Propriedades das Linguagens Regulares

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Propriedades das Linguagens Regulares"

Transcrição

1 Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões regulres ou, equivlentemente, eites (reonheids) por lgum utómto finito. Vmos estudr, neste pítulo, outros resultdos fundmentis sore est lsse de lingugens, nomedmente: A lsse ds lingugens regulres é fehd pr operções sore lingugens omo união finit, omplementção, interseção, ontenção (finit) e o feho de Kleene. Existem lingugens que não são regulres e podemos demonstrr que um lingugem não é regulr mostrndo que não oedee um ondição de repetição que s lingugens regulres estão sujeits. É possível deidir se dois utómtos são equivlentes, isto é, se reonheem mesm lingugem. Em prtiulr, ddo qulquer utómto finito, podemos oter um utómto finito determinístio equivlente om o menor número de estdos. Est propriedde, é um ds mis importntes ds lingugens regulres. Existem lgoritmos (lguns efiientes) pr responder lguns prolems de deisão sore lingugens regulres. Prolems omo: determinr se um plvr pertene um dd lingugem regulr; determinr se um lingugem regulr é vzi ou Σ ; determinr se dus lingugens regulres se intersetm, se são equivlentes, se um está ontid n outr, et. A.Tomás, N.Moreir Modelos de Computção DCC-FCUP

2 5.1. PROPRIEDADES DE FECHO Proprieddes de feho Diz-se que um onjunto é fehdo pr um operção inári Θ se e só se quisquer que sejm os elementos x e y desse onjunto, x Θ y ind é um elemento do onjunto. Se operção Θ é unári, então o onjunto é fehdo pr operção se e só se pr todo x no onjunto, Θ x ind é um elemento do onjunto. Exemplo 5.1. O onjunto dos números reis não negtivos, é fehdo pr som ms não é fehdo pr sutrção, pois x R + 0 y R+ 0 x + y R 0 e omo, por exemplo, 3 5 / R 0, semos que ou sej que não é verdde que x R + 0 y R+ 0 x y / R 0 x R + 0 y R+ 0 x y R 0 Dizer que A lsse de lingugens regulres é fehd pr união finit, omplementção, interseção, ontenção (finit) e o feho de Kleene (entre outrs operções). é dizer que A união finit de lingugens regulres é regulr, lingugem omplementr dum lingugem regulr é regulr, o feho de Kleene dum lingugem regulr é regulr,... Proposição 5.1. A lsse ds lingugens regulres é fehd pr ontenção finit feho de Kleene reunião finit omplementção interseção finit inversão A.Tomás, N.Moreir Modelos de Computção DCC-FCUP

3 5.1. PROPRIEDADES DE FECHO 74 Prov. Ddo que um lingugem regulr é desrit por um expressão regulr então é fáil onluir que s lingugens regulres são fehds pr ontenção (finit), o feho de Kleene e união finit. Contenção Se L e M são dus lingugens regulres então existem expressões regulres r e s tl que L = L(r) e M = L(s). Então pel definição do operdor, L(rs) = LM, isto é, rs é expressão regulr que desreve ontenção de L e M. Feho de Kleene Se L é um lingugem regulr então existe um expressão regulr r tl que L = L(r). Então pel pel definição do operdor, L(r ) = L(r), isto é, r é expressão regulr que desreve o feho de Kleene de L. Reunião ou sej, n i=1 L i é regulr, quisquer que sejm n 2 e s lingugens regulres L i Σ, om 2 i n. Bse. Se L 1 e L 2 são regulres, sejm r 1 e r 2 expressões regulres que s desrevem. Então, r 1 + r 2 desreve L 1 L 2, isto é L(r 1 + r 2 ) = L 1 L 2, pelo que L 1 L 2 é regulr. Indução. Ddo n 2, suponhmos, omo hipótese de indução, que quisquer que sejm L 1,...,L n lingugens regulres de lfeto Σ, reunião L 1... L n é regulr. E, vmos mostrr que se Q 1,... Q n,q n+1 forem n + 1 lingugens regulres de lfeto Σ então Q 1... Q n Q n+1 é regulr. De fto, Q 1... Q n Q n+1 = (Q 1... Q n ) Q n+1 e por hipótese de indução, Q 1... Q n é regulr, pelo que onluímos que Q 1... Q n Q n+1 é reunião de dus lingugens regulres. Como mostrámos que reunião de dus lingugens regulres é regulr, onluímos que Q 1... Q n Q n+1 é regulr. Complementção ou sej, se L é um lingugem regulr sore Σ, então L = Σ \ L tmém é um lingugem regulr. Sej A = (S,Σ,δ,s 0,F) um AFD em que δ é um função totl de S Σ em S e tl que L = L(A). O utómto A = (S,Σ,δ,s 0,S \ F) é um AFD que eit Σ \ L, pelo que Σ \ L é regulr. Interseção Sejm L e M são dus lingugens regulres. Como L M = L M, onluímos usndo 5.1 e 5.1 que L M é um lingugem regulr. Inversão, ou sej se L é um lingugem regulr L R, onstituíd pels plvrs inverss ds de L, é regulr. Podemos provr por indução n estrutur d expressão regulr r que desreve L + L(r). Bse. Se r é, ɛ ou, Σ então r R é r A.Tomás, N.Moreir Modelos de Computção DCC-FCUP

4 5.1. PROPRIEDADES DE FECHO 75 Indução. r = r 1 + r 2, então r R = r1 R + rr 2. r = r 1 r 2, então r R = r2 RrR 1. r = r1, então rr = (r1 R). Vimos nteriormente que ddos dois utómtos finitos A 1 e A 2, se pode definir filmente um utómto finito (mis preismente, um AFND-ε) que reonhee L(A 1 ) L(A 2 ). Se se pretender determinr um AFD que reonheç L(A 1 ) L(A 2 ), podemos ter que enontrr o AFD equivlente àquele que otivemos pelo proesso referido, o que pode ser lgo trlhoso! Pode o leitor, não se ter pereido ind que iguldde L 1 L 2 = L 1 L 2, sugere um método pr, om lgum esforço, determinr o utómto que eit L 1 L 2 prtir de dois utómtos finitos A 1 e A 2 tis que L 1 = L(A 1 ) e L 2 = L(A 2 ). Começr por enontrr AFDs que não enrvem e que sejm equivlentes A 1 e A 2. Pr oter L 1, st onsiderr no AFD respetivo, que os estdos finis pssm ser não-finis e os não-finis pssm finis. Deve proeder do mesmo modo pr oter o AFD que reonhee L 2. Depois disto, determin-se um utómto finito que reonhee L 1 L 2, o qul terá que ser um AFD que não enrve, um vez que por fim, queremos determinr o utómto que reonhee L 1 L 2 (ou sej, lingugem omplementr de L 1 L 2 ) Autómtos produto Ms tmém se pode oter um utómto finito pr interseção (reunião e outrs operções) de dus lingugens regulres, pel onstrução do hmdo utómto produto. Supomos disponíveis AFDs A 1 = (S 2,Σ,δ 1,i 1,F 1 ) e A 2 = (S 2,Σ,δ 2,i 2,F 2 ) tis que δ 1 e δ 2 são totis (isto é, os utómtos não enrvm), os quis reonheem respetivmente L 1 e L 2. Podemos então dizer que, qulquer que sej x Σ : x L 1 L 2 se e só se x lev mos os utómtos estdo finl; x L 1 L 2 se e só se x lev pelo menos um dos utómtos estdo finl; A.Tomás, N.Moreir Modelos de Computção DCC-FCUP

5 5.1. PROPRIEDADES DE FECHO 76 Considermos um utómto que vi, por ssim dizer, simulr exeução simultne de A 1 e A 2. Os seus estdos são pres (s 1,s 2 ) om s 1 S 1 e s 2 S 2, e função de trnsição δ é dd por δ p ((s 1,s 2 ),) = (δ 1 (s 1,),δ 2 (s 2,)) om Σ e (s 1,s 2 ) S 1 S 2 quisquer. O seu estdo iniil é (i 1,i 2 ). Designmos generimente este utómto por A = (S 1 S 2,Σ,δ p,(i 1,i 2 ),F p ) O onjunto de estdos finis será F = {(s 1,s 2 ) s 1 F 1 s 2 F 2 }, pr reonheer L 1 L 2 ; F = {(s 1,s 2 ) s 1 F 1 s 2 F 2 }, pr reonheer L 1 L 2 ; Exeríio 5.1. Mostre por indução em x, que x Σ, δp ((s 1,s 2 ),x) = ( δ 1 (s 1,x), δ 2 (s 2,x)) Proposição 5.2. Sej A o utómto produto pr interseção L(A ) = L(A 1 ) L(A 2 ) Dem: x L(A ) δ (i,x) F δ ((i 1,i 2 ),x) F 1 F 2 ( δ 1 (i 1,x), δ 2 (i 2,x)) F 1 F 2 δ 1 (i 1,x) F 1 δ 2 (i 2,x) F 2 x L(A 1 ) x L(A 2 ) x L(A 1 ) L(A 2 ) Exeríio 5.2. Mostre que L(A ) = L(A 1 ) L(A 2 ) Exeríio 5.3. Como é que nlisndo o utómto produto se pode ser se L(A 1 ) L(A 2 )? E ser se L(A 1 ) L(A 2 )? E ind, se L(A 1 ) = L(A 2 )? Exemplo 5.2. Pr ilustrr o método que ámos de expor, supomos ddos os utómtos finitos seguintes., s 0 q 0, s 1, A interseção ds lingugens que estes utómtos reonheem é o onjunto ds plvrs de lfeto {,,} que têm lgum, terminm em e não têm s. Note que os utómtos q 1 A.Tomás, N.Moreir Modelos de Computção DCC-FCUP

6 5.1. PROPRIEDADES DE FECHO 77 não têm lfetos iguis, pelo que ntes de plir o proesso, vmos trnsformr o primeiro utómto. s 0, s 1 s 2,, As trnsições do utómto que reonhee interseção são dds n tel seguinte, sendo o seu onjunto de estdos finis {(s 1,q 1 )}. (s 0,q 0 ) (s 1,q 0 ) (s 0,q 1 ) (s 2,q 0 ) (s 1,q 0 ) (s 1,q 0 ) (s 1,q 1 ) (s 2,q 0 ) (s 0,q 1 ) (s 1,q 0 ) (s 0,q 1 ) (s 2,q 0 ) (s 2,q 0 ) (s 2,q 0 ) (s 2,q 1 ) (s 2,q 0 ) (s 1,q 1 ) (s 1,q 0 ) (s 1,q 1 ) (s 2,q 0 ) (s 2,q 1 ) (s 2,q 0 ) (s 2,q 1 ) (s 2,q 0 ) Tl utómto pode ser representdo pelo digrm seguinte,, onluindo-se filmente que não é mínimo. Por exemplo, o AFD seguinte é equivlente o nterior.,, A.Tomás, N.Moreir Modelos de Computção DCC-FCUP

7 5.1. PROPRIEDADES DE FECHO 78 Por outro ldo, se notrmos que interseção ds lingugens definids pelos dois utómtos ddos é lingugem onstituíd pels plvrs de lfeto {,,} que têm lgum, não têm s e terminm em, qul é rzovelmente simples, é em menos trlhoso pensr um pouo do que usr o proesso desrito nteriormente. O AFD que não enrv e que tem o menor número de estdos é o seguinte. e 0 e 1 e 3,, O que d estdo memoriz... e 0 : plvr ind não tem nem tem ; e 1 : plvr tem lgum, não tem s e termin em ; e 2 : plvr tem lgum, termin em e não tem s ; e 3 : plvr tem lgum. e 2 Exemplo 5.3. Considere os dois utómtos seguintes. s 0 s 1, s 2, q 0 q 1, q 2, Usndo o proesso desrito nteriormente otêm-se os dois utómtos seguintes, o d esquerd reonheendo {} {} (ou sej, ) e o d direit {} {}. (s 0,q 0 ) (s 1,q 2 ) (s 0,q 0 ) (s 1,q 2 ), (s 2,q 1 ), (s 2,q 2 ),, (s 2,q 1 ), (s 2,q 2 ), Clrmente, este não é o melhor proesso pr determinr utómtos que definm e {,}! A.Tomás, N.Moreir Modelos de Computção DCC-FCUP

8 5.1. PROPRIEDADES DE FECHO Lingugens Finits Exemplo 5.4. Sejm L 1, L 2, e L 3 s lingugens de lfeto {0,,} ssim definids: L 1 = {} {w w {,} } L 2 = {w {,} w = 2 w = 3} L 3 = L 1 ({0}L 2 ) {0} As lingugens L 1, L 2 e L 3 são regulres, pois são definids pels expressões regulres +(+ ), ( +)( +)(ε ++) e ( +( +) )(0( +)( +)(ε ++)) 0, respetivmente. A lingugem L 3 ( { n n n 1000}{0w w {,} } ) é regulr. Como L 3 é regulr, tmém L 3. Por outro ldo, { n n n 1000} é regulr porque é união finit de lingugens regulres, pois { n n n 1000} = 1000 n=0 { n n }. Se designrmos por r n expressão regulr que desreve { n n }, podemos defini-l por reorrêni do modo seguinte: r 0 = ε e r k+1 = r k, pr k 0. Note que r n desreve um lingugem que é onstituíd pens por um plvr plvr que tem n s e n s, e que não tem s à direit de s. Tmém, {0w w {,} } ) é regulr, pois é definid pel expressão 0( +). Portnto, { n n n 1000}{0w w {,} } é regulr, já que é ontenção de lingugens regulres. E, onsequentemente, L 3 ( { n n n 1000}{0w w {,} } ) é interseção de dus lingugens regulres, pelo que é regulr. Exeríio Justifique que qulquer que sej lingugem L, se L é finit (isto é, se L é um onjunto plvrs que é finito ) então L é regulr. Conlu que { n n n 1000} é regulr pois é finit. Exeríio Sejm L 1 e L 2 lingugens de lfeto Σ tis que L 1 L 2 =, e L 2 é regulr. () Mostre que se L 1 L 2 é regulr então L 1 é regulr. () Mostre que L 2 L 1 não é regulr se e só se L 1 não é regulr. A propósito do exeríio nterior, note que ondição L 1 L 2 = é fundmentl. De fto, se L 1 L 2, podemos filmente enontrr lingugens L 1 e L 2 tis que L 2 é regulr, L 1 não é regulr e L 1 L 2 é regulr. Bst onsiderr que L 2 é Σ e que L 1 = { n n primo}, sendo lgum elemento de Σ. N seção seguinte mostr-se que L 1 não é regulr. A.Tomás, N.Moreir Modelos de Computção DCC-FCUP

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens:

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens: BCC244-Teori d Computção Prof. Lucíli Figueiredo List de Exercícios DECOM ICEB - UFOP Lingugens. Liste os strings de cd um ds seguintes lingugens: ) = {λ} ) + + = c) {λ} {λ} = {λ} d) {λ} + {λ} + = {λ}

Leia mais

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação LFA - PARTE 1 Lingugens Regulres e Autômtos de Estdos Finitos Um Modelo Frco de Computção João Luís Grci Ros LFA-FEC-PUC-Cmpins 2002 R. Gregory Tylor: http://strse.cs.trincoll.edu/~rtylor/thcomp/ 1 Lingugens

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Prof. Rômulo Silva. Teoria. Computação. Maio/2007

Prof. Rômulo Silva. Teoria. Computação. Maio/2007 Prof. Rômulo Silv Teori d Computção Mio/2007 1 Prof. Rômulo Silv Ojetivo dest postil Est postil foi desenvolvid om o ojetivo de filitr o entendimento d Teori d Computção, priniplmente no que se refere

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) Lingugens Formis e Autômtos (LFA) Aul de 11/09/2013 Conjuntos Regulres, Expressões Regulres, Grmátics Regulres e Autômtos Finitos 1 Conjuntos Regulres Conjuntos regulres sobre um lfbeto finito são LINGUAGENS

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes SÉTIM LIST DE EXERÍIOS Fundmentos d Mtemáti II MTEMÁTI DET UES Humerto José ortolossi http://www.ues.r/relos/ Semelhnç de triângulos Dizemos que o triângulo é semelhnte o triângulo XY Z e esrevemos XY

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

CAPÍTULO 2 AUTÓMATOS FINITOS

CAPÍTULO 2 AUTÓMATOS FINITOS Teori d Computção Cpítulo 2. Autómtos Finitos CAPÍTULO 2 AUTÓMATOS FINITOS 2.. Introdução 45 2.2.Aceitdores determinísticos 46 2.3. A rte de construir DFA s 59 2.4. Lingugens regulres 75 2.5. Autómtos

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto Lingugens ormis Cpítulo 5: Lingugens e grmátics livres de contexto José Lucs Rngel, mio 1999 5.1 - Introdução Vimos no cpítulo 3 definição de grmátic livre de contexto (glc) e de lingugem livre de contexto

Leia mais

Última atualização 03/09/2009

Última atualização 03/09/2009 FACIN-PPGCC 2 1. PANO DE FUNDO Sumário 2. LINGUAGENS Teori d Computilidde Prte I - Teori de Autômtos 3. DEFINIÇÕES RECURSIVAS 4. EXPRESSÕES REGULARES 5. AUTÔMATOS FINITOS Ney Lert Vilr Clzns & Avelino

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

Primeira Lista de Exercícios 2004/2...

Primeira Lista de Exercícios 2004/2... UFLA Universidade Federal de Lavras Departamento de Ciênia da Computação COM62 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exeríios 24/2...

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte II Notas de aula - Marlene UFF/GMA - Mtemáti Bási I - Prte II Nots de ul - Mrlene - 20-6 Sumário II Números reis - operções e ordenção 7 2 Operções, ioms e proprieddes dos reis 7 2. As operções Som e Produto e os Aioms Algérios..................

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

II Números reais: inteiros, racionais e irracionais 26

II Números reais: inteiros, racionais e irracionais 26 UFF/GMA - Mtemáti Bási - Prte II - Números reis Nots de ul - Mrlene - 2009-25 Sumário II Números reis: inteiros, rionis e irrionis 26 2 Operções, ioms e proprieddes dos reis 26 2. As operções Som e Produto

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos Licencitur em Engenhri Informátic DEI/ISEP Lingugens de Progrmção 26/7 Fich 4 Autómtos Finitos Determinísticos Ojectivos: Vlidção de plvrs utilizndo Autómtos Finitos; Conversão de utómtos finitos não determinísticos

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

II Números reais: inteiros, racionais e irracionais 27

II Números reais: inteiros, racionais e irracionais 27 UFF/GMA - Mtemáti Bási - Prte II - Números reis Nots de ul - Mrlene - 200-2 26 Sumário II Números reis: inteiros, rionis e irrionis 27 2 Operções, ioms e proprieddes dos reis 27 2. As operções Som e Produto

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) PU-Rio Lingugens Formis e Autômtos (LFA) omplemento d Aul de 21/08/2013 Grmátics, eus Tipos, Algums Proprieddes e Hierrqui de homsky lrisse. de ouz, 2013 1 PU-Rio Dic pr responder Pergunts finis d ul lrisse.

Leia mais

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira Dosgem de onreto Prof. M.S. Rirdo Ferreir Regressão liner simples Método dos mínimos qudrdos Prof. M.S. Rirdo Ferreir Fonte: Drio Dfio Regressão liner simples Método dos mínimos qudrdos 3/3 Dd um onjunto

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT AO CÁLCULO A - Pro : Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui um

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

Resoluções de Atividades

Resoluções de Atividades VOLU 1 GOTRI Resoluções de tividdes Sumário pítulo 1 Rzão e proporção...1 pítulo Teorem de Tles.... pítulo Teorem d issetriz etern... pítulo Semelhnç... pítulo Teorem d issetriz intern... pítulo 1 Rzão

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2. Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

Mania de Pitágoras Euclides Rosa

Mania de Pitágoras Euclides Rosa Texto omplementr Mni de Pitágors Eulides Ros MTEMÁTI 1 Mtemáti ssunto: Geometri Mni de Pitágors Elish Sott Loomis, professor de Mtemáti em levelnd, Ohio (Estdos Unidos), er relmente um pixondo pelo teorem

Leia mais

Análise Sintáctica Descendente

Análise Sintáctica Descendente Cpítulo 4 nálise intáctic Descendente Os utomátos finitos presentdos no cpítulo nterior são suficientes pr trtr os elementos léxicos de um lingugem de progrmção, o trtmento d estrutur sintáctic de um lingugem

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturs de Ddos, Análise de Algoritmos e Complexidde Estruturl Crlos Alberto Alonso Snches CT-234 7) Busc de pdrões Knuth-Morris-Prtt, Boyer-Moore, Krp-Rbin Pdrões e lfbetos Pdrões (ptterns ou

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais

2 A trigonometria no triângulo retângulo

2 A trigonometria no triângulo retângulo 16 A trigonometri no triângulo retângulo A trigonometri foi inventd á mis de dois mil nos. El onsiste, essenilmente, em ssoir d ângulo, definido omo união de um pr de semirrets de mesm origem, não ontids

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aul 7 _ Função Modulr, Eponencil e Logrítmic Professor Lucino Nóbreg FUNÇÃO MODULAR 2 Módulo (ou vlor bsolutode um número) O módulo (ou vlor bsoluto) de um número rel, que

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

Integral imprópria em R n (n = 1, 2, 3)

Integral imprópria em R n (n = 1, 2, 3) Universidde Federl do Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Integrl Imprópri Integrl imprópri em R n (n =,, 3) Autores: Angel Cássi Bizutti e Ivo Fernndez Lopez Introdução

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhrifcil.weely.com Resumo com eercícios resolvidos do ssunto: (I) (II) Teorem Fundmentl do Cálculo Integris Indefinids (I) Teorem Fundmentl do Cálculo Ness postil vmos ordr o Teorem Fundmentl do

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL RFEL RDOSO ntrodução O prinípio d proteção diferenil é de que som ds orrentes que entrm n

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

EXAME DE INGRESSO 2014 3º Período

EXAME DE INGRESSO 2014 3º Período PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ÁREA DE ENGENHARIA DE COMPUTAÇÃO (141) ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO EXAME DE INGRESSO 2014 º Período NOME: Oservções Importntes: 1. Não

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Trigonometria - Primeira Parte

Trigonometria - Primeira Parte Cpítulo 7 Trigonometri - Primeir Prte 7 Introdução Triângulo é um polígono om ângulos internos, logo ldos Podemos lssiá-los de dus mneirs: qunto os tmnhos dos ldos: equilátero - ldos de mesmo omprimento,

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações:

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações: (9) 5-0 O ELITE RESOLVE IME 0 DISURSIVS MTEMÁTI MTEMÁTI QUESTÃO 0 5 O polinômio P ( ) + 0 0 + 8 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do

Leia mais

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :... SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Coálgebras de Kleene

Coálgebras de Kleene Coálgers de Kleene Mri Teres Fernndes Clssificção ACM: F.TheoryofComputtion;F.3Logicsndmeningofprogrms; F.4 Mthemticl logic nd forml lnguges; Plvrs-chve: Teori de Computção, Teorem de Kleene, Coálger,

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c},

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c}, 8/6/7 Orgnizção Aul elções clássics e relções Fuzz Prof. Dr. Alendre d ilv imões Produto Crtesino elções Crisp Produto crtesino Forç d relção Crdinlidde Operções em relções Crisp Proprieddes de relções

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

Universidade Federal do Paraná. Notas de aula. (ainda em preparação!) Análise na Reta. Higidio Portillo Oquendo.

Universidade Federal do Paraná. Notas de aula. (ainda em preparação!) Análise na Reta. Higidio Portillo Oquendo. Universidde Federl do Prná Nots de ul (ind em preprção!) Análise n Ret Higidio Portillo Oquendo http://people.ufpr.br/ higidio Últim tulizção: de novembro de 206 Sumário Preliminres 4. Conjuntos e Funções.................................

Leia mais

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças Resumo Estruturs de Sistems Discretos Luís Clds de Oliveir lco@ist.utl.pt Instituto Superior Técnico Representções gráfics ds equções às diferençs Estruturs ásics de sistems IIR Forms trnsposts Estruturs

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais