr Revolução d Região entre dus Curvs Considere f e g funções contínus com f(x) > g(x) pr todo x [, b] e S região do plno delimitd pels curvs y = f(x) e y = g(x). Sej R o sólido de revolução obtido pel rotção de S em torno do eixo x no intervlo [, b]. Tmbém qui temos que o volume V de R é ddo por: restndo clculr áre A(x). b A(x)dx, Revolução de um região delimitd por dus curvs Seção Trnsversl R x deste sólido Neste cso, pr cd x [, b] seção trnsversl R x é um nel ou coro circulr delimitd por dois círculos concêntricos, logo: A(x) = re do disco externo - re do disco interno = πf(x) 2 πg(x) 2 = π[f(x) 2 g(x) 2 ]. Portnto o volume V do sólido R é ddo por: Exercícios 5. b π[f(x) 2 g(x) 2 ]dx. Clcule o volume do sólido obtido pel rotção d região S delimitd pels curvs dds em torno d ret especificd: () y = 4 x2, y = 5 x 2, em torno do eixo x. { y = Resolvendo o sistem 4 x2 y = 5 x 2, encontrmos ( 2, ) e (2, ) como pontos de interseção ds curvs. o sólido de revolução, no eixo x, está posiciondo no intervlo [ 2, 2] e como 4 x2 5 x 2, pr todo x [ 2, 2], segue que: 2 π ((5 x 2 ) 2 ( 4 x2 ) 2 ) dx = 2 ( ) 5 6 x4 x dx = 76 3 π. (2) y = x e y = x, em torno do eixo x. y = x Resolvendo o sistem y = x, encontrmos (, ) e (, ) como pontos de interseção ds

9 UFPA Cálculo I 9 curvs. o sólido de revolução estrá no intervlo [, ] e como x x, pr todo x [, ], sendo rotção em torno do eixo x, segue que: ( x 2 π x 2) dx = 6 π (3) S = {(x, y) R 2 x 3, y 2}, em torno do eixo y. Como rotção é em torno do eixo y, então A(y)dy, onde A(y) = π.32 π. 2 = 8π. 8π dy = 8π[y] 2 = 6π. 5 Volume por Cscs Cilíndrics Outro método pr clculr volume de sólidos de revolução, obtidos por rotção em torno do eixo y, é fzendo proximções por cscs cilíndrics. Considere f um função contínu e positiv, S superfície dd por S = {(x, y) R 2 x b, y f(x)} e R o sólido de revolução obtido pel rotção de S em torno do eixo y, cujo volume V se quer clculr. () Divide-se o intervlo [, b] em n subintervlos com extremiddes x, x,..., x n e com lrgurs iguis x = b n ; (2) Sej S i o retângulo de bse x e ltur f(x i ), onde x i = x i +x i 2 é o ponto médio do intervlo [x i, x i ] e R i o sólido obtido pel rotção de S i em torno do eixo y. O sólido R i é chmdo csc cilíndric - dois cilindros concêntricos com mesm ltur - com volume ddo por: Volume de R i = πx 2 i x πx 2 i x = 2πx i f(x i ). x V n 2πx i f(x i ) x Qunto menor for x, melhor é proximção, então define-se: ( n ) b lim 2πx i f(x i ) x = 2πxf(x)dx. n i= i=

10 Cálculo I Prof. Nzré Bezerr Exercícios 6. () Determine o volume de sólido obtido pel rotção de região S = {(x, y) R 2 x 3, y 2x + } em torno do eixo y. Usndo o método ds cscs cilíndrics, o volume do sólido é: 3 2πx(2x + )dx = 28 3 π. (2) Determine o volume de sólido obtido pel rotção de região S = {(x, y) R 2 x 2, y x 2 }, em torno do eixo y. Usndo cscs cilíndrics, 2πx.x 2 dx = 8π (3) Determine o volume de sólido obtido pel rotção de S = {(x, y) R 2 x 2, y } em torno do eixo y. x 2πx dx = 2π. x - Resumo Explique o procedimento usdo pr determinr o volume de um sólido por seções trnsversis. 2 - Aprofundndo o contéudo Lei mis sobre o contéudo dest ul no Cpítulo 6 - seção, 6.2 do livro texto. 3. Sugestões de Exercícios Resolv os exercícios sobre o ssunto n seção 6.2 do livro texto. 4. Desfio Clcule S xcosydxdy, onde S = {(x, y) R2 x, x 2 y π}.

11 Bibliogrfi [] Guidorizzi, Hmilton Luiz. Um Curso de Cálculo - Vol.. Livros Técnicos e Científicos, São Pulo, 997. [2] Jr, C. H. Edwrds e Penney, Dvid E. Cálculo com Geometri Anlític. Prentice-Hll do Brsil, Rio de Jneiro, 997. [3] Leithold, Louis. O Cálculo com Geometri Anlític - Volume I. Ed. Hrper e Row do Brsil Ltd, São Pulo, 997. [4] Lim, Elon Lges. A Mtemátic do Ensino Médio - Volume. SBM, Rio de Jneiro, 996. [5] Stewrt, Jmes. Cálculo, Volume. Cengge Lerning, São Pulo, 23.

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Aplicações da Integral

Aplicações da Integral Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

Como calcular a área e o perímetro de uma elipse?

Como calcular a área e o perímetro de uma elipse? Como clculr áre e o perímetro de um elipse? Josiel Pereir d Silv 8 de gosto de 14 Resumo Muitos professores de Mtemátic reltm que miori dos livros didáticos de Mtemátic utilizdos no Ensino Médio não bordm

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas.

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas. Cpítulo II Funções Reis de Vriável Rel.. Função eponencil e logritmo. Funções trigonométrics directs e inverss. Função eponencil A um unção deinid por nome de unção eponencil de bse. ( ), onde, > 0 e,

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos Nome: n o : Ensino: Médio érie: ª. Turm: Dt: rofessor: Márcio esumo TIGNMETI/GEMETI rcos e ângulos. Elementos: C: centro d circunferênci CB = C = : rio d circunferênci CB ˆ : ângulo centrl B : rco. Medid

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Aplicações da Integral Simples

Aplicações da Integral Simples Chpter Aplicções d Integrl Simples. Áre de regiões plnres Sej R região limitd pelo gráfico d função = f(), s rets =, = b e o eio, sendo f() pr todo [, b]. A áre d região R é ddo pel fórmul: A = f()d. =

Leia mais

Assíntotas horizontais, verticais e oblíquas

Assíntotas horizontais, verticais e oblíquas Assíntots horizontis, verticis e olíqus Méricles Thdeu Moretti MTM/PPGECT/UFSC INTRODUÇÃO Dizemos que um ret é um ssíntot de um curv qundo um ponto o mover-se o longo d prte etrem d curv se proim dest

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Sobre o teorema de classificação das cônicas pela análise dos invariantes

Sobre o teorema de classificação das cônicas pela análise dos invariantes Revist Ffibe On Line n go 7 ISSN 88-699 wwwffibebr/revistonline Fculddes Integrds Ffibe Bebedouro SP Sobre o teorem de clssificção ds cônics pel nálise dos invrintes (About the conics clssifiction theorem

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x DESAFIOS ENZO MATEMÁTICA 01-(FUVEST) Sejm x e y dois números reis, com 0

Leia mais

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB.

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB. MÚLTIPL ESCOLH NOTÇÕES C : conjunto dos números compleos. Q : conjunto dos números rcionis. R : conjunto dos números reis. Z : conjunto dos números inteiros. N {0,,,,...}. N* {,,,...}. : conjunto vzio.

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas Cálculo Diferencil e Integrl - Nots de Aul Márci Federson e Gbriel Plns de mrço de 03 Sumário Os Números Reis. Os Números Rcionis................................ Os Números Reis.................................

Leia mais

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...). 9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO AULA DEZESSETE: GEOMETRIA BÁSICA

CURSO ONLINE RACIOCÍNIO LÓGICO AULA DEZESSETE: GEOMETRIA BÁSICA 1 Olá, migos! UL DEZESSETE: GEOMETRI ÁSI Novmente pedimos desculps por não ter sido possível presentrmos est ul 17 n semn pssd. Dremos hoje início um novo ssunto: GEOMETRI! omo de prxe, presentremos muits

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Matemática. Prova: 05/08/12. Questão 1. Questão 2. Considere os seguintes conjuntos numéricos,,,, = e considere também os seguintes conjuntos:

Matemática. Prova: 05/08/12. Questão 1. Questão 2. Considere os seguintes conjuntos numéricos,,,, = e considere também os seguintes conjuntos: Prov: 05/08/ Mtemátic Questão Considere os seguintes conjuntos numéricos,,,, = e considere tmbém os seguintes conjuntos: A= ( ) ( ) B= ( ) D= ( ) ( ) Ds lterntivs bixo, que present elementos que pertencem

Leia mais

9.2 Integração numérica via interpolação polinomial

9.2 Integração numérica via interpolação polinomial Cpítulo 9 Integrção Numéric 9. Introdução A integrção numéric é o processo computcionl cpz de produzir um vlor numérico pr integrl de um função sobre um determindo conjunto. El difere do processo de ntidiferencição,

Leia mais

Apostila de Cálculo II

Apostila de Cálculo II Antiderivd e Integrl Indefinid Um ntiderivd ou primitiv d função f no intervlo [,b] que:, é um função F, tl df d ( ) f( ) pr todo [,b] Notção de Leibniz: Outr notção empregd pr designr operção de primitivção

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana.

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana. PROCESSO SELETIVO/006 RESOLUÇÃO MATEMÁTICA Brz Mour Freits, Mrgreth d Silv Alves, Olímpio Hiroshi Miygki, Rosne Sores Moreir Vin QUESTÕES OBJETIVAS 0 Pr rrecdr doções, um Entidde Beneficente usou um cont

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Notas Teóricas de Análise Matemática

Notas Teóricas de Análise Matemática Nots Teórics de Análise Mtemátic Rui Rodrigues Deprtmento de Físic e Mtemátic Instituto Superior de Engenhri de Coimbr Índice Primitivção de funções reis de vriável rel. Primitivção...................................2

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Função de onda e Equação de Schrödinger

Função de onda e Equação de Schrödinger Função de ond e Equção de Schrödinger A U L A 4 Met d ul Introduzir função de ond e Equção de Schrödinger. objetivos interpretr fisicmente função de ond; obter informção sobre um sistem microscópico, prtir

Leia mais

Aula 4 Movimento em duas e três dimensões. Física Geral I F -128

Aula 4 Movimento em duas e três dimensões. Física Geral I F -128 Aul 4 Moimento em dus e três dimensões Físic Gerl I F -18 F18 o Semestre de 1 1 Moimento em D e 3D Cinemátic em D e 3D Eemplos de moimentos D e 3D Acelerção constnte - celerção d gridde Moimento circulr

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

SOMESB Sociedade Mantenedora de Educação Superior da Bahia S/C Ltda. FTC-EAD Faculdade de Tecnologia e Ciências Ensino a Distância

SOMESB Sociedade Mantenedora de Educação Superior da Bahia S/C Ltda. FTC-EAD Faculdade de Tecnologia e Ciências Ensino a Distância Cálculo II CÁLCULO II SOMESB Sociedde Mntenedor de Educção Superior d Bhi S/C Ltd. Presidente Gervásio Meneses de Oliveir Vice-Presidente Willim Oliveir Superintendente Administrtivo e Finnceiro Smuel

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

1 Áreas de figuras planas

1 Áreas de figuras planas Nome: n o : Ensino: Médio érie: ª. Turm: Dt: Professor: Mário esumo 1 Áres de figurs plns 1.1 etângulo h. h 1. Qudrdo 1. Prlelogrmo h. h 1.4 Trpézio h B h B 1.5 Losngo d Dd. D 1.6 Triângulos 1.6.1 Triângulo

Leia mais

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras.

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras. UT 01 Vetore Oerve itução eguir: A prtícul vermelh etá e movendo num di quente, onde o termômetro indic tempertur de 41 gru Celiu! GRANDEZA ESCALAR É um grndez fíic completmente crcterizd omente com o

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

Questão 1 No plano cartesiano, considere uma haste metálica rígida, de espessura desprezível, com extremidades nos pontos A (3,3) e B (5,1).

Questão 1 No plano cartesiano, considere uma haste metálica rígida, de espessura desprezível, com extremidades nos pontos A (3,3) e B (5,1). UJ OURSO VSTIULR 0- RITO PROV ISURSIV TÁTI Questão o plno crtesino, considere u hste etálic rígid, de espessur desprezível, co extreiddes nos pontos (,) e (5,) ) eterine equção d circunferênci de centro

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

PRESSÕES LATERAIS DE TERRA

PRESSÕES LATERAIS DE TERRA Estdo de equilíbrio plástico de Rnkine Pressões lteris de terr (empuxos de terr) f(deslocmentos e deformções d mss de solo) f(pressões plicds) problem indetermindo. É necessário estudr o solo no estdo

Leia mais

Estudo dos Logaritmos

Estudo dos Logaritmos Instituto Municipl de Ensino Superior de Ctnduv SP Curso de Licencitur em Mtemátic 3º no Prátic de Ensino d Mtemátic III Prof. M.Sc. Fbricio Edurdo Ferreir fbricio@ffic.br Situção inicil Estudo dos Logritmos

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito ns melhores fculddes IBMEC 03/junho/007 ANÁLISE QUANTITATIVA E LÓGICA DISCUSIVA 01. O dministrdor de um boliche pretende umentr os gnhos com sus pists. Atulmente, cobr $ 6,00 por um hor

Leia mais

Manual de Operação e Instalação

Manual de Operação e Instalação Mnul de Operção e Instlção Clh Prshll MEDIDOR DE VAZÃO EM CANAIS ABERTOS Cód: 073AA-025-122M Rev. B Novembro / 2008 S/A. Ru João Serrno, 250 Birro do Limão São Pulo SP CEP 02551-060 Fone: (11) 3488-8999

Leia mais

Se conhecemos a taxa de variação de uma quantidade em relação a outra, podemos determinar a relação entre essas quantidades?

Se conhecemos a taxa de variação de uma quantidade em relação a outra, podemos determinar a relação entre essas quantidades? UNIVERSIDADE DO ESTADO DA BAHIA UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA DCET / CAMPUS I DISCIPLINA: Cálculo II (MAT 089 CH: 75 PROFESSOR: Adrino Ctti SEMESTRE: 0. ALUNO: APOSTILA 0: INTEGRAL INDEFINIDA

Leia mais

Fernanda da Costa Diniz Nogueira Belo Horizonte, junho de 2007.

Fernanda da Costa Diniz Nogueira Belo Horizonte, junho de 2007. Un i ve r si d d e F e de r l d e M in s G e r i s Institu to de C iê nc i s E t s Dep r t me n t o d e M t e m á t ic E n sin o M éd io e Un iver sit ár io: d ifer ent es bor d gen s n con st r ução d

Leia mais

Cálculo Integral em R

Cálculo Integral em R Cálculo Integrl em R (Primitivção e Integrção) Miguel Moreir e Miguel Cruz Conteúdo Primitivção. Noção de primitiv......................... Algums primitivs imedits................... Proprieddes ds primitivs....................4

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

NÃO existe raiz real de um número negativo se o índice do radical for par.

NÃO existe raiz real de um número negativo se o índice do radical for par. 1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,

Leia mais

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como Análise Mtemátic I - 6/7 Y rcsen y - A unção rcos tem como domínio [, ] e como A unção rcsen tem como domínio [, ] contrdomínio,. e como Y rccos y - A unção rccos tem como domínio [, ] contrdomínio [,

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

Lajes de Forma Especial

Lajes de Forma Especial Universidde Estdul de ringá Centro de Tecnologi Deprtento de Engenhri Civil Cpítulo 5 Ljes de For Especil Curso: Engenhri Civil Disciplin: Estruturs e Concreto II Bibliogrfi: ASSOCIAÇÃO BRASILEIRA DE NORAS

Leia mais

N Questões - Flexão QUESTÕES DE PROVAS E TESTES (Flexão Pura)

N Questões - Flexão QUESTÕES DE PROVAS E TESTES (Flexão Pura) QUESTÕES DE ROVS E TESTES (Flexão ur) (1) Estudo Dirigido 04-02 r cd um ds vigs esquemtizds bixo, com s respectivs seções trnsversis mostrds o ldo, pede-se: ) Trçr o digrm de forçs cortntes, ssinlndo os

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Mtemátic Trigonometri do Triângulo Retângulo Roteiro no.5 - Atividdes didátics de 2007 Versão compild no di 9 de Mio de 2007. Deprtmento de Mtemátic - UEL Prof. Ulysses Sodré E-mil: ulysses@mtemtic.uel.br

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º nos do Ensino Fundmentl) GABARITO GABARITO NÍVEL 1) C 6) C 11) D 16) B 1) C ) E 7) A 1) A 17) B ) Anuld ) A 8) E 1) B 18) E ) A ) A 9)

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

1. A quantidade em estudo é aproximada por uma soma, que é identificada como sendo a soma de Riemann de

1. A quantidade em estudo é aproximada por uma soma, que é identificada como sendo a soma de Riemann de Cpítulo Aplicções d Integrl Definid. Introdução As integris surgirm no estudo ds áres, ms, ssim como s derivds, revelrm possuir muits outrs plicções. Mostrremos neste e nos próimos cpítulos como s integris

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

José Miguel Urbano. Análise Infinitesimal II Notas de curso

José Miguel Urbano. Análise Infinitesimal II Notas de curso José Miguel Urbno Análise Infinitesiml II Nots de curso Deprtmento de Mtemátic d Universidde de Coimbr Coimbr, 2005 Conteúdo Primitivs 3 2 O integrl de Riemnn 8 2. Proprieddes do integrl de Riemnn..............

Leia mais