Neste estudo, continuamos desenvolver métodos que aproximem a solução do P.V.I. da forma

Tamanho: px
Começar a partir da página:

Download "Neste estudo, continuamos desenvolver métodos que aproximem a solução do P.V.I. da forma"

Transcrição

1 7- Métodos de Ruge-Kutt Neste estudo cotiumos desevolve métodos que poimem solução do PVI d om ' 0 0 A idéi ásic destes métodos é poveit s quliddes dos métodos d séie de lo e o mesmo tempo elimi seu mio deeito que é o cálculo de deivds de que coome vimos to os métodos de séie de lo computciolmete ieicietes Podemos dize que os métodos de Ruge-Kutt de odem p se ccteizm pels seguites popieddes: i são de psso um p clcul i usmos pes i ; ii ão eigem o cálculo de qulque deivd de ; o etto pgm po isso o peço de clcul em váios potos; iii pós epdi po lo p ução de dus viáveis em too de e gup os temos semeltes su epessão coicide com do método de séie de lo de mesm odem Já vimos que o método de Eule é um método de séie de lo de ª odem: ' 0 Etão 0 e ssim o método de Eule stisz s popieddes cim que o ccteiz como um método de Ruge-Kutt de odem p Esse método cosiste em se ze mudçs o método de Eule p se cosegui um método sedo séie de lo de ª odem de tl om que elimie o cálculo de deivds de ª odem Deiição 7: Sejm um iteio positivo e úmeos eis i i ij p i e j ode com e Deomi-se um método de Ruge-Kutt com estágios o método deiido po: ϕ ; ϕ ; K K i j j j K i i ij j i j ij j i seve que e deiem um clsse de métodos de psso um com tmo isto é e s costtes eis i i ij idetiicm o pticul método deste tipo Po seem métodos de psso um o tmo que podei se deotdo po pode se ltedo cd psso o que é um ccteístic desses métodos Mis p ete discutiemos com mis detles est imção soe odem do método A otção i sigiic que o i vi de té de um em um

2 seve tmém que os Métodos de Ruge-Kutt o úmeo de estágios idetiic o úmeo de vlições d ução que são ecessáis cd psso De codo com Butce Butce 987 podemos epeset os coeicietes de um método de Ruge-Kutt um om mis compct do seguite modo: B t Podemos clssiic os métodos de Ruge-Kutt como: Eplícitos se 0 p i j; ij Implícitos se 0 p lgum i j ij Deiição 7: método de Ruge-Kutt deiido po e é cosistete com o PVI se ϕ ;0 sevção: seve que o método de Ruge-Kutt é cosistete com o PVI se e somete se j j Deiição 7: Dizemos que o método de Ruge-Kutt ϕ ; tem odem de cosistêci p se p o o mio iteio tl que: p ϕ ; 5 ode é solução et do PVI em Ilustemos um om de costução deste tipo de método cosidedo um método de Ruge-Kutt eplícito com p logo com oito pâmetos seem detemidos ou sej e pti deste geemos lgus métodos de odes ieioes Como é um ução de dus viáveis deotdo temos epessão em séie de lo de o poto : D D 8!! ode ' D " D ''' etc Alogmete epdido cd i deiido po p i ; otém-se: ] ]

3 ] 9 ] ] Como temos!!!! ] ]!! Potto φ ]!! ] ]! Potto φ ] ] 0! Po outo ldo φ t do lgoitmo de lo desevolvid ceg à: φ t ]! Estes métodos são gedos pti d compção ete epsão d séie p φ ; ged pelo método 0 e φ ; d solução lític t t Eemplo 7: Detemi um método de estágios e de odem máim Compdo 0 com o desevolvimeto em lo cegmos o sistem: * Como temos dus equções e tês icógits temos iiitos métodos de Ruge-Kutt de odem e dois estágios Vejmos lgums soluções: Se o método esultte é o método de Eule: que tem odem sevção: Com odem e estágio só eiste o método de Eule Se c 0 ]

4 78 78 φ t sevção: Não coseguimos um método de Ruge-Kutt de estágios com odem meos que se impo codições soe pois p se te odem teímos mis seguite codição lém de *: e isso só sei stiseito se impuséssemos codições soe sevção: deotemos um Método de Ruge-Kutt de estágios e odem p po RKp Eemplo 7: Um método de Ruge-Kutt de estágios de odem : Sej 0 e emos etão ϕ ] Potto que é o método de Eule modiicdo Sej Potto e ] que é método de Eule melodo Eemplo 7: Resolv o Polem de vlo iicil ' 0 0 pelo método de Eule Modiicdo usdo 0 Clcul e Solução: método de Eule Modiicdo é ddo po: ; ] ;

5 Compdo 0 com e cosidedo ulidde ds epessões que compm s potêcis de té odem otemos s codições de odem dds segui: Cosidedo em 0 e como pâmetos lives detemimos de mei úic os demis pâmetos otedo míli de métodos de Ruge-Kutt de estágios com odem emos potto equções icógits; tiuido vloes viáveis detemimos s outs Novmete temos iiitos métodos de Ruge-Kutt de estágios de odem mém esse cso ão coseguimos um método de estágios e de odem meos que se impo codições soe Eemplo 7: Sej ; 0 ; 0 0; seve Impodo que temos emos: ϕ ] ] ] que é o método de Heu Eemplo 75: Cosidee e e potto emos êm-se que Assim: ± ± Se e 5 0

6 ϕ ]] que é o método de Kutt de odem Eemplo 7: Cosidee e emos 8 e 8 Assim o método costituído pelos pâmetos detemidos cim é: ] 8 8 que é o método de Nstö de odem Algus eemplos de Método de Ruge-Kutt de estágios e odem RK podem se vistos segui: ] 8 ou ] sevções: Eiste um elção ete o úmeo de estágios e odem do método que é seguite: Estágios dem Igul o úmeo de estágios estágios

7 s métodos de odem são os mis usdos A medid que p cesce o úmeo de codições de odem umet um zão mio e coseqüetemete o úmeo de equções do sistem se esolvido tmém cesce todo oteção de solução p o sistem mis comple o-se etão iteesste utiliz equções uilies que sustitum com vtges lgums ds equções uilies deomids codições simpliicdos que pemitem simpliic oteção de métodos RKsp Eumeemos ests codições po Ap Bp Cp Dη e Eη p e epesetm o seguite: Ap se o método tive odem de cosistêci p Bp se ii ; p i i Cp se ij j ; p i j l l Dη se i i ij ; j j ; j ; l η i l l E η p se i i ij j ; l ; η 5 l i i Deiição 7: Deomi-se eo de tucmeto locl de em o vlo ϕ ; Se o método tem odem de cosistêci p e é suicietemete dieeciável cosidedo em epsão em séie de lo de e ϕ ; um viziç de otemos: sevções: p p ψ ; 7 Pode-se pov que: se etão De to: emos 0 ϕ ϕ ϕ eo de tucmeto locl om ssitótic é ddo po: q ϕ q ode q é odem do método A ução ϕ é cmd ução eo picipl e ϕ é cmdo eo de tucmeto locl picipl; que é muito impotte pois umet pecisão em cd psso Clculemos ução eo picipl p os métodos de Ruge-Kutt os seguites csos: q 7- Método de Eule: p 7

8 8 ϕ Desevolvedo em séie de lo em too do poto otemos: '! ' "! ' ]! Como temos que e ssim φ e ] ELP 7- Método de Eule Melodo ou Modiicdo ou Apeeiçodo: p emos φ ]! Como e p temos: Potto ]! Desevolvedo em séie de lo em too do poto otemos:! '''! "! ' ]! ] ] φ e ELP ] Eemplos 77: Pov que edo ' é esolvid etmete segudo o ELP po um método de Ruge-Kutt de odem em-se que: ELP ] { Etetto 0 e ELP u sej

9 Clcule o ELP qudo o polem de vlo iicil Método de Eule; Método de Eule Modiicdo ' 0 0 é esolvido po: Solução: ELP { } ELP { } Como etão ELP { } Se 0 0 ELP { } c Resolv o PVI ' 00 pelos Métodos de c Eule c Eule-Modiicdo C Ruge Kutt 00 s Solução Et: 000e Solução: c Método de Eule Potto P temos P 0 5 tem-se: e P 0 5 temos: e 000 9

10 P 0 temos: e c Método de Eule-Modiicdo Ruge-Kutt de odem: ] ] ] Aálogo o que vimos p o Método de Eule P temos P 0 5 tem-se: P 0 5 tem-se: P 0 tem-se: sevção: Dd espost et com quto css decimis vemos que à medid que dimiui cd método otém um melo poimção e que ete os dois como e de se espe o Método de Eule Apeeiçodo oece meloes esultdos; vej que po Eule Apeeiçodo! sevmos que sedo 0 0 etão 0 Po outo ldo séie de lo de e 0 0 em too de 0 é: e 00 00! e 00 00! Vê-se que tto 00 do método de Eule como do método de Eule Apeeiçodo são poimções p e e 70

11 sevção: Como estmos iteessdos em ou sej etão Assim é tmém tul que o método de Eule à medid que dimiui cegmos mis póimos d solução pois 00 / e lim 00 c Método de Ruge-Kutt de dem: : K K K 9 9 K 00 K K K K 00 K K K 00 K ] K K K K Eemplo 78: Ddo o PVI ' ote e 0 Solução: A solução et dest equção é: 5 ] potto 8 e Aplicdo o método de Ruge Kutt de odem descito io K K K K ode K K K K K K otemos os seguites esultdos: P 05: Este esultdo tmém vle p o Método de Eule Apeeiçodo 7

12 P 0: Eecícios 7 ze os eecícios eltivos os tópicos vistos os livos: Boso L C e Ruggieo MA 7

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Escol Secudái com º ciclo D. Diis º Ao de Mtemátic A Tem II Itodução o Cálculo Difeecil II Aul do plo de tblho º Resolve ctividde d pági 7, os eecícios ) e c), b) e c), 6 b) e c) d pági 8, ctividde d pági

Leia mais

x podem ser reais ou complexos. Nós estamos interessados apenas nas raízes reais. O exemplo mais simples de raiz é da equação linear.

x podem ser reais ou complexos. Nós estamos interessados apenas nas raízes reais. O exemplo mais simples de raiz é da equação linear. CAPÍTULO ZEROS DE FUNÇÕES. INTRODUÇÃO Neste cpítulo pocumos esolve polems que fequentemente ocoem n áe de engenhi e ciêncis ets, que consiste n esolução de divesos tipos de equções. Sendo esss equções

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierecil e Itegrl Limites Proessor: Luiz Ferdo Nues, Dr. 8/Sem_ Cálculo ii Ídice Limites.... Noção ituitiv de ite.... Deiição orml de ite.... Proprieddes dos ites.... Limites lteris...

Leia mais

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = + Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto

Leia mais

Capítulo 2: Resolução Numérica de Equações

Capítulo 2: Resolução Numérica de Equações Cpítulo : Resolução Numéric de Equções.. Riz de um equção Em muitos prolems de egehri há ecessidde de determir um úmero ξ pr qul ução sej zero, ou sej, ξ. A ξ chmmos riz d equção ou zero d ução. Equções

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites Cálculo I ª List de Eercícios Liites Clcule os liites: 9 / /8 Resp.: 6 li li li li li li e d c e d c Clcule os liites io: Clcule: 8 6 li 8 li e d li li c li li / /.: Resp e d c Resp.: li li li li li li

Leia mais

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO: QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

REGIME TRANSIENTE. Métodos para Problemas de Valor Inicial. I. Métodos de Dois Níveis

REGIME TRANSIENTE. Métodos para Problemas de Valor Inicial. I. Métodos de Dois Níveis Agel Nieckele UC-Rio REGIME TRANIENTE Méodos p oblems de Vlo Iicil I. Méodos de Dois Níveis i. eplício ou Eule eplício ou Fowd Eule Eule p fee Tlo p fee: o f ; o f 3 3 4 4... 3 6 4 4! 0 po.. odem Agel

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo 6 Resultdos e Discussão I - Obtenção do K ti d luoescênci estcionái e esolvid no temo 6.1 Equilíbio de ionizção O H de um solução é um medid de su concentção de H, o qul ode se deinido como: 1 H log1 log1[

Leia mais

CAPÍTULO 2. SEÇÃO 2.10 página 20 ( ) ( ) ( ) 3 ( ) ( ) ( ) 7 ( ) 8 ( ) ( ) , achar: 1. Se ( ) 1. = x x. a) ( ) 4 1. b) ( ) t t. t t.

CAPÍTULO 2. SEÇÃO 2.10 página 20 ( ) ( ) ( ) 3 ( ) ( ) ( ) 7 ( ) 8 ( ) ( ) , achar: 1. Se ( ) 1. = x x. a) ( ) 4 1. b) ( ) t t. t t. 8 CAPÍTULO SEÇÃO.0 pái 0. Se, c: ) 0 0 0. b) 0. c). d). e) 6. ).. Se, deemie: ) 0 8 8 0 0 0 9 Poo, 0 98 6 6 9 b) [ ] 9 c) 9 9. d). 8 88 8 8 8 9 8 0 e) 0 0 0 0 ( ) 0 ( ) ( ) ( ) ) [ ] ( ) ( ) ( ) [ ()]..

Leia mais

Disciplina: Cálculo Numérico. Professora: Dra. Camila N. Boeri Di Domenico NOTAS DE AULA / 1

Disciplina: Cálculo Numérico. Professora: Dra. Camila N. Boeri Di Domenico NOTAS DE AULA / 1 Discili: Cálculo Numérico Proessor: Dr. Cmil N. Boeri Di Domeico NOTAS DE AUA 8 / 4. INTERPOAÇÃO 4.. INTRODUÇÃO O roblem de ler s etrelihs de ddos tbeldos ocorre com requêci em licções. Tmbém é comum os

Leia mais

MATEMÁTICA PROFESSOR: ÍNDICE

MATEMÁTICA PROFESSOR: ÍNDICE D MATEMÁTICA ÍNDICE GEOMETRIA ANALÍTICA PARTE...5. SISTEMA CARTESIANO ORTOGONAL...5. ESTUDO DO PONTO...5. PONTO MÉDIO DE UM SEGMENTO DE RETA...5. ESTUDO DA RETA...5 5. CÁLCULO DO COEFICIENTE ANGULAR E

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 98 INTERPOLAÇÃO POLINOMIAL Iterpolr um ução () cosiste em proimr ess ução por outr ução g() escolid etre um clsse de uções deiid priori e que stisç lgums proprieddes A ução g() é etão usd em substituição

Leia mais

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de grge Professor Volmir Eugêio Wilhelm Professor Mri Klei Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução f() que ão se cohece. São cohecidos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

Ajuste de curvas por quadrados mínimos lineares

Ajuste de curvas por quadrados mínimos lineares juste de cuvs o quddos mímos lees Fele eodo de gu e Wdele Iocêco oe Júo Egeh de s o. Peíodo Pofesso: ode Josué Bezue Dscl: Geomet lítc e Álgeb e. Itodução Utlzmos este método qudo temos um dstbução de

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO AULA 3 MECÂNICA VETOES - INTODUÇÃO N Físic usmos dois gupos de gndezs: s gndezs escles e s gndezs vetoiis. São escles s gndezs que ficm ccteizds com os seus vloes numéicos e sus espectivs uniddes. São

Leia mais

SEQUÊNCIA DE FIBONACCI: HISTÓRIA, PROPRIEDADES E RELAÇÕES COM A RAZÃO ÁUREA 1

SEQUÊNCIA DE FIBONACCI: HISTÓRIA, PROPRIEDADES E RELAÇÕES COM A RAZÃO ÁUREA 1 Disc Scieti Séie: Ciêcis Ntuis e Tecológics S Mi v 9 p 67-8 008 67 ISSN 98-84 SEQUÊNCIA DE FIBONACCI: HISTÓRIA PROPRIEDADES E RELAÇÕES COM A RAZÃO ÁUREA FIBONACCI SEQUENCE: HISTORY PROPERTIES AND CONNECTIONS

Leia mais

Parte 1 - Convergência Absoluta [abordagem direta (quocientes de Newton)]. 3.2 RegradeLeibniz(integralprópria)...12

Parte 1 - Convergência Absoluta [abordagem direta (quocientes de Newton)]. 3.2 RegradeLeibniz(integralprópria)...12 DERIVAÇÃO SOB O SINAL DE INTEGRAÇÃO - INTEGRAIS OSCILATÓRIAS E TRANSFORMADAS Pofesso Oswldo Rio Bco de Olivei http://www.ime.usp./~olivei (o 25) olivei@ime.usp. Itodução. Pte - Covegêci Asolut [odgem diet

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O

Leia mais

; determine a matriz inversa A -1

; determine a matriz inversa A -1 - REVISÃO MATEMÁTICA Neste cpítulo recordrão-se lgus coceitos de Álger Lier e Aálise Mtemátic que serão ecessários pr o estudo d teori do Método Simple - Mtrizes Iversíveis Defiição Um mtriz A de ordem

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1.

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1. 4 APROXIMAÇÃO DE FUNÇÕES 4- INTERPOAÇÃO POINOMIA Itroução: A iterpolção Iterpolr um ução () cosiste em proimr ess ução por um outr ução g() escolhi etre um clsse e uções eii priori e que stisç lgums propriees

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIONAL Método Simple Professor Volmir Wilhelm Professor Mri Klei Limitções d progrmção lier m (mi) s. Z c c... m, m,...,... c... c 0... c m b b m. Coeficietes costtes. Divisibilidde 3. Proporciolidde

Leia mais

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES 1. Poliómios de Tylor Sej (x) um ução rel de vriável rel com domíio o cojuto A R e cosidere- -se um poto iterior do domíio. Supoh-se que ução dmite derivds

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre

Leia mais

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds = LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E

Leia mais

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

Métodos Numéricos. Autores: Mário Barreto de Moura Neto Rafael Martins Gomes Nascimento Samara Anny Maia Fava Victor Sampaio Gondim

Métodos Numéricos. Autores: Mário Barreto de Moura Neto Rafael Martins Gomes Nascimento Samara Anny Maia Fava Victor Sampaio Gondim Métodos Numéricos Autores: Mário Brreto de Mour Neto Rel Mrtis Gomes Nscimeto Smr Ay Mi Fv Victor Smpio Godim Orietdor: Velser Drll Beício Corre Apresetção Itrodução Métodos pr Ecotrr Rízes Prte d Smr

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Volume de Sólidos (Atualizada em 10 de setembro de 2014)

I N T E G R A L. Prof. ADRIANO CATTAI. Apostila 03: Volume de Sólidos (Atualizada em 10 de setembro de 2014) I N T E G R A L c C Á L C U L O Pof. ADRIANO CATTAI 3 Apostil 3: Volume de Sólidos (Atulizd em de setembo de 24) NOME: DATA: / / Não há ciêci que fle ds hmois d tuez com mis clez do que mtemátic (Pulo

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

Professor Mauricio Lutz

Professor Mauricio Lutz Pofesso Muicio Lutz PROGREÃO ARITMÉTICA DEFINIÇÃO Pogessão itmétic (P.A.) é um seqüêci uméic em que cd temo, pti do segudo, é igul o teio somdo com um úmeo fixo, chmdo zão d pogessão. Exemplo: (,,8,,,...)

Leia mais

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração.

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração. 7 olução proximd Neste cpítulo é feit elborção de um ov formulção simplificd prtir de um estudo de Lel (008), demostrd por dus forms á cohecids de proximção do cálculo do vetor w de prioriddes retirds

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-KUTTA DE 4P PARA EDOS DE 1P

OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-KUTTA DE 4P PARA EDOS DE 1P T T HTU UTH ORDEM ORDEM. OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-UTT DE 4 R EDOS DE Mrcos Freits de Mores¹ Docete d Uioeste, Uiversidde Estdul do Oeste do rá Cetro de Egeris

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

MATLAB - Trabalho Prático 4

MATLAB - Trabalho Prático 4 U N I V E R S I D A D E D A B E I R A I N T E R I O R Deprtmeto de Egehri Electromecâic CONTROLO DE SISTEMAS (Lortório) MATLAB - Trlho Prático Todos os eercícios devem ser escritos um script.m. Deverão

Leia mais

1 Integral Indefinida

1 Integral Indefinida Itegrl Idefiid. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales INSTITUTO PLIÇÃO RNNO RORIUS SILVIR Pofeo: Mello mdeo luno(): Tum: LIST Teoem de Tle Teoem de Tle hmmo de feie de plel um onjunto de et plel de um plno, ou ej, // // //. Ret plel otd po um tnvel: onidee

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

Soluções do Capítulo 9 (Volume 2)

Soluções do Capítulo 9 (Volume 2) Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,

Leia mais

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1 esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

retangular: Corte: 2 Fatias: 4 Corte: Fatias: 7 Corte: 4 Fatias: 11 com n cor a definição função. Isto n+ a n 2.

retangular: Corte: 2 Fatias: 4 Corte: Fatias: 7 Corte: 4 Fatias: 11 com n cor a definição função. Isto n+ a n 2. Métodos de Cotgem e Esttístic Cristi Pol e Luverci Nscimeto. RELAÇÕES DE RECORRÊNCIA. Itrodução Algums relções mtemátics podem ser deiids por recorrêci. O objetivo dess ul cosiste em estudr esses tipos

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

LOGARÍTMOS 1- DEFINIÇÃO. log2 5

LOGARÍTMOS 1- DEFINIÇÃO. log2 5 -(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo? erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui

Leia mais

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais.

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 5- Método de Elemetos Fiitos Aplicdo às Equções Difereciis Prciis. 5.1- Breve Itrodução Históric. 5.2- Solução de Equções Difereciis Ordiáris: Prolem

Leia mais

3 Integral Indefinida

3 Integral Indefinida 3 Itegrl Idefiid 3. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. .5.- Derivd d função compost, derivd d função invers, derivd d função implícit e derivd de funções definids prmetricmente. Teorem.3 Derivd d Função Compost Suponh-se que g: A R é diferenciável no ponto

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994.

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994. Professor Muricio Lut MTRIZES INTRODUÇÃO Qudo um prolem evolve um grde úmero de ddos (costtes ou vriáveis), disposição destes um tel retgulr de dupl etrd propici um visão mis glol do mesmo s tels ssim

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais