Funções de Transferência

Tamanho: px
Começar a partir da página:

Download "Funções de Transferência"

Transcrição

1 Funções de Trnsferênc Em teor de controle, funções chmd funções de trnsferênc são comumente usds r crcterzr s relções de entrd-síd de comonentes ou sstems que odem ser descrtos or equções dferencs. FUNÇÃO DE TRNSFERÊNCI função de trnsferênc de um sstem de equção dferencs lneres é defnd como relção d trnsformd de Llce d síd r trnsformd de Llce d entrd. Consdermos o sstem defndo el segunte equção dferencl: d n y n d y dy y b d m x m d x b b dx n n + n n m m + m m bx Onde y é síd do sstem e x é entrd e n m. função de trnsferênc do sstem é obtd tomndo-se trnsformd de Llce de mbos os membros d equção. função de trnsferênc Gs ( ) L [ síd] [ entrd] L condções ncs nuls. m m Ys () bs m + bm s bs+ b Gs () n n X() s s + s s+ n n m n bs s Usndo o conceto de função de trnsferênc, é ossível reresentr dnâmc do sstem els equções lgébrcs em "s". lcbldde do conceto d função de trnsferênc é lmtd os sstems de equções dferencs lneres nvrntes no temo.

2 Funções de Trnsferênc FUNÇÕES DE TRNSFERÊNCIS DE SISTEMS DINÂMICOS Suonh segunte equção dferencl de ordem : Vρ C dt wc( T T) + Q Se o rocesso está nclmente no estdo estconáro, ortnto: T( ) T T ( ) T Q( ) Q síd T está relcond às entrds T e Q elo blnço de energ no estdo-estconáro. wc( T T ) + Q Pr elmnr deendênc do modelo ds condções estconárs, subtr-se relção no estdo-estconáro d equção dferencl do modelo. [( ) ( )] ( ) Vρ C dt wc T T T T + Q Q Vρ dt ( T) w wc Q + [( T T) ( T T) ] ( Q ) fzendo T T T, T T T eq Q Q temos: V ρ dt [ T T ] + w wc Q Vρ Substtundo : τ w e temos: wc τ dt [ T T ] + Q lcndo Llce: τ [ st' ( s) + T' ( )] T' ( s) T' ( s) + Q' ( s) Sstems de Controle 9

3 Funções de Trnsferênc Como T'() então: τ st' ( s) T' ( s) T' ( s) + Q' ( s) ( τs+ ) T' ( s) T' ( s) + Q' ( s) T' ( s) T ( s) Q ( s) ' + ' τ s + τ s + Portnto: T' ( s) G ( s) T' ( s) + G ( s) Q' ( s) Onde: G ( s) G ( s) τ s + τ s + COMENTÁRIOS SOBRE FUNÇÃO DE TRNSFERÊNCI - É um modelo mtemátco exresso trvés de um equção dferencl que relcon síd com entrd. - Indeende d mgntude e d nturez d entrd. 3- Inclu s unddes ds entrds e síds. 4- Não fornece nformções sobre estrutur físc do sstem. 5- Pode ser estbelecd exermentlmente ntroduzndo-se entrds conhecds e nlsndo s síds. Sstems de Controle 3

4 Funções de Trnsferênc PROPRIEDDES DS FUNÇÕES DE TRNSFERÊNCI GNHO D FUNÇÃO DE TRNSFERÊNCI vrção d síd no estdo-estconáro é clculdo dretmente, fzendo S O. Em G(s) dá o gnho no estdo-estconáro do rocesso, se ele exste. O gnho no estdo-estconáro é rzão entre vrção d síd com vrção d entrd. y y x x b Onde : e ndcm dferentes estdos-estconáros ( yex ). ORDEM D FUNÇÃO DE TRNSFERÊNCI ordem d função de trnsferênc é mor otênc de "s" no denomndor do olnômo que é ordem d equção dferencl equvlente. O sstem é chmdo de n-ésm ordem. CONSTNTE DE TEMPO D FUNÇÃO DE TRNSFERÊNCI Se mbos o numerdor e denomndor forem dvddos or o olnômo crcterístco (denomndor) ode ser ftordo n form de roduto ( τ s + ). O termo em "s" é chmdo constnte de temo (τ) que dá um nformção d velocdde e ds crcterístcs d resost do sstem. RELIZÇÃO FÍSIC Ddo um sstem descrto or m m bs m + bm s bs + b Gs () n n s + s s+ n n é fscmente ossível se n m. Sstems de Controle 3

5 Funções de Trnsferênc PÓLOS E ZEROS Dd função de trnsferênc: m m bs m + bm s bs + b Gs () n n n s + n s s+ Est exressão ode ser ftord em ( )( ) ( ) b s z s z s z m m Gs ( )... n ( s )( s )...( s n ) onde: z são os zeros d função de trnsferênc são os ólos de função de trnsferênc Os ólos e zeros tem um el mortnte n determnção do comortmento dnâmco do sstem. Podemos vsulzr o to de comortmento dnâmco ssocdo cd to de ólo: dstntos e res; res comlexos e conjugdos ( ± b j); múltlos rízes form Lugr ds rízes ólos res e yt ( ) Ce t negtvos - Comor tmento ólos res e ostvos ( ) yt Ce t 3 ólos comlexos conjugdos com rte rel negtv 4 ólos mgnáros uros 5 ólos comlexos conjugdos com rte rel ostv - + b - - b b - b + b - b t ( ) ( cos + sen ) yt e C bt C bt yt ( ) Ccos bt+ Csenbt t ( ) ( cos + sen ) yt e C bt C bt Sstems de Controle 3

6 Funções de Trnsferênc PROCESSO Os rocessos res consstem n combnção de sstems báscos elementres. É fundmentl r o bom conhecmento desses rocessos entender o comortmento dos sstems elementres. SISTEMS DE PRIMEIR ORDEM Sstems de rmer ordem tem seu comortmento dnâmco descrto or equções dferencs de rmer ordem. Modelo dy + y bu Onde: y - Vrável síd u - Vrável entrd dy b y u dy + τ + y u Prâmetros de dnâmc τ - constnte de temo - gnho do rocesso Função de trnsferênc No domíno s temos: τ ( ) ( ) ( ) ( ) sy s + y s u s G s τ s + Sstems de Controle 33

7 Funções de Trnsferênc Exemlo Um retor de mstur erfet, com nível constnte e reção de rmer ordem. Blnço Mterl V dc ( ) + FC C + C V dc + ( F + ) C FC V dc + C F + F F C + τ dc + C C onde: F F e V τ + F + No domíno "s" temos : sc ( s) + C ( s) C ( s) τ C ( ) s G( s) C ( s) τ s + resost dnâmc de rmer ordem deende do to de entrd Sstems de Controle 34

8 Funções de Trnsferênc Resost o degru C ( ) s Gs ( ) C ( s) τ s + (Função de trnsferênc) C ( s) C ( s) τ s + M C ( s) (Degru) S M C ( s) τ s + S No domíno t (trnsformd nvers de Llce) C ( t) M e t τ SISTEMS DE SEGUND ORDEM Sstem de segund ordem tem seu comortmento dnâmco descrto or equções dferencs de segund ordem. sére. Tmbém ode ser comosto or dus funções de trnsferênc de ordem em Modelo d y dy d y dy + + y bu + + y b u τ d y dy + ζτ + y k u Sstems de Controle 35

9 Funções de Trnsferênc se consderrmos ω n e multlcndo todos os termos or ω τ n temos: d y dy + ζωn + ωn y kω n u Prâmetros de dnâmcos - Gnho estconáro do rocesso ξ - Ftor de mortecmento τ - Determn velocdde d resost ( equvlente à constnte de temo do rocesso ) - Freqüênc nturl de osclção do rocesso. ω n Função de trnsferênc No domíno "s" temos ou τ sys ( ) + ζ τ sys ( ) + ys ( ) us ( ) ys ( ) Gs ( ) us ( ) τ s + ζτ s+ s y( s) + ζ ω sy( s) + ω y( s) ω u( s) n n n ys ( ) Gs ( ) us ( ) s ω n + ζω s+ ω n n Sstems de Controle 36

10 Funções de Trnsferênc Há três forms mortntes ds funções de trnsferênc de segund ordem: Form Fx do Ftor de mortecmen to crcterístc de resost do sstem ζ > sobre mortecdo ζ crtcmente mortecdo 3 < ζ < sub mortecdo crcterístcs dos ólos (rízes) ólos res e dstntos ólos res e gus ólos comlexos e conjugdos O cso ms mortnte é o sstem sub-mortecdo. Há um sére de râmetros de nteresse n resost do sstem. Freqüênc de Osclção mortecd ω ω ζ ou ω d n d ζ τ Período de Osclção mortecd P d π ω d Sstems de Controle 37

11 Funções de Trnsferênc Rse Tme(tr) - temo de subd - Temo onde resost lcnç o novo estdo-estconáro el vez. É um medd d velocdde de resost do sstem o degru. t r π ωd Tme to frst ek (t) - nstnte r o o co - Temo em que o sstem tnge o o co. t π ωd Settlng Tme - temo de estblzção - Temo requerdo r que o rocesso tenh resost n bnd de 5% do estdoestconáro t s 4 ζω n Overshoot - sobre-snl - Quntdde máxm n qul resost ultrss o vlor do estdo-estconáro. É reresentdo como um frção do vlor em estdo-estconáro. Os e b πζ ζ Decy-rto - rzão de decmento - Rzão entre s mltudes de dos cos consecutvos. D r c ( Os) e πζ ζ Sstems de Controle 38

12 Funções de Trnsferênc SISTEMS COM TEMPO MORTO O temo morto é um crcterístc resente em mutos rocessos, é conhecd como dnâmc de tubulção e roredde do sstem de resonder um entrd ós um certo temo, td. Modelo yt ( ) xt ( t d ) Prâmetros de dnâmc td - Temo morto Função de trnsferênc G( s) ys ( ) xs ( ) e tds SISTEM COM RESPOST INVERS resost nvers é o resultdo de dos efetos oostos. Sstems de Controle 39

13 Funções de Trnsferênc Função de trnsferênc Gs ( ) ( τ s+ ) ( τ s+ )( τ s+ ) onde τ < ou Gs ( ) ( τ s + ) ( τ s + ) suondo e ostvos, então τ < τ. PROCESSOS DE INTEGRDORES Processos ntegrdores são queles que não estblzm com o temo. Um cso tíco é um sstem de nível de líqudo. Exemlo - Nível de Líqudo dh q q fzendo q q q temos: Sstems de Controle 4

14 Funções de Trnsferênc dh q No domíno "s" temos sh( s) q ( s) hs ( ) ( ) s q s hs ( ) q ( s) s Sstems de Controle 4

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 - CAPES SISTEMAS LINEARES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic r

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

Função de onda e Equação de Schrödinger

Função de onda e Equação de Schrödinger Função de ond e Equção de Schrödinger A U L A 4 Met d ul Introduzir função de ond e Equção de Schrödinger. objetivos interpretr fisicmente função de ond; obter informção sobre um sistem microscópico, prtir

Leia mais

CÁLCULO DA INCERTEZA DE MEDIÇÃO NA CALIBRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO

CÁLCULO DA INCERTEZA DE MEDIÇÃO NA CALIBRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO CÁLCULO DA INCERTEZA DE MEDIÇÃO NA CALIRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO NORMA N o NIE-DIMEL-043 APROVADA EM AGO/03 N o 00 0/09 SUMÁRIO Objetvo 2 Cmo Alcção 3 Resosbld

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realizado em Janeiro de 96 e revisto em Janeiro de 97

SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realizado em Janeiro de 96 e revisto em Janeiro de 97 SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realzado em Janero de 96 e revsto em Janero de 97 O resente texto retende, ncalmente, dar a conhecer quas as característcas rncas das váras acções de controlo,

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Aula 8: Gramáticas Livres de Contexto

Aula 8: Gramáticas Livres de Contexto Teori d Computção Segundo Semestre, 2014 ul 8: Grmátics Livres de Contexto DINF-UTFPR Prof. Ricrdo Dutr d Silv Veremos gor mneir de gerr s strings de um tipo específico de lingugem, conhecido como lingugem

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

ANÁLISE DE SISTEMAS DE ENERGIA REPRESENTAÇÃO DE SISTEMAS DE ENERGIA ELÉTRICA EM REGIME PERMANENTE 4

ANÁLISE DE SISTEMAS DE ENERGIA REPRESENTAÇÃO DE SISTEMAS DE ENERGIA ELÉTRICA EM REGIME PERMANENTE 4 A E ANÁLE DE TEMA DE ENERGA REREENTAÇÃO DE TEMA DE ENERGA ELÉTRCA EM REGME ERMANENTE 4 ANÁLE DE TEMA DE ENERGA REREENTAÇÃO DE TEMA DE ENERGA ELÉTRCA EM REGME ERMANENTE 4 MODELAGEM DO COMONENTE DE TEMA

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações // Aul : Revisão de Probbilidde e sttístic Prof. Leonrdo Menezes Tóicos em Telecomunicções Sumário O que é esttístic O que é robbilidde Vriáveis letóris Distribuição de Probbilidde Alicções Mementos O

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

UFPR - DELT Medidas Elétricas Prof. Marlio Bonfim

UFPR - DELT Medidas Elétricas Prof. Marlio Bonfim UFPR - DELT Medds Elétrcs Prof. Mrlo Bonfm Oscloscópo Instrumento que permte vsulzção e/ou medd do vlor nstntâneo de um tensão em função do tempo. A letur do snl é fet num tel sob form de um gráfco tensão

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

Cinemática Dinâmica Onde estão as forças? Gravidade

Cinemática Dinâmica Onde estão as forças? Gravidade Forç e Moviento I Cineátic: prte n ecânic que estud os ovientos, independenteente de sus cuss e d nturez dos corpos. Dinâic: prte n ecânic que estud o oviento dos corpos, levndo e cont s forçs que produzir

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB.

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB. MÚLTIPL ESCOLH NOTÇÕES C : conjunto dos números compleos. Q : conjunto dos números rcionis. R : conjunto dos números reis. Z : conjunto dos números inteiros. N {0,,,,...}. N* {,,,...}. : conjunto vzio.

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Além Tejo em Bicicleta

Além Tejo em Bicicleta C mpodef ér s I t ner nt e + Al émt ej oem B c c l et Além Tejo em Bcclet Cmpo de Férs Além Tejo em Bcclet Locl: Pegões, Coruche, Mor, Avs, Estremoz e Elvs Enqudrmento Gerl: No no de 2013 Prnm nov com

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

Números Reais intervalos, números decimais, dízimas, números irracionais, ordem, a reta, módulo, potência com expoente racional.

Números Reais intervalos, números decimais, dízimas, números irracionais, ordem, a reta, módulo, potência com expoente racional. UNIVERSIDADE FEDERAL DE VIÇOSA UNIDADE DE APOIO EDUCACIONAL UAE MAT 099 - Tutori de Mtemátic Tópicos: Números Rcionis operções e proprieddes (frções, regr de sinl, som, produto e divisão de frções, potênci

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

3 - CRITÉRIO DE ESTABILIDADE DE ROUTH Estabilidade de Sistemas Lineares. Definições de estabilidade: Teorema da estabilidade:

3 - CRITÉRIO DE ESTABILIDADE DE ROUTH Estabilidade de Sistemas Lineares. Definições de estabilidade: Teorema da estabilidade: 3 - CRITÉRIO DE ESTABILIDADE DE ROUTH 3.1 - Estbilidde de Sistems Lineres Definições de estbilidde: Um sistem liner é estável qundo qulquer sinl de entrd de mplitude finit produz sinis de síd tmbém de

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

os corpos? Contato direto F/L 2 Gravitacional, centrífuga ou eletromagnética F/L 3

os corpos? Contato direto F/L 2 Gravitacional, centrífuga ou eletromagnética F/L 3 Universidde Federl de Algos Centro de Tecnologi Curso de Engenri Civil Disciplin: Mecânic dos Sólidos 1 Código: ECIV018 Professor: Edurdo Nobre Lges Forçs Distribuíds: Centro de Grvidde, Centro de Mss

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Licenciatura em Engenharia Electrónica

Licenciatura em Engenharia Electrónica Licencitur em Engenhri Electrónic Circuitos Electrónicos Básicos Lbortório Montgens mplificdors de fonte comum, port comum e dreno comum IST2012 Objectivos Com este trblho pretendese que os lunos observem

Leia mais

CAPÍTULO 1 CIRCUITOS REATIVOS

CAPÍTULO 1 CIRCUITOS REATIVOS ÍUO UOS VOS UO VO M SÉ r que os equimentos eletrônicos (rádio, rdr etc.) ossm desemenhr sus unções, os circuitos resistivos, indutivos e ccitivos são combindos em ssocições, e. m virtude de tis ssocições

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

SISTEMAS DE CONTROLE II

SISTEMAS DE CONTROLE II SISTEMAS DE CONTROLE II - Algumas situações com desempenho problemático 1) Resposta muito oscilatória 2) Resposta muito lenta 3) Resposta com erro em regime permanente 4) Resposta pouco robusta a perturbações

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL RFEL RDOSO ntrodução O prinípio d proteção diferenil é de que som ds orrentes que entrm n

Leia mais

Fluxo Gênico. Desvios de Hardy-Weinberg. Estimativas de Fluxo gênico podem ser feitas através de dois tipos de métodos:

Fluxo Gênico. Desvios de Hardy-Weinberg. Estimativas de Fluxo gênico podem ser feitas através de dois tipos de métodos: Desvios de Hrdy-Weinberg cslmento preferencil Mutção Recombinção Deriv Genétic Fluo gênico Fluo Gênico O modelo de Hrdy-Weinberg consider pens um únic populção miori ds espécies tem váris populções locis

Leia mais

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ ) RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

RACIOCÍNIO LÓGICO Simplificado

RACIOCÍNIO LÓGICO Simplificado Sérgio Crvlho Weer Cmpos RACIOCÍNIO LÓGICO Simplificdo Volume ª edição Revist, tulizd e mplid Mteril Complementr PRINCIPAIS CONCEITOS E FÓRMULAS DO LIVRO RACIOCÍNIO SIMPLIFICADO - Vol. www.editorjuspodivm.com.r

Leia mais

PRÉ-REQUISITOS PARA O CÁLCULO

PRÉ-REQUISITOS PARA O CÁLCULO Veremos qui um breve revisão de oneitos de álgebr neessários pr o estudo do Cálulo. É bom lembrr que voê não pode prender Cálulo sem esses pré-requisitos, priniplmente álgebr, que podemos onsiderr omo

Leia mais

Neurodiâmica da crise financeira: As bolsas no mundo

Neurodiâmica da crise financeira: As bolsas no mundo Neurodâmc d cre fnncer: A bol no mundo Armndo Fret d Roch e Fábo Theoto Roch En Etudo em Intelgênc Nturl e rtfcl Ru Tenente Ary A, 172 13207-110 Jundí Fone: (11) 7435-1414 Dreto reervdo: EINA The englh

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Desempenho de Sistemas de Controle Realimentados

Desempenho de Sistemas de Controle Realimentados Desempenho de Sistemas de Controle Realimentados. Erro em estado estacionário de sistemas de controle realimentados 2. Erro em estado estacionário de sistemas com realimentação não-unitária 3. Índice de

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (II Determinntes) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Determinntes Índice 2 Determinntes 2

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Questão 02. são raízes da equação. Os números reais positivos x. b (natural), a IR. x ax a b x, sendo IN. (real) e 1. log

Questão 02. são raízes da equação. Os números reais positivos x. b (natural), a IR. x ax a b x, sendo IN. (real) e 1. log Questão 0 O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic ( PA ) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric PG, de rzão q, com q e r IN (nturl

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

3 MATERIAIS, PROCEDIMENTOS EXPERIMENTAIS e ANÁLISE DE DADOS.

3 MATERIAIS, PROCEDIMENTOS EXPERIMENTAIS e ANÁLISE DE DADOS. 44 3 MATERIAIS PROCEDIMENTOS EXPERIMENTAIS e ANÁLISE DE DADOS. Neste pítulo são presentdos os mters utlzdos e os métodos empregdos pr relzção do presente trlho que fo desenvolvdo no Lortóro de Termoêns

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

ircuit ennte de ª Ordem O md nturi, u pól, ã independente d frm de excitçã dede que incluã de excitçã nã ltere etrutur nturl d circuit. N ( X ( H ( Pól D( 0 > etrutur D( X i ( nturl crrepnde X i ( 0 Plinómi

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

1. Introdução. 1 Exemplos na América Latina são Argentina, Chile, Colômbia, México, Uruguai e Venezuela. No resto do mundo,

1. Introdução. 1 Exemplos na América Latina são Argentina, Chile, Colômbia, México, Uruguai e Venezuela. No resto do mundo, Sumáro 1. Introdução. Economa Normatva.1. Informação Smétrca e Inconsstênca Dnâmca.. A Proosta de Rogoff.3. Indeendênca e Flexbldade 3. Economa Postva 3.1. O Modelo de Cukerman: Elementos e Equlíbro 3..

Leia mais

CAPÍTULO 3 - RETIFICAÇÃO

CAPÍTULO 3 - RETIFICAÇÃO CAPÍTULO 3 - RETFCAÇÃO A maioria dos circuitos eletrônicos recisa de uma tensão cc ara oder trabalhar adequadamente Como a tensão da linha é alternada, a rimeira coisa a ser feita em qualquer equiamento

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

MÉTODO DE RESSECÇÃO APLICADO NA DETERMINAÇÃO DE COORDENADAS NO MONITORAMENTO DE PONTOS

MÉTODO DE RESSECÇÃO APLICADO NA DETERMINAÇÃO DE COORDENADAS NO MONITORAMENTO DE PONTOS III Smóso raslero de êncas Geodéscas e Tecnologas da Geonformação Recfe - E, 7-30 de Julho de 010. 001-005 MÉTODO DE RESSEÇÃO LIDO N DETERMINÇÃO DE OORDENDS NO MONITORMENTO DE ONTOS FINI D.. MIRND LUÍS.

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnr 6 de junho de ots de ul de Físc. OMTO, TOQU MOMTO GU... OMTO... O rolmento descrto como um combnção de rotção e trnslção... O rolmento sto como um rotção pur... 3 ener cnétc... 3 TOQU...

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

Acoplamento. Tipos de acoplamento. Acoplamento por dados. Acoplamento por imagem. Exemplo. É o grau de dependência entre dois módulos.

Acoplamento. Tipos de acoplamento. Acoplamento por dados. Acoplamento por imagem. Exemplo. É o grau de dependência entre dois módulos. Acoplmento É o gru de dependênci entre dois módulos. Objetivo: minimizr o coplmento grndes sistems devem ser segmentdos em módulos simples A qulidde do projeto será vlid pelo gru de modulrizção do sistem.

Leia mais

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella Cœlum Austrle Jornl essol de Astronomi, Físic e Mtemátic - roduzido por Irineu Gomes Vrell Crido em 995 Retomdo em Junho de 0 Ano III Nº 04 - Setembro de 0 ÓRBITAS LANETÁRIAS E LEIS DE KELER rof. Irineu

Leia mais

Transformada de Laplace

Transformada de Laplace Capítulo 8 Transformada de Laplace A transformada de Laplace permitirá que obtenhamos a solução de uma equação diferencial ordinária de coeficientes constantes através da resolução de uma equação algébrica.

Leia mais

PSICROMETRIA. Domingos P. F. Almeida

PSICROMETRIA. Domingos P. F. Almeida APONTAMENTOS DE APOIO ÀS AULAS DE TECNOLOGIA PÓS-COLHEITA (MESTRADO EM CIÊNCIA E TECNOLOGIA PÓS-COLHEITA) Domingos P. F. Almeid A sicrometri é o estudo ds rorieddes termodinâmics de misturs de r seco e

Leia mais

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem Aula 07 Aálise o domíio do tempo Parte II Sistemas de ª ordem Aálise o domíio do tempo - Sistemas de ª ordem iput S output Sistema de seguda ordem do tipo α G(s) as + bs + c Aálise o domíio do tempo -

Leia mais

1. ENTALPIA. (a) A definição de entalpia. A entalpia, H, é definida como:

1. ENTALPIA. (a) A definição de entalpia. A entalpia, H, é definida como: 1 Data: 31/05/2007 Curso de Processos Químicos Reerência: AKINS, Peter. Físico- Química. Sétima edição. Editora, LC, 2003. Resumo: Proas. Bárbara Winiarski Diesel Novaes 1. ENALPIA A variação da energia

Leia mais

DETERMINAÇÃO DE ELEMENTOS TERRA RARAS E OUTROS TRAÇOS EM SOLEIRAS DE DIABÁSIO DA PROVÍNCIA MAGMÁTICA DO PARANÁ POR ATIVAÇÃO NEUTRÔNICA

DETERMINAÇÃO DE ELEMENTOS TERRA RARAS E OUTROS TRAÇOS EM SOLEIRAS DE DIABÁSIO DA PROVÍNCIA MAGMÁTICA DO PARANÁ POR ATIVAÇÃO NEUTRÔNICA 2005 Interntonl Nucler Atlntc Conference - INAC 2005 Sntos, SP, Brzl, August 28 to September 2, 2005 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 85-99141-01-5 DETERMINAÇÃO DE ELEMENTOS TERRA

Leia mais

Departamento de Engenharia Geográfica, Geofísica e Energia Faculdade de Ciências da Universidade de Lisboa TERMODINÂMICA APLICADA.

Departamento de Engenharia Geográfica, Geofísica e Energia Faculdade de Ciências da Universidade de Lisboa TERMODINÂMICA APLICADA. ERMODINÂMICA APLICADA Deartamento de Engenhara Geográfca, Geofísca e Energa Faculdade de Cêncas da Unversdade de Lsboa ERMODINÂMICA APLICADA Programa. Concetos báscos da ermodnâmca. 2. Prncío Zero da termodnâmca.

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 0 a Fase Profa Mara Antôna Gouvea PROVA A QUESTÃO 0 Consdere as retas r, s e t de equações, resectvamente, y x, y x e x 7 y TRACE, no lano cartesano abaxo, os gráfcos

Leia mais

NÃO existe raiz real de um número negativo se o índice do radical for par.

NÃO existe raiz real de um número negativo se o índice do radical for par. 1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,

Leia mais

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do

Leia mais