CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES"

Transcrição

1 CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES 5.- Teorems Fundmentis do Cálculo Diferencil Os teorems de Rolle, de Lgrnge, de Cuch e regr de L Hospitl são os qutro teorems fundmentis do cálculo diferencil e são úteis no estudo ds funções reis de vriável rel. Definições: ) Sej f () definid em um intervlo I, então: i) f é crescente em I se f ( ) < f ( ) sempre que < f ( ) f ( ) ii) f é decrescente em I se f ( ) f ( ) sempre que < f ( ) f ( ) ) Sej f () um função definid em um intervlo I e sej c I, então: i) f (c) é Máimo de f se f (c) f () I f (c) ( ) c 78

2 ii) f (c) é Mínimo de f se f (c) f () I f (c) ( ) Teorems: ) Sej f () um função contínu em um intervlo fechdo [, b], então f ssume o seu máimo e o seu mínimo o menos um vez em [, b]. ) Sej f () um função que tem um etremo (máimo ou mínimo) pr um vlor c, então f (c) ou f (c). Hipótese: c é bciss de máimo (mínimo) Tese: f (c) f (c) Demonstrção: Se c é máimo f (c) f () I f ( ) ( ) f c + h f c h + f (c) h h f h f ( c + h) f ( c) h + h f (c) f ( c + h) f ( c) h h 5..- Teorem de Rolle c ( c + h) f ( c) h ( c + h) f ( c) Sej f () um função contínu no intervlo fechdo [, b]. derivável no intervlo (, b) se f () f (b), então eiste pelo menos um ponto (, b) / f (c). h c c c b f (c) f (c) f (c) Pr f () f (b) k o teorem tmbém é válido Teorem de Lgrnge ( Teorem do vlor Médio - T. V. M. ) tn α. Sej f () um função contínu no intervlo [, b] e derivável em (, b) então (,b) Eemplos: () b f () f c / b Verificr s hipóteses do Teorem do Vlor Médio e em cso firmtivo determinr os vlores de f c. () ( b) f ( ) f ' c b f ' () c ) f () [, ] 79

3 Contínu em [, b]? Todo polinômio é contínuo. OK! Derivável? Sim. OK! f () c * f (b) f () 4 * f () f () * f () * f (c) c f () ( b) f ( ) 4 + f ' c c b c ) f () [-, ] Contínu em [-, ]? OK! Derivável? Não. f () f ' ( ) pr. T.V.M. não se plic pois não se verific ess hipótese. 5.) Estudo d Vrição ds Funções 5..) Crescimento e Decrescimento Sej f () um função contínu no intervlo fechdo [, b], então: i) Se f () > (, b) f é crescente em (, b) ii) Se f () < (, b) f é decrescente em (, b) b b f () > crescente f () < decrescente Eemplo : A função f() + é sempre crescente. f() + b Função crescente 8

4 Eemplo: A função f() - é sempre decrescente. b Função decrescente Demonstrção: Hipótese: f é contínu em [, b] Tese: f é crescente em (, b) derivável em (, b) f () > (, b) f * Pelo T.V.M. c (, b) / () ( b) f ( ) f ' c b * f () > (, b) f (c) > f ( b) f ( ) > b b > b > f (b) f () > f (b) > f () f é crescente Hipótese: f é contínu em [, b] Tese: f é decrescente em (, b) derivável em (, b) f () < (, b) f * c (, b) / () ( b) f ( ) f ' c b * f () < (, b) f (c) < b > f (b) f () < f (b) < f () f é decrescente f () Pr sber se um função é crescente ou decrescente deve-se nlisr o sinl d derivd d equção. máimo mínimo máimo mínimo f crescente decrescente crescente decrescente Função Monóton Um função é monóton num intervlo I se el for crescente ou decrescente em I. Eercícios: Determinr os intervlos de crescimento e de decrescimento e os pontos de máimo e mínimo, se eistir, ds funções: ) f () + + f () ± ( )(. ) 4 ± 4 4 ± ( ) 6 6 8

5 + - + / má mín Intervlo de crescimento (, ) (, +) Intervlo de decrescimento (,) + + Pr /? , máimo 7 Pr? + + (, ) mínimo Sinl contrário de ) f ( ) f '() ( + )( ) ( )( 6) ( + ) Anlisndo o sinl do numerdor : ± + 4. sempre positivo ( )(. ) ± 4 + ± 4 ( ) 6 6 Intervlo de crescimento (, ) (, +) Intervlo de decrescimento (, ) (, ) máimo (, ) mínimo / má mín ) f () f () ± má mín 8

6 4) f () f () + + ( ) Intervlo de crescimento (, ) (, +) Intervlo de decrescimento (, ) (, ) máimo (, 4) mínimo ()() 4 4 ± * riz, único sinl (ou positivo ou negtivo) * não é máimo nem mínimo, f é sempre crescente 5) Determine os intervlos nos quis função f() - + sej monóton (crescente ou decrescente). Temos f() - + f '() - ( - ) f '() ( - ) - ± f ' ) f '() > pr < -, ou em (-, -), f() é crescente b) f '() < pr - < <, ou em (-, ), f() é decrescente c) f '() > pr >, ou em (, ), f() é crescente Obs: Em - e f '(), nestes pontos f () não é crescente nem decrescente!! (-,) f() (,-) crescente f ()> decrescente f ()< crescente f ()> Os pontos: (-, ), "topo d colin" são máimos reltivos; (, -), "fundo do vle" são mínimos reltivos. Eercício proposto: Estudr função f() Concvidde O sinl lgébrico d derivd determin se o gráfico é curvdo pr cim (em form de ícr) ou curvdo pr bio (em form de boné). Sej f (), um função contínu no intervlo fechdo [, b], então: i) Se f () > (, b) f tem concvidde pr cim em (, b) ii) Se f () < (, b) f tem concvidde pr bio em (,b) 8

7 f Pontos de Infleão Ponto de Infleão f ( ) É um ponto onde curv mud su concvidde e o gráfico d função intercept tngente no ponto. Ponto de infleão Neste ponto f ''(). Est condição é necessári ms não é suficiente! (vej eemplo seguir) Eercícios ) f () f () + + ( ) c ()() 4 4 ± * riz, único sinl (ou positivo ou negtivo) * não é máimo nem mínimo, f é sempre crescente * Estudo do sentido d concvidde f () (, ) Ponto de infleão Pr, 4 Ponto de Infleão 4 Ponto de Infleão Revisão pr o cálculo de Máimos e Mínimos de Funções Máimo Reltivo Um função f() possui um MÁXIMO RELATIVO (ou máimo locl) em um ponto de bsciss c, se eistir um intervlo berto I contendo c tl que f() sej definid em I e f ( c) f ( ) sej verddeiro pr todo em I. 84

8 Mínimo Reltivo Um função f() possui um MÍNIMO RELATIVO (ou mínimo locl) em um ponto de bsciss c, se eistir um intervlo berto I contendo c tl que f() sej definid em I e f ( c) f ( ) sej verddeiro pr todo em I. OBS.: Se um função f() possui um máimo ou um mínimo num ponto c, diz-se que f() possui um EXTREMO RELATIVO em c Ponto Crítico Diz-se que um ponto c é um PONTO CRÍTICO pr um função f() qundo f() é definid em c, ms não diferenciável em c, ou qundo f ( c). Teste d Primeir Derivd pr Etremos Reltivos Teorem: Sej um função f() definid e contínu no intervlo berto (, b); considere que o ponto c pertenç (, b) e suponh que f() sej diferenciável em todos os pontos em (, b) eceto, possivelmente em c. Então: Se f ( ) > pr todo o ponto em (, c) e f ( ) < pr todo ponto em (c, b), então f() possui um máimo reltivo em c. Se f ( ) < pr todo o em (, c) e f ( ) > pr todo o ponto em (c, b), então f() possui mínimo reltivo em c Teste d Segund Derivd pr Etremos Reltivos Teorem: Sej um função f() definid e contínu no intervlo berto I e suponh que c sej um ponto em I tl que f ( c) e f (c ) eist. Então: Se f ( c) >, então f() possui um mínimo reltivo em c. Se f ( c) <, então f() possui um máimo reltivo em c. 5.- Etremos Absolutos Supondo um função f definid no intervlo I, e sej c um ponto deste intervlo. Se f(c) f() pr todo de I, então f(c) é um máimo bsoluto de I. Se f(c) f() pr todo de I, então f(c) é um mínimo bsoluto em c. f(p) f(r) f(q) f(b) p q r b Etremos bsolutos f(r) > f(p) f(r) é o máimo bsoluto em I f(q) < f(b) f(q) é o mínimo bsoluto em I I [,b] Eercício Proposto: Determine os etremos bsolutos d função f() 9 no intervlo [-,] 85

9 Eercícios: Determinr os pontos críticos (máimo e mínimo) ds funções: ) f () 4 f () 4 f ' ' > f () 6 f ' ' < é Mínimo é Máimo ) f () f () ( ) 4 + f () 6 f () 6-6 < é Máimo f () 8 > é Mínimo ) f () f () - + ( (-)) f () -6 + f () não tem máimo nem mínimo é ponto de infleão Problems de Aplicção de Máimos e Mínimos ) Determinr s dimensões de um retângulo de perímetro e que áre sej máim: P A. A ( ) A Derivndo áre: A 5 A - - < Máimo 5 5 Qudrdo 86

10 ) Desejmos fbricr um ci com um folh qudrd de ldo cortndo qudrdos de ldo desconhecido nos qutro cntos d folh. Determinr o vlor de fim de que ci tenh volume máimo. - V V V' V' ' V' ' ( ) ( ) V ± 8 + Re spost : ( ) Mínimo Máimo 6 V' ' 4 8 ( )( ) 8 ± > Mínimo 4 8 < Máimo 6 ) Desej-se fbricr um recipiente de form cilíndric por meio de um folh metálic de superfície S. Clculr relção que deve eistir entre ltur h e o rio r pr que o volume sej máimo. Supõese não hver perd lgum de metl, que su espessur permnece constnte e que não há tmp. r h π r h π r 87

11 * S π r + π r h S πr h πr * V π r h S πr V πr dv ( S πr ) dr V π r ( ) Sr πr ( S πr ) S πr r S r π S π * S π r π r π r + π r h, fzendo s simplificções: hr 5.5- Esboço do Gráfico de Funções Eercícios - Estude s funções dds com relção à concvidde e pontos de infleão e esboce o gráfico de cd um ) f ( ) 9 b) f ( ) e c) ( ) ln f d) g( ) f + e) ( ) 5.6- Teorem de Cuch Sejm f () e g () definids em um intervlo fechdo [, b] e derivável em (, b). Se g () for diferente de f' (c) f(b) f() zero pr todo (, b) então pelo menos um número rel c (, b) /. g' (c) g(b) g() 5.7- Regr de L Hospitl Considere dus funções f () e g () que pr lgum intervlo fechdo verificm o Teorem de Cuch. Se pr lgum número rel do intervlo considerdo tivermos f () g (), então demonstr-se que: f() g() f' () g' () Eemplos: 4 ) indeterminção 88

12 plicndo L' Hospitl. 4 ) indeterminção sen 5 plicndo L' Hospitl cos ) indeterminção plicndo L' Hospitl OBS.: A regr de L Hospitl poderá ser usd pr indeterminções d form. 4) indeterminção e plicndo plicndo plicndo L' Hospitl L' Hospitl novmente L' Hospitl novmente k e Outrs indeterminções:. - e 5 6 e 6 e indeterminção 6 indeterminção Indeterminção d form. : f() f().g() g() gor plic-se regr de L Hospitl. ou g() f() Eemplo: ).ln.( ) indeterminção + + ln ln + (plicndo L' Hospitl)

13 Indeterminção d form - : g() f() [ ] f() g() f().g() gor plic-se regr de L Hospitl. Eemplo: ) cossec indeterminção + - sen ( plicndo L' + sen +.sen Hospitl) sen +.sen + cos + cos + - cos.cos + sen Indeterminção d form, ou : g() f() ln ln g() f() ln k ln g(). ln f() k Eemplo: k ) e k.ln.( ) indeterminção k ln k e (plicndo L' Hospitl) ( ) Resumindo g() f() k e k g ().ln f () Eercícios - Clculr o ite (que dá /), por L'Hôpitl Este ite poderi ser resolvido d form: ( + )( ) ( + )( ) Clculr sen, ms por L'Hôpitl. - Clculr (indetermindo) 9

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como Análise Mtemátic I - 6/7 Y rcsen y - A unção rcos tem como domínio [, ] e como A unção rcsen tem como domínio [, ] contrdomínio,. e como Y rccos y - A unção rccos tem como domínio [, ] contrdomínio [,

Leia mais

TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO

TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO ANÁLISE MATEMÁTICA I TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO 3 Índice Noções Topológics, Indução Mtemátic e Sucessões. Noções topológics em R............................. Indução mtemátic..............................

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Fernanda da Costa Diniz Nogueira Belo Horizonte, junho de 2007.

Fernanda da Costa Diniz Nogueira Belo Horizonte, junho de 2007. Un i ve r si d d e F e de r l d e M in s G e r i s Institu to de C iê nc i s E t s Dep r t me n t o d e M t e m á t ic E n sin o M éd io e Un iver sit ár io: d ifer ent es bor d gen s n con st r ução d

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos Nome: n o : Ensino: Médio érie: ª. Turm: Dt: rofessor: Márcio esumo TIGNMETI/GEMETI rcos e ângulos. Elementos: C: centro d circunferênci CB = C = : rio d circunferênci CB ˆ : ângulo centrl B : rco. Medid

Leia mais

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB.

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB. MÚLTIPL ESCOLH NOTÇÕES C : conjunto dos números compleos. Q : conjunto dos números rcionis. R : conjunto dos números reis. Z : conjunto dos números inteiros. N {0,,,,...}. N* {,,,...}. : conjunto vzio.

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas.

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas. Cpítulo II Funções Reis de Vriável Rel.. Função eponencil e logritmo. Funções trigonométrics directs e inverss. Função eponencil A um unção deinid por nome de unção eponencil de bse. ( ), onde, > 0 e,

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

NÃO existe raiz real de um número negativo se o índice do radical for par.

NÃO existe raiz real de um número negativo se o índice do radical for par. 1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

x 1 f(x) f(a) f (a) = lim x a

x 1 f(x) f(a) f (a) = lim x a Capítulo 27 Regras de L Hôpital 27. Formas indeterminadas Suponha que desejamos traçar o gráfico da função F () = 2. Embora F não esteja definida em =, para traçar o seu gráfico precisamos conhecer o comportamento

Leia mais

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...). 9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr

Leia mais

APOSTILA. Matemática Aplicada. Universidade Tecnológica Federal do Paraná UTFPR. Lauro César Galvão

APOSTILA. Matemática Aplicada. Universidade Tecnológica Federal do Paraná UTFPR. Lauro César Galvão POSTIL Mtemátic plicd Universidde Tecnológic Federl do Prná UTFPR Césr Glvão Índices SISTEMTIZÇÃO DOS CONJUNTOS NUMÉRICOS...-. CONJUNTOS NUMÉRICOS...-.. Conjunto dos números nturis...-.. Conjunto dos números

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas Cálculo Diferencil e Integrl - Nots de Aul Márci Federson e Gbriel Plns de mrço de 03 Sumário Os Números Reis. Os Números Rcionis................................ Os Números Reis.................................

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x DESAFIOS ENZO MATEMÁTICA 01-(FUVEST) Sejm x e y dois números reis, com 0

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Aplicações da Integral

Aplicações da Integral Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Cálculo Integral em R

Cálculo Integral em R Cálculo Integrl em R (Primitivção e Integrção) Miguel Moreir e Miguel Cruz Conteúdo Primitivção. Noção de primitiv......................... Algums primitivs imedits................... Proprieddes ds primitivs....................4

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

y ax b y x Cálculo I Limite de uma função Sartori, C. S. 01 Revisão - Funções: - Definição:

y ax b y x Cálculo I Limite de uma função Sartori, C. S. 01 Revisão - Funções: - Definição: Cálculo I Limite de um função Srtori, C. S. Revisão - Funções: - Definição: Lemrndo que um função é um relção entre dois conjuntos que oedecem às restrições: ) Est relção envolve um elemento do primeiro

Leia mais

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0.

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0. 4. Em cada caso use a definição para calcular f 0 (). (a) f () = 3, R (b) f () =/, 6= 0 (c) f () =/, > 0. 4.2 Mostre que a função f () = /3, R, não é diferenciável em =0. 4.3 Considere a função f : R R

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

PRESSÕES LATERAIS DE TERRA

PRESSÕES LATERAIS DE TERRA Estdo de equilíbrio plástico de Rnkine Pressões lteris de terr (empuxos de terr) f(deslocmentos e deformções d mss de solo) f(pressões plicds) problem indetermindo. É necessário estudr o solo no estdo

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

O Teorema Fundamental do Cálculo e Integrais Indefinidas

O Teorema Fundamental do Cálculo e Integrais Indefinidas Cpítulo O Teorem Fundmentl do Cálculo e Integris Indefinids. Introdução Clculr integris usndo soms de Riemnn, tl qul vimos no cpítulo nterior, é um trblho penoso e por vezes muito difícil (ou quse impossível).

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Se conhecemos a taxa de variação de uma quantidade em relação a outra, podemos determinar a relação entre essas quantidades?

Se conhecemos a taxa de variação de uma quantidade em relação a outra, podemos determinar a relação entre essas quantidades? UNIVERSIDADE DO ESTADO DA BAHIA UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA DCET / CAMPUS I DISCIPLINA: Cálculo II (MAT 089 CH: 75 PROFESSOR: Adrino Ctti SEMESTRE: 0. ALUNO: APOSTILA 0: INTEGRAL INDEFINIDA

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS ( + y) = + y + y Qudrdo d som de dois termos Dus vezes o produto do º pelo º Eemplo : ) ( + y) = +..(y) + (y) = + 6y + 9y. ) (7 + ) = c) ( 5 +c) = d) m

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 07: Teorema do Valor Intermediário, Teorema do Confronto e Limite Trigonométrico Fundamental Objetivos da Aula Conhecer e aplicar o Teorema

Leia mais

Estrutura de Repetição Simples

Estrutura de Repetição Simples Instituto de Ciências Eatas e Biológicas ICEB Lista de Eercícios Básicos sobre Laço Estrutura de Repetição Simples Eercício 01 Escreva um programa que imprima todos os números inteiros de 0 a 50. A seguir,

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO AULA DEZESSETE: GEOMETRIA BÁSICA

CURSO ONLINE RACIOCÍNIO LÓGICO AULA DEZESSETE: GEOMETRIA BÁSICA 1 Olá, migos! UL DEZESSETE: GEOMETRI ÁSI Novmente pedimos desculps por não ter sido possível presentrmos est ul 17 n semn pssd. Dremos hoje início um novo ssunto: GEOMETRI! omo de prxe, presentremos muits

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

Assíntotas horizontais, verticais e oblíquas

Assíntotas horizontais, verticais e oblíquas Assíntots horizontis, verticis e olíqus Méricles Thdeu Moretti MTM/PPGECT/UFSC INTRODUÇÃO Dizemos que um ret é um ssíntot de um curv qundo um ponto o mover-se o longo d prte etrem d curv se proim dest

Leia mais

OPERAÇÕES ALGÉBRICAS

OPERAÇÕES ALGÉBRICAS MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (II Determinntes) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Determinntes Índice 2 Determinntes 2

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

Números Reais intervalos, números decimais, dízimas, números irracionais, ordem, a reta, módulo, potência com expoente racional.

Números Reais intervalos, números decimais, dízimas, números irracionais, ordem, a reta, módulo, potência com expoente racional. UNIVERSIDADE FEDERAL DE VIÇOSA UNIDADE DE APOIO EDUCACIONAL UAE MAT 099 - Tutori de Mtemátic Tópicos: Números Rcionis operções e proprieddes (frções, regr de sinl, som, produto e divisão de frções, potênci

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

José Miguel Urbano. Análise Infinitesimal II Notas de curso

José Miguel Urbano. Análise Infinitesimal II Notas de curso José Miguel Urbno Análise Infinitesiml II Nots de curso Deprtmento de Mtemátic d Universidde de Coimbr Coimbr, 2005 Conteúdo Primitivs 3 2 O integrl de Riemnn 8 2. Proprieddes do integrl de Riemnn..............

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA FUNÇÕES DE VÁRIAS VARIÁVEIS - DIFERENCIAÇÃO Cláudio Martins Mendes Segundo Semestre de 2005 Sumário 1 Funções de Várias Variáveis - Diferenciabilidade 2 1.1 Noções Topológicas no R n.............................

Leia mais

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana.

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana. PROCESSO SELETIVO/006 RESOLUÇÃO MATEMÁTICA Brz Mour Freits, Mrgreth d Silv Alves, Olímpio Hiroshi Miygki, Rosne Sores Moreir Vin QUESTÕES OBJETIVAS 0 Pr rrecdr doções, um Entidde Beneficente usou um cont

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais