Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos

Tamanho: px
Começar a partir da página:

Download "Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos"

Transcrição

1 6. Autómtos Mínimos 6 Autómtos mínimos Dd um lingugem regulr L, muitos são os utómtos determinísticos que representm. Sej A L o conjunto dos utómtos tis que (8A)(A 2A L =) L(A) =L). Os utómtos de A L não têm todos o mesmo número de estdos e portnto pergunt que nturlmente surge é d existênci de um utómto mínimo (no sentido de ter o número mínimo de estdos) e do processo d su otenção. O teorem de Myhill-Nerode (pág.??) sujere que tl utómto existe ssim como present um crcterizção desse utómto que conduz à su construção. Ddo um utómto, comecemos por eliminr os estdos que não são cessíveis prtir do estdo inicil, ssim como queles dos quis não se pode chegr um estdo finl. Trivilmente, est operção não lter lingugem reconhecid pelo utómto inicil (e só pode fzer diminuir o seu número de estdos!). Nest secção, menos que sej explícitmente dito o contrário, considerremos sempre utómtos que form removidos todos os estdos pelo processo nterior. A idei por de trás d minimizção de um DFA é de eliminr estdos que representem (à luz do teorem de Myhill-Nerode) mesm fmíli de plvrs. Sej A = hs,,, s,fi. Em vez de tentrmos contruir directmente um utómto com o menor número de estdos, comecemos por estelecer quis os pres de estdos que são intrinsecmente diferentes, que representm diferentes lingugens e portnto não pssiveis de serem colpsdos num mesmo estdo no novo utómto que queremos construir. Chmemos estes pres distinguíveis. Semos que os estdos finis e os estdos não finis são, com certez, distinguíveis, pois os primeiros representm lingugens que contêm " o que não é o cso dos segundos. Comecemos, então, por definir seguinte relção, N S 2, dos estdos de S que semos, à prtid, serem distinguíveis: N = {(s, s ) 2 S 2 s 2 F _ s 2 F}. (6.) Pr lém destes pres de estdos, dois estdos, s e s, são distinguíveis se pr um ddo símolo,,s respectivs imgens por, (s, ) e (s, ), forem distinguíveis. Isto corresponde dicionr N os pres que stisfzem seguinte propriedde: P(X) : (8s, s 2 S 9 2 (( (s, ), (s, )) 2 X) ) ((s, s ) 2 X)). (6.2) 7

2 Consideremos, gor, o fecho de P pr N, F P (N). Est nov relção F P (N), relcion pres de estdos,(s, s ), pr os quis existe um plvr,, tlque( (s, ), (s, ) 2 F P (N)), ou sej ((s, s ) 2 F P (N)) () (9 )( (s, ) 2 F _ (s, ) 2 F). (6.3) Exercício 3 Provr proposição contid n fórmul (6.3). Sej R relção complementr de F P (N). ArelçãoR éumrelçãodeequivlênci,stverque (s, s ) 2 R () (s, s ) 62 F P (N) () (8 2? )( (s, ), (s, )) 62 F P (N) () (8 2? )( (s, ) 2 F () (s, ) 2 F). Lem 6. Ddo um utómto A = hs,,, s o,fi consideremos um novo utómto A m = hs/r,, m, [s ],F m i em que R é relção de equivlênci de indistiguiilidde sore S otid como cmos de descrever, e m : S/R -! s/r ([s], ) 7-! [ (s, )] F = {[s] 2 S/R s 2 F}, onde [s] represent, como costume, clsse de equivlênci de R ques pertence. Então L(A) = L(A m ). Dem. Sej um plvr ceite por A, então de equivlênci, se tem então (6.4) (s, ) 2 F (por 4.3), ms como, pr qulquer relção (8s)(s 2 [s]), m([s ], )=[ (s, )] 2 F m. Logo L(A) L(A m ). Suponhmos gor que = 2 l 2L(A m ) (com, 2,..., l 2 ), ou sej m([s ], 2 l) 2 F m. Sejm s,s,...,s l tis que m([s i- ], i) = [s i ], pr i 2 [, l], e tomemos s,s,...,s l com s = s, tis que (s i-, i)=si, pr i 2 [, l]. D definição de m (6.4) result que, pr todo o i 2 [, l], si 2 [s i] (por indução sore l). Pel definição de R, cd um ds sus clsses de equivlênci, [s], ou estão integrlmente contids em F, ou são disjunts de F. Pelo que ou sej 2L(A). Logo L(A) =L(A m ). (s, )=s l 2 F, Teorem 6.2 (utómto mínimo) Sej A um DFA, existe um DFA, A m, tl que (L(A m )=L(A)) ^ (8B (L(B) =L(A) ) A m pple B )). (6.5) Este utómto mínimo, A m, é o único que stisfz (6.5). 72

3 Dem. Sej A m o utómto definido no Lem 6. e provemos que A m é mínimo, no sentido que qulquer outro DFA B com menos estdos que A m não é equivlente A. Sej então B = hs,,,s,f i um DFA com B < A m = n. Pel form como A m foi construído, semos que pr qulquer pr de estdos existe um plvr que é testemunh que esses estdos não são equivlentes, ou sej (8i, j)(i, j 2 [, n - ] ^ i 6= j =) (9 i,j 2? ( ([s i ], i,j ) 2 F m _ ([s j ], i,j ) 2 F m ))). Como nestes utómtos todos os estdos são cessíveis prtir do estdo inicil (ver oservcão d págin 7), podemos tomr, por outro ldo,,,..., n- tis que ([s ], i )=[s i], pr i 2 [, n - ]. Como S <ntemos, pelo Princípio de Dirichlet (ver.) que Ms então enqunto (9k, k )(k, k 2 [, n - ] ^ k 6= k ^ (s, k)= (s, k ). Pelo que L(A m ) 6= L(B). LogoA m é mínimo. ( k k,k 2L(A m )) _ ( k k,k 2L(A m))) ( k k,k 2L(B)) () ( k k,k 2L(B)). Provemos gor que A m é único ( menos de renomeção de estdos). Suponhmos que pr um outro DFA A = hs,,,s,fi se tem A m = A = n. Pr cd pr de estdos deste utómto, si,s j, tem que existir um plvr que sej testemunh d su não equivlênci, porque senão seri possível, plicndo o método plicdo A, oter um utómto equivlente com menos estdos, que pelo que cmos de provr, teri que ser não equivlente A m. Sejm então i,j 2?, com i, j 2 [, n - ], s referids testemunhs de não equivlênci pr os estdos de A, ou sej Agor, ou temos (8i, j)((i, j 2 [, n - ] ^ i 6= j) =) ( (s i, i,j ) 2 F _ (s j, i,j ) 2 F )). (8, )(, 2? =) ( m ([s ], )= m ([s ], )) () ( (s, )= (s, ))), e então é possível renomer os estdos de A por form se ter (8 )(8i)( 2? ^ i 2 [, n - ] =) ( m ([s ], )=[s i ] () (s, )=s i)) e os dois utómtos são iguis. Ou (8i)(i 2 [, n - ] =) (([s i ] 2 F m ) () (s i 2 F ))) (9, )(, 2? ^ (( m ([s ], )= m ([s ], )) _ ( (s, )= (s, ))) e então, podemos conctenndo ests plvrs, e, s testemunhs proprids, provr que L(A m ) 6= L(A ). 6.. O lgoritmo de Moore O lgoritmo de Moore, normlmente triuído Huffmn [Huf55] e Moore [Moo56], corresponde exctmente à construção d relção F P (N) referid no Lem 6.. Vejmos um exemplo. 73

4 Exemplo 6.3 Consideremos, então o DFA representdo pelo digrm seguinte. s 4 s 7 s 5 s 6 s 3 s s s 2 e encontremos o utómto determinístico mínimo equivlente utilizndo o procedimento indicdo n demonstrção nterior. Comecemos por mrcr como distinguíveis todos os pres com um estdo finl e outro não finl. A tel seguinte enumer os elementos de N. s s 2 s 3 s 4 s 5 s 6 s 7 s s s 2 s 3 s 4 s 5 s 6 Comecemos tentr encontrr mis elementos pr crescentr à relção, pr oter o seu fecho. Sej N relção N [ (s, s ) 9 2 (s, ) 2 N _ (s, ) 2 N. 74

5 Então, ( (s,), (s,)) = (s 4,s 2 ) 2 N ) (s,s ) 2 N ( (s,), (s 2,)) = (s,s 2 ) 62 N ^ ( (s,), (s 2,)) = (s 4,s 3 ) 62 N ( (s,), (s 5,)) = (s,s 2 ) 62 N ^ ( (s,), (s 5,)) = (s 4,s 6 ) 62 N ( (s,), (s 7,)) = (s 4,s 5 ) 2 N ) (s,s 7 ) 2 N ( (s,), (s 2,)) = (s 2,s 3 ) 2 N ) (s,s 2 ) 2 N ( (s,), (s 5,)) = (s 2,s 6 ) 2 N ) (s,s 5 ) 2 N ( (s,), (s 7,)) = (s,s 7 ) 62 N ^ ( (s,), (s 7,)) = (s 2,s 5 ) 62 N ( (s 2,), (s 5,)) = (s 2,s 2 ) 62 N ^ ( (s 2,), (s 5,)) = (s 2,s 6 ) 62 N ( (s 2,), (s 7,)) = (s 3,s 5 ) 2 N ) (s 2,s 7 ) 2 N ( (s 3,), (s 4,)) = (s 6,s 5 ) 2 N ) (s 3,s 4 ) 2 N ( (s 3,), (s 6,)) = (s,s 7 ) 62 N ^ ( (s 3,), (s 6,)) = (s 6,s 3 ) 62 N ( (s 4,), (s 6,)) = (s 5,s 3 ) 2 N ) (s 4,s 6 ) 2 N ( (s 5,), (s 7,)) = (s 6,s 5 ) 2 N ) (s 5,s 7 ) 2 N. A tel de N é então seguinte. s s 2 s 3 s 4 s 5 s 6 s 7 s s s 2 s 3 s 4 s 5 s 6 Tentemos crescentr mis elementos, gor fzendo N 2 = N [ (s, s ) 9 2 (s, ) 2 N _ (s, ) 2 N. Então, e escrevendo somente s clonclusões positivs, temos. Que result n seguinte tel. ( (s,), (s 2,)) = (s 4,s 3 ) 2 N ) (s,s 2 ) 2 N 2 ( (s,), (s 5,)) = (s,s 2 ) 2 N ) (s,s 5 ) 2 N 2. s s 2 s 3 s 4 s 5 s 6 s 7 s s s 2 s 3 s 4 s 5 s 6 Um ciclo seguinte pr tentr crescentr mis pres, gor N 3, mostr-se infrutífero, pelo que o fecho pr quel propriedde P(X) (d demonstrção de 6.), já foi tingido. A relção 75

6 complementr dest tem então s seguintes clsses de equivlênci {{s }, {s,s 7 }, {s 2,s 5 }, {s 3,s 6 }, {s 4 }}. O utómto mínimo otido é então o seguinte O lgoritmo de Brzozowski {s 4 } {s 2,s 5 } {s } {s,s 7 } {s 3,s 6 } Tlvez o mis surpreendente dos loritmos de minimizção de utómtos sej o que se deve Brzozowski [Brz62]. Não tnto pel su performnce, que no pior cso pode ser exponencil, ms pel simplicidde de descrição e pel não trivilmente evidente rzão do seu funcionmento. A prov d correcção do lgoritmo, que qui será presentd, segue, em termos geris, presentd no rtigo de Chmprnud et l [JMCP2]. Sej A um utómto finito, denotemos por R(A) o utómto reverso como o otido n Proposição 4.2. Semos, pel mesm proposição que L(A) R = L(R(A)). E portnto, plicndo mis um vez o mesmo resultdo, que L(R(R(A)) = L(A). Denotemos, gor, por D(A) o utómto determinístico otido pelo método d construção de suconjuntos do Teorem Então é fácil verificr, ddo um utómto finito A, que, por um ldo, D(R(D(R(A)))) é um utómto determinístico, e por outro, L(D(R(D(R(A))))) = L(A). Lem 6.4 Sej A um NFA e A = D(A) o utómto determinístico equivlente otido pel construção dd pelo Teorem Sej q um qulquer estdo de A. A lingugem direit de q é união ds lingugens direits dos estdos de A que compõem q. Teorem 6.5 (Brzozowski) Sej A um utómto finito, não necessrimente determinístico, o utómto é o utómto determinístico mínimo equivlente o utómto A. D(R(D(R(A)))) (6.6) Exemplo 6.6 Consideremos o seguinte utómto A: 76

7 O utómto R(A) é então s s s s s 5 s 2 s 3 s 5 s 2 s 3, Pr otermos D(R(A)) procedemos como o indicdo no Teorem 4.23.,! {s 2,s 3,s 4 } {s 2,s 3,s 4 } {s,s }?{s,s } {s,s } ; e o utómto otido, chmndo s = {s 2,s 3,s 4 } e s = {s,s },é Agor, R(D(R(A))) vem s s s s s 4 s 4 que já é determinístico, pelo que coincide com D(R(D(R(A)))), e portnto está encontrdo o DFA mínimo equivlente A. 77

Modelos de Computação -Folha de trabalho n. 2

Modelos de Computação -Folha de trabalho n. 2 Modelos de Computção -Folh de trlho n. 2 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

Gramáticas Regulares. Capítulo Gramáticas regulares

Gramáticas Regulares. Capítulo Gramáticas regulares Cpítulo Grmátics Regulres Ests nots são um complemento do livro e destinm-se representr lguns lgoritmos estuddos ns uls teórics. É ddo um exemplo de plicção de cd conceito. Mis exemplos form discutidos

Leia mais

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução Dep. Mtemátic e Aplicções 27 de Aril de 2011 Universidde do Minho 1 o Teste de Teori ds Lingugens Lic. Ciêncis Computção Propost de resolução 1. Considere lingugem L = A sore o lfeto A = {,}. Durção: 2

Leia mais

Modelos de Computação Folha de trabalho n. 3

Modelos de Computação Folha de trabalho n. 3 Modelos de Computção Folh de trlho n. 3 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens:

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens: BCC244-Teori d Computção Prof. Lucíli Figueiredo List de Exercícios DECOM ICEB - UFOP Lingugens. Liste os strings de cd um ds seguintes lingugens: ) = {λ} ) + + = c) {λ} {λ} = {λ} d) {λ} + {λ} + = {λ}

Leia mais

Draft-v Autómatos finitos. 4.1 Autómatos finitos determinísticos

Draft-v Autómatos finitos. 4.1 Autómatos finitos determinísticos 4 Autómtos finitos Neste cpítulo vmos introduzir outrs estruturs que permitem crcterizr s lingugens regulres. A principl vntgem, dests novs estruturs, sore representção com expressões regulres é de terem,

Leia mais

Autômatos determinísticos grandes

Autômatos determinísticos grandes Autômtos determinísticos grndes Arnldo Mndel 27 de outubro de 2009 A construção dos subconjuntos implic n seguinte firmtiv: se um lingugem é reconhecid por um utômto não-determinístico com n estdos, então

Leia mais

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10. Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε)

3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε) TRANSIÇÕES POR (AFND-) 43 3.3 Autómtos finitos não determinísticos com trnsições por (AFND-) Vmos gor considerr utómtos finitos que podem mudr de estdo sem consumir qulquer símbolo, isto é, são utómtos

Leia mais

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação LFA - PARTE 1 Lingugens Regulres e Autômtos de Estdos Finitos Um Modelo Frco de Computção João Luís Grci Ros LFA-FEC-PUC-Cmpins 2002 R. Gregory Tylor: http://strse.cs.trincoll.edu/~rtylor/thcomp/ 1 Lingugens

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular.

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular. Lingugens Formis Nom Chomsky definiu que s lingugens nturis podem ser clssificds em clsses de lingugens. egundo Hierrqui de Chomsky, s lingugens podem ser dividids em qutro clsses, sendo els: Regulres

Leia mais

Hierarquia de Chomsky

Hierarquia de Chomsky Universidde Ctólic de Pelots Centro Politécnico 364018 Lingugens Formis e Autômtos TEXTO 1 Lingugens Regulres e Autômtos Finitos Prof. Luiz A M Plzzo Mrço de 2011 Hierrqui de Chomsky Ling. Recursivmente

Leia mais

Exemplos de autómatos finitos

Exemplos de autómatos finitos Exemplos de utómtos finitos s s 2 reconhece lingugem: {x {, } x termin em e não têm s consecutivos} s s 2 reconhece lingugem {x x {, } e tem como suplvr} Deprtmento de Ciênci de Computdores d FCUP MC Aul

Leia mais

Apostila 02 - Linguagens Regulares Exercícios

Apostila 02 - Linguagens Regulares Exercícios Cursos: Bchreldo em Ciênci d Computção e Bchreldo em Sistems de Informção Disciplins: (1493A) Teori d Computção e Lingugens Formis, (4623A) Teori d Computção e Lingugens Formis e (1601A) Teori d Computção

Leia mais

Compiladores ANÁLISE LEXICAL.

Compiladores ANÁLISE LEXICAL. Compildores ANÁLISE LEXICAL www.pedrofreire.com Este documento tem lguns direitos reservdos: Atriuição-Uso Não-Comercil-Não Ors Derivds 2.5 Portugl http://cretivecommons.org/licenses/y-nc-nd/2.5/pt/ Isto

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto Lingugens ormis Cpítulo 5: Lingugens e grmátics livres de contexto José Lucs Rngel, mio 1999 5.1 - Introdução Vimos no cpítulo 3 definição de grmátic livre de contexto (glc) e de lingugem livre de contexto

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação Pontifíci Universidde Ctólic de Cmpins Centro de Ciêncis Exts, Ambientis e de Tecnologis Fculdde de Engenhri de Computção LINGUAGENS FORMAIS E AUTÔMATOS List de Exercícios 1 1. Que lingugem grmátic ger?

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano Mteril Teórico - Módulo Teorem de itágors e plicções lgums demonstrções do Teorem de itágors - rte 2 Nono no utor: rof. Ulisses Lim rente Revisor: rof. ntonio minh M. Neto 27 de ril de 2019 1 lgums plicções

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos Licencitur em Engenhri Informátic DEI/ISEP Lingugens de Progrmção 26/7 Fich 4 Autómtos Finitos Determinísticos Ojectivos: Vlidção de plvrs utilizndo Autómtos Finitos; Conversão de utómtos finitos não determinísticos

Leia mais

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto Construção de Compildores Cpítulo 2 Análise Léxic José Romildo Mlquis Deprtmento de Computção Universidde Federl de Ouro Preto 2014.1 1/23 1 Análise Léxic 2/23 Tópicos 1 Análise Léxic 3/23 Análise léxic

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 4 Proprieddes ds Lingugens Regulres Estmos no momento de colocr seguinte questão: quão gerl são s lingugens regulres? Seri tod lingugem forml regulr? Tlvez qulquer conjunto que possmos especificr

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Lingugens Formis e Autômtos - 0 emestre 2006 Professor : ndr Aprecid de Amo List de Exercícios n o - 4/08/2006 Observção : os exercícios

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Aula 5: Autômatos Finitos Remoção de Não-Determinismo

Aula 5: Autômatos Finitos Remoção de Não-Determinismo Teori d Computção Primeiro Semestre, 25 DAINF-UTFPR Aul 5: Autômtos Finitos 3 Prof. Rirdo Dutr d Silv 5. Remoção de Não-Determinismo As lsses de utômtos definids nteriormente são tods equivlentes. Vmos

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) Lingugens Formis e Autômtos (LFA) Aul de 11/09/2013 Conjuntos Regulres, Expressões Regulres, Grmátics Regulres e Autômtos Finitos 1 Conjuntos Regulres Conjuntos regulres sobre um lfbeto finito são LINGUAGENS

Leia mais

<S> ::= <L><C> <L> ::= l <C> ::= l<c> n<c> n l λ. L(G 1 ) = {a n b 2m n>0 m 0} L(G 2 ) = {lw w {l, n} * } L(G 3 ) = {a n b 2m n>0 m 0}

<S> ::= <L><C> <L> ::= l <C> ::= l<c> n<c> n l λ. L(G 1 ) = {a n b 2m n>0 m 0} L(G 2 ) = {lw w {l, n} * } L(G 3 ) = {a n b 2m n>0 m 0} 1) Dds s seguintes grmátics: UNIVERIDADE ETADUAL DE MARINGÁ UEM ENTRO DE TENOLOGIA T DEPARTAMENTO DE INFORMÁTIA DIN BAHARELADO EM INFORMÁTIA DIIPLINA: LINGUAGEN FORMAI E AUTÔMATO PROFEOR: YANDRE MALDONADO

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1 DCC-UFRJ Lingugens Formis Primeir Prov 28/. Constru um utômto finito determinístico que ceite lingugem L = {w ( ) w contém pelos menos dois zeros e no máximo um }. 2. Use o lgoritmo de substituição pr

Leia mais

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1.

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1. Revist d Mtemátic UFOP, Vol I, 2011 - X Semn d Mtemátic e II Semn d Esttístic, 2010 ISSN 2237-8103 ESTUDO SOBRE A INTEGRAL DE DARBOUX Aln Cvlcnte Felippe 1, Júlio Césr do Espírito Snto 1 Resumo: Este trblho

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

CAPÍTULO 2 AUTÓMATOS FINITOS

CAPÍTULO 2 AUTÓMATOS FINITOS Teori d Computção Cpítulo 2. Autómtos Finitos CAPÍTULO 2 AUTÓMATOS FINITOS 2.. Introdução 45 2.2.Aceitdores determinísticos 46 2.3. A rte de construir DFA s 59 2.4. Lingugens regulres 75 2.5. Autómtos

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Teorema 1. Seja A um anel comutativo. Então A é um domínio de integridade se e somente se A é isomorfo a um subanel de um corpo.

Teorema 1. Seja A um anel comutativo. Então A é um domínio de integridade se e somente se A é isomorfo a um subanel de um corpo. 1. Domínios Um domínio de integridde (ou simplesmente domínio) é um nel comuttivo unitário A tl que se, b A e b = 0 então = 0 ou b = 0. Por exemplo Z e Z[X] são domínios e mis em gerl se A é um domínio

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000) Teori d Computção Unidde 3 Máquins Universis (cont.) Referênci Teori d Computção (Divério, 2000) 1 Máquin com Pilhs Diferenci-se ds MT e MP pelo fto de possuir memóri de entrd seprd ds memóris de trblho

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escol Secundári/, d Sé-Lmego Fich de Trlho de Mtemátic A Ano Lectivo 0/ Distriuição de proiliddes.º Ano Nome: N.º: Turm:. Num turm do.º no, distriuição dos lunos por idde e sexo é seguinte: Pr formr um

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Autômato Finito. Autômato Finito Determinístico. Autômato Finito Determinístico

Autômato Finito. Autômato Finito Determinístico. Autômato Finito Determinístico Autômto Finito Prof. Yndre Mldondo - 1 Prof. Yndre Mldondo e Gomes d Cost yndre@din.uem.r Autômto Finito Determinístico Prof. Yndre Mldondo - 2 AFD - modelo mtemático p/ definição de lingugem Cráter reconhecedor

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Autômato Finito. Prof. Yandre Maldonado e Gomes da Costa. Prof. Yandre Maldonado - 1

Autômato Finito. Prof. Yandre Maldonado e Gomes da Costa. Prof. Yandre Maldonado - 1 Autômto Finito Prof. Yndre Mldondo - 1 Prof. Yndre Mldondo e Gomes d Cost yndre@din.uem.r Autômto Finito Determinístico Prof. Yndre Mldondo - 2 AFD - modelo mtemático p/ definição de lingugem Cráter reconhecedor

Leia mais

Equações diofantinas lineares a duas e três variáveis

Equações diofantinas lineares a duas e três variáveis Equções diofntins lineres dus e três vriáveis Eudes Antonio Cost Fbino F. T. dos Sntos Introdução O objetivo deste rtigo é presentr teori básic envolvid ns equções diofntins lineres dus e três incógnits

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês CAL (00-0) MIEIC/FEUP Algoritmos em Grfos (0-0-0) Algoritmos em Grfos: Circuitos de Euler e Prolem do Crteiro Chinês R. Rossetti, A.P. Roch, A. Pereir, P.B. Silv, T. Fernndes FEUP, MIEIC, CPAL, 00/0 Circuitos

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

AULA 1 Introdução 3. AULA 2 Propriedades e teorema fundamental do cálculo 5. AULA 3 Integrais indefinidas 7. AULA 4 Integração por substituição 9

AULA 1 Introdução 3. AULA 2 Propriedades e teorema fundamental do cálculo 5. AULA 3 Integrais indefinidas 7. AULA 4 Integração por substituição 9 www.mtemticemexercicios.com Integris (volume ) Índice AULA Introdução AULA Proprieddes e teorem fundmentl do cálculo 5 AULA Integris indefinids 7 AULA 4 Integrção por sustituição 9 AULA 5 Integrção por

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão Seção 20: Equção de Lplce Notção. Se u = u(x, y) é um função de dus vriáveis, representmos por u, ou ind, por 2 u expressão u = 2 u = u xx + u yy, chmd de lplcino de u. No cso de função de três vriáveis,

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA. Andréa Costa Nascimento

UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA. Andréa Costa Nascimento UNIVERSIDDE FEDERL DE MINS GERIS INSTITUTO DE CIÊNCIS EXTS DEPRTMENTO DE MTEMÁTIC ndré Cost Nscimento Dus mneirs diferentes de demonstrr Relção de Euler pr poliedros convexos, vist no ensino médio Belo

Leia mais

Análise Sintáctica Descendente

Análise Sintáctica Descendente Cpítulo 4 nálise intáctic Descendente Os utomátos finitos presentdos no cpítulo nterior são suficientes pr trtr os elementos léxicos de um lingugem de progrmção, o trtmento d estrutur sintáctic de um lingugem

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

operation a b result operation a b MUX result sum i2 cin cout cout cin

operation a b result operation a b MUX result sum i2 cin cout cout cin Módulo 5 Descrição e simulção em VHDL: ALU do MIPS Ojectivos Pretende-se que o luno descrev, n lingugem VHDL, circuitos comintórios reltivmente complexos, usndo, pr esse efeito, lguns mecnismos d lingugem

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. AEP FISCAL Rciocínio Lógico - MATRIZES E DETERMINANTES - SISTEMAS LINEARES Prof. Weer Cmpos weercmpos@gmil.com Copyri'ght. Curso Agor eu Psso - Todos os direitos reservdos o utor. Rciocínio Lógico EXERCÍCIOS

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais