Hierarquia de Chomsky

Tamanho: px
Começar a partir da página:

Download "Hierarquia de Chomsky"

Transcrição

1 Universidde Ctólic de Pelots Centro Politécnico Lingugens Formis e Autômtos TEXTO 1 Lingugens Regulres e Autômtos Finitos Prof. Luiz A M Plzzo Mrço de 2011 Hierrqui de Chomsky Ling. Recursivmente Enumeráveis ou do Tipo 0 Ling. Sensíveis o Contexto ou do Tipo 1 Ling. Livres de Contexto ou do Tipo 2 Lingugens Regulres ou do Tipo 3 Fig 1: Hierrqui de Chomsky (Lingüístic) O estudo ds lingugens regulres (ou lingugens do tipo 3 n Hierrqui de Chomsky, s mis simples, permitindo ordgens de pequen complexidde, grnde eficiênci e fácil implementção) pode ser orddo trvés de 3 diferentes formlismos: opercionl ou reconhecedor: Autômto Finito, que pode ser determinístico, não determinístico ou com movimento vzio. xiomático ou gerdor: Grmátic Regulr denotcionl: gerdor). Expressão Regulr (tmém pode ser considerdo

2 Sistems de Estdos Finitos Um sistem de estdos finitos é um modelo mtemático de um sistem com entrds e síds discrets. Pode ssumir um número finito e pré-definido de estdos. Cd estdo resume somente s informções do pssdo necessáris pr determinr s ções pr próxim entrd. Podem ser ssocidos diversos tipos de sistems nturis e construídos. Exemplo: Elevdor (1) Não memoriz instruções nteriores. (2) Cd estdo sumriz s informções: ndr corrente e direção do movimento. (3) As entrds pr o sistem são requisições pendentes. Outros exemplos de sistems de estdos finitos: nlisdores léxicos e processdores de texto SEF de difícil mnipulção: (1) O cérero humno, com 2 35 céluls e tmnh complexidde que est ordgem se torn ineficiente. (2) O computdor onde o estudo dequdo d computilidde exige um memóri sem limite pré-definido. 2

3 Autômtos Finitos Um utômto finito determinístico, ou simplesmente utômto finito, pode ser vist como um máquin compost sicmente por três prtes: c c Controle Figur 2: Autômto Finito como um máquin com controle finito.. Fit: Dispositivo de entrd que contém informção ser processd. A fit é finit à esquerd e à direit. É dividid em céluls onde cd um rmzen um símolo. Os símolos pertencem um lfeto de entrd. Não é possível grvr sore fit. Não existe memóri uxilir. Inicilmente plvr ser processd, isto é, informção de entrd ocup tod fit.. Unidde de Controle: Reflete o estdo corrente d máquin. Possui um unidde de leitur (ceç de leitur, que cess um unidde d fit de cd vez. Pode ssumir um número finito e pré-definido de estdos. Após cd leitur ceç move-se um célul pr direit. c. Progrm ou Função de Trnsição: Função que comnd s leiturs e define o estdo d máquin. Dependendo do estdo corrente e do símolo lido determin o novo estdo do utômto. Us-se o conceito de estdo pr rmzenr s informções necessáris à determinção do próximo estdo, um vez que não há memóri uxilir. 3

4 Definição: Autômto Finito Determinístico (AFD) Um utômto finito determinístico (AFD), ou simplesmente utômto finito M é um quíntupl: onde: Q - M = (, Q,,, F), - Alfeto de símolos de entrd Conjunto finito de estdos possíveis do utômto - Função progrm ou função de trnsição : Q x Q q 0 - Estdo inicil tl que q 0 Q F - Conjunto de estdos finis, tis que F Q. A função progrm pode ser representd como um grfo orientdo finito conforme representdo ixo: p estdo nterior símolo lido q novo estdo Figur 3: Representção d Função progrm como um grfo Figur 4: Representção dos estdos inicil e finl como nodos de um grfo O processmento de um utômto finito M pr um plvr de entrd w consiste n sucessiv plicção d função progrm pr cd símolo de w, d esquerd pr direit, té ocorrer um condição de prd. 4

5 Exemplo: Autômto Finito O utômto finito M 1 = ({, }, {q 0, q 1, q 2, q f }, 1, q 0, {q f }), onde representd pel tel ixo, reconhece lingugem 1 é L1 = {w w possui ou como suplvr} 1 q1 q2 q1 q1 q2 q2 q1 q2, Figur 5: Grfo do utômto finito determinístico O lgoritmo presentdo us os estdos q1 e q2 pr memorizr o símolo nterior. Assim q1 represent o símolo nterior é e q2 represent o símolo nterior é. Após identificr dois ou dois consecutivos o utômto ssume o estdo (finl) e vrre o sufixo d plvr de entrd sem 5

6 qulquer controle lógico, somente pr terminr o processmento. A figur 2.5 ilustr o processmento do utômto finito M1 pr plvr de entrd w =, qul é ceit f f Figur 6: Seqüênci de processmento Note-se que um utômto finito sempre pár o processr qulquer entrd, pois como tod plvr é finit e como um novo símolo de entrd é lido cd plicção d função progrm, não existe possiilidde de ciclo (loop) infinito. A prd do processmento pode ocorrer de dus mneirs: ceitndo ou rejeitndo um entrd w. As condições de prd são s seguintes:. Após processr o último símolo d fit o utômto finito ssume um estdo finl. O utômto pr e entrd w é ceit.. Após processr o último símolo d fit, o utômto finito ssume um estdo não-finl. O utômto pr e entrd w é rejeitd c. A função progrm é indefinid pr o rgumento (estdo corrente e símolo lido). O utômto pr e entrd w é rejeitd. Pr definir formlmente o comportmento de um utômto finito (ou sej, dr semântic à sintxe de um utômto finito) é necessário estender definição d função progrm, usndo como rgumento um estdo e um plvr. Exercício Desenvolver AFDs que reconheçm s seguintes lingugens sore ) {w w possui como suplvr} = {, }: 6

7 ) {w o sufixo de w é } c) {w w possui um número ímpr de e } d) {w w possui número pr de e ímpr de ou vice-vers} e) {w o quinto símolo d esquerd pr direit de w é } Definição: Função Progrm Estendid Sej M = (, Q,,, F) um AFD. A função progrm estendid, denotd por: : Q x * Q é função progrm : Q x Q, estendid pr plvrs, e é indutivmente definid como se segue: (q, ) = q (q, w) = ( (q, ), w) Exemplo: Função Progrm Estendid Sej o AFD M1 = ({, }, {,q1,q2,}, 1,, {}), definid no exemplo nterior. Então função progrm estendid plicd à plvr prtir do estdo inicil é como se segue: (, ) = função estendid sore ( (, ), ) = process (q1, ) = função estendid sore ( (q1, ), ) = process (q2, ) = função estendid sore ( (q2, ), ) = process (q1, ) = função estendid sore ( (q1, ), ) = process (, ) = função estendid sore. Fim d indução. A plvr é ceit. Comentários Por simplicidde tnto qunto serão denotds simplesmente por. 7

8 A lingugem ceit por um utômto finito M = (, Q,,, F) denotd por ACEITA(M), ou L(M), é o conjunto de tods s plvrs pertencentes * que são ceits por M, ou sej: ACEITA(M) - {w (, w) F}. Anlogmente, REJEITA(M) é o conjunto de tods s plvrs pertencentes * que são rejeitds por M. As seguintes firmções são verddeirs. A intersecção dos conjuntos ACEITA(M) e REJEITA(M) é vzio.. A união dos conjuntos ACEITA(M) e REJEITA(M) é *. c. REJEITA(M) é o complemento de ACEITA(M) em * d. ACEITA(M) é o complemento de REJEITA(M) em * Definição: Equivlênci de Autômtos Finitos Dois utômtos M1 e M2 são equivlentes se e somente se: ACEITA(M1) = ACEITA(M2) Definição: Lingugens Regulres ou do Tipo 3 Um lingugem ceit por um utômto finito é um Lingugem Regulr ou do Tipo 3. Exemplo: Autômto Finito Os utômtos M2 = ({,}, {}, 2,, ) e M3 = ({, }, {}, 3,, {}) reconhecem respectivmente s lingugens L1 = e L2 = *, onde 2 e 3 são representds ixo em form de tel. M2 2 M3 3 M2 M3,, 8

9 Exemplo: Autômto Finito O utômto M4 = ({, }, {, q1, q2, q3}, lingugem:,, {}), reconhece L4 = {w w possui um número pr de e } M4 q1 q2 q3 9

10 Autômto Finito Não-Determinístico (AFN) Não-determinismo é um importnte generlizção dos AF s, essencil pr teori d computção e pr teori ds lingugens formis. Qulquer AFN pode ser simuldo por um utômto finito determinístico q p0 p1... pn Em AFNs, função progrm lev de um pr estdo-símolo um conjunto de estdos possíveis. Pode-se entender que o AFN ssume simultnemente tods s lterntivs.de estdos possíveis {p0, p1,..., pn} prtir do estdo tul (q Q) e do símolo receido ( ), como se houvesse um unidde de controle pr processr cd lterntiv independentemente, sem comprtilhr recursos com s demis. Assim o processmento de um cminho não influi no estdo, símolo lido e posição d ceç dos demis cminhos lterntivos. 10

11 Definição: Autômto Finito Não-Determinístico (AFN) Um AFN é um quíntupl M = (, Q,,, F), onde: - Alfeto de símolos de entrd Q - Conjunto finito de estdos possíveis do utômto - Função progrm ou função de trnsição : Q x 2 Q, prcil. q 0 - Estdo inicil tl que q 0 Q F - Conjunto de estdos finis, tis que F Q. Portnto os componentes do AFN são os mesmos do AFD, com exceção d função progrm (ver figur nterior). O processmento de um AFN M pr um conjunto de estdos o ler um símolo, é união dos resultdos d função progrm plicd cd estdo lterntivo. Definição: Função Progrm Estendid Sej M = (, Q,,, F) um AFN. A função progrm estendid, denotd por: : 2 Q x * 2 Q é função progrm : Qx 2 Q, estendid pr plvrs, e é indutivmente definid como se segue: (P, ) = P (P, w) = ( q P (q, ), w) Assim, tem-se que, pr um conjunto de estdos {q1, q2,..., qn} e pr um símolo : ({q1, q2,..., qn}, ) = (q1, ) (q2, )... (qn, ) 11

12 Por simplicidde tnto qunto serão denotds simplesmente por. A lingugem ceit por um AFN M = (, Q,,, F) denotd por ACEITA(M), ou L(M), é o conjunto de tods s plvrs pertencentes * tis que existe pelo menos um cminho lterntivo que ceit plvr, ou sej: ACEITA(M) = {w existe q (, w) tl que q F}. Anlogmente, REJEITA(M) é o conjunto de tods s plvrs de * que são rejeitds por todos os cminhos lterntivos de M prtir de. Exemplo: Autômto Finito Não-Determinístico O AFN M5 = ({, }, {, q1, q2, }, 5,, {}), reconhece lingugem L5 = {w w possui ou como su-plvr}, onde 5 é dd ixo, n form de tel: 5 q1 q2 {, q1} {} - {} {, q2} - {} {}, q1 q2, 12

13 Exemplo: Autômto Finito Não-Determinístico: O AFN M6 = ({,}, {, q1, q2, }, 6,, {}), representdo n figur ixo reconhece lingugem L6 = { w w possui como sufixo } q1 q2, Teorem: Equivlênci entre AFD e AFN A clsse dos AFD é equivlente à clsse dos AFN. A prov consiste em mostrr que pr todo AFN M é possível construir um AFD M que reliz o mesmo processmento, ou sej, M simul M. A demonstrção present um lgoritmo pr converter um AFN qulquer em um AFD equivlente. A idéi centrl do lgoritmo é construção de estdos de M que simulem s diverss cominções de estdos de M. A trnsformção contrári - construir um AFN prtir de um AFD - não necessit ser demonstrd, um vez que decorre trivilmente ds definições (Por quê? Porque função progrm do AFN contém função progrm do AFD). Sej M = (, Q,,, F) um AFN qulquer e sej M = (, Q,, <>, F ) um AFD construído prtir de M como se segue: Q : Conjunto de tods s cominções, sem repetições, de estdos de Q, s quis são denotds por <q1q2...qn> onde qi Q pr i em {1, 2,..., n}. Note-se que ordem dos elementos não identific mis cominções. Por exemplo: <quqv> = <qvqu>. : Tl que (<q1...qn>, ) = <p1...pm> sss ({q1,..., qn}, ) = {p1,..., pm}, ou sej, um estdo de M represent um imgem de todos os estdos lterntivos de M. <>: Estdo inicil. F : Conjunto de todos os estdos <q1q2...qn> Q tl que lgum componente qi F, pr i {1, 2,..., n}. 13

14 PROVA: A demonstrção de que o AFD M simul o processmento do AFN M é dd por indução sore o tmnho d plvr. Deve-se provr que, pr um plvr qulquer w de : (<>, w) = <q1...qu> sse (A prov está no livro, n págin 50). ({}, w) = {q1,..., qu} Exemplo: Construção de um AFD prtir de um AFN. Sej o AFN M6 = ({,}, {, q1, q2, }, 6,, {}), ddo no exemplo nterior e representdo ixo: q1 q2, O AFD M6 = ({, }, Q,, <>, F ), construído conforme o lgoritmo ddo é: p0 p1 p2 pf onde: Q = {<>,<q1>,<q2>,<>,<q1>,<q2>,...,<q1q2>} F = {<>,<>,<q1>,...,<q1q2>} 6 = É tl conforme os vlores ddos n tel ixo: 6 <> <q1> <> <q1> <q1q2> <> <q1q2> <q1q2> <> <q1q2> <q1q2> <> No grfo que represent M6, cim, p0, p1, p2 e pf denotm respectivente <>, <q1>, <q1q2>, <q1q2>. 14

15 Autômto Finito com Movimento Vzio Movimentos vzios constituem um generlizção dos AFN e são trnsições que ocorrem sem que hj leitur de símolo lgum Os movimentos vzios podem ser interpretdos como um não-determinismo interno do utômto, que é encpsuldo. A não ser por um eventul mudnç de estdos, nd mis pode ser oservdo sore um movimento vzio.. Qulquer AF pode ser simuldo por um utômto finito não-determinístico Definição: Autômto Finito com Movimento Vzio (AF ) Um utômto finito não-determinístico e com movimento vzio (AFN ), ou simplesmente utômto finito com movimento vzio (AF ), é um quíntupl: onde: Q - M = (, Q,,, F), - Alfeto de símolos de entrd Conjunto finito de estdos possíveis do utômto - Função progrm ou função de trnsição : Q x ( { }) 2 Q, prcil. q 0 - Estdo inicil tl que q 0 Q F - Conjunto de estdos finis, tis que F Q. Portnto os componentes do AF são os mesmos do AFN, com exceção d função progrm (ver figur ixo). q n 1 p0 p1... pn O processmento dos AF é similr o dos AFN. Por nlogi o processmento de um trnsição pr um entrd vzi tmém é não-determinístic. Assim um AF o processr um entrd vzi ssume simultnemente os estdos de origem e destino d trnsição. 15

16 Exemplo: Autômto Finito com Movimento Vzio O AF M7 = ({,}, {, }, 7,, {}), representdo n figur ixo reconhece lingugem L7 = { w qulquer símolo ntecede qulquer símolo }, onde 7 é representd n form d tel: 7 {} - {} - {} - e 16

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular.

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular. Lingugens Formis Nom Chomsky definiu que s lingugens nturis podem ser clssificds em clsses de lingugens. egundo Hierrqui de Chomsky, s lingugens podem ser dividids em qutro clsses, sendo els: Regulres

Leia mais

Apostila 02 - Linguagens Regulares Exercícios

Apostila 02 - Linguagens Regulares Exercícios Cursos: Bchreldo em Ciênci d Computção e Bchreldo em Sistems de Informção Disciplins: (1493A) Teori d Computção e Lingugens Formis, (4623A) Teori d Computção e Lingugens Formis e (1601A) Teori d Computção

Leia mais

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação LFA - PARTE 1 Lingugens Regulres e Autômtos de Estdos Finitos Um Modelo Frco de Computção João Luís Grci Ros LFA-FEC-PUC-Cmpins 2002 R. Gregory Tylor: http://strse.cs.trincoll.edu/~rtylor/thcomp/ 1 Lingugens

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000) Teori d Computção Unidde 3 Máquins Universis (cont.) Referênci Teori d Computção (Divério, 2000) 1 Máquin com Pilhs Diferenci-se ds MT e MP pelo fto de possuir memóri de entrd seprd ds memóris de trblho

Leia mais

Gramáticas Regulares. Capítulo Gramáticas regulares

Gramáticas Regulares. Capítulo Gramáticas regulares Cpítulo Grmátics Regulres Ests nots são um complemento do livro e destinm-se representr lguns lgoritmos estuddos ns uls teórics. É ddo um exemplo de plicção de cd conceito. Mis exemplos form discutidos

Leia mais

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens:

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens: BCC244-Teori d Computção Prof. Lucíli Figueiredo List de Exercícios DECOM ICEB - UFOP Lingugens. Liste os strings de cd um ds seguintes lingugens: ) = {λ} ) + + = c) {λ} {λ} = {λ} d) {λ} + {λ} + = {λ}

Leia mais

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução Dep. Mtemátic e Aplicções 27 de Aril de 2011 Universidde do Minho 1 o Teste de Teori ds Lingugens Lic. Ciêncis Computção Propost de resolução 1. Considere lingugem L = A sore o lfeto A = {,}. Durção: 2

Leia mais

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10. Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,

Leia mais

Modelos de Computação Folha de trabalho n. 3

Modelos de Computação Folha de trabalho n. 3 Modelos de Computção Folh de trlho n. 3 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

Autômato Finito. Autômato Finito Determinístico. Autômato Finito Determinístico

Autômato Finito. Autômato Finito Determinístico. Autômato Finito Determinístico Autômto Finito Prof. Yndre Mldondo - 1 Prof. Yndre Mldondo e Gomes d Cost yndre@din.uem.r Autômto Finito Determinístico Prof. Yndre Mldondo - 2 AFD - modelo mtemático p/ definição de lingugem Cráter reconhecedor

Leia mais

Autômato Finito. Prof. Yandre Maldonado e Gomes da Costa. Prof. Yandre Maldonado - 1

Autômato Finito. Prof. Yandre Maldonado e Gomes da Costa. Prof. Yandre Maldonado - 1 Autômto Finito Prof. Yndre Mldondo - 1 Prof. Yndre Mldondo e Gomes d Cost yndre@din.uem.r Autômto Finito Determinístico Prof. Yndre Mldondo - 2 AFD - modelo mtemático p/ definição de lingugem Cráter reconhecedor

Leia mais

Exemplos de autómatos finitos

Exemplos de autómatos finitos Exemplos de utómtos finitos s s 2 reconhece lingugem: {x {, } x termin em e não têm s consecutivos} s s 2 reconhece lingugem {x x {, } e tem como suplvr} Deprtmento de Ciênci de Computdores d FCUP MC Aul

Leia mais

Modelos de Computação -Folha de trabalho n. 2

Modelos de Computação -Folha de trabalho n. 2 Modelos de Computção -Folh de trlho n. 2 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação Pontifíci Universidde Ctólic de Cmpins Centro de Ciêncis Exts, Ambientis e de Tecnologis Fculdde de Engenhri de Computção LINGUAGENS FORMAIS E AUTÔMATOS List de Exercícios 1 1. Que lingugem grmátic ger?

Leia mais

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto Construção de Compildores Cpítulo 2 Análise Léxic José Romildo Mlquis Deprtmento de Computção Universidde Federl de Ouro Preto 2014.1 1/23 1 Análise Léxic 2/23 Tópicos 1 Análise Léxic 3/23 Análise léxic

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Lingugens Formis e Autômtos - 0 emestre 2006 Professor : ndr Aprecid de Amo List de Exercícios n o - 4/08/2006 Observção : os exercícios

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) Lingugens Formis e Autômtos (LFA) Aul de 11/09/2013 Conjuntos Regulres, Expressões Regulres, Grmátics Regulres e Autômtos Finitos 1 Conjuntos Regulres Conjuntos regulres sobre um lfbeto finito são LINGUAGENS

Leia mais

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos 6. Autómtos Mínimos 6 Autómtos mínimos Dd um lingugem regulr L, muitos são os utómtos determinísticos que representm. Sej A L o conjunto dos utómtos tis que (8A)(A 2A L =) L(A) =L). Os utómtos de A L não

Leia mais

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1 DCC-UFRJ Lingugens Formis Primeir Prov 28/. Constru um utômto finito determinístico que ceite lingugem L = {w ( ) w contém pelos menos dois zeros e no máximo um }. 2. Use o lgoritmo de substituição pr

Leia mais

3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε)

3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε) TRANSIÇÕES POR (AFND-) 43 3.3 Autómtos finitos não determinísticos com trnsições por (AFND-) Vmos gor considerr utómtos finitos que podem mudr de estdo sem consumir qulquer símbolo, isto é, são utómtos

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

Compiladores ANÁLISE LEXICAL.

Compiladores ANÁLISE LEXICAL. Compildores ANÁLISE LEXICAL www.pedrofreire.com Este documento tem lguns direitos reservdos: Atriuição-Uso Não-Comercil-Não Ors Derivds 2.5 Portugl http://cretivecommons.org/licenses/y-nc-nd/2.5/pt/ Isto

Leia mais

Autômatos determinísticos grandes

Autômatos determinísticos grandes Autômtos determinísticos grndes Arnldo Mndel 27 de outubro de 2009 A construção dos subconjuntos implic n seguinte firmtiv: se um lingugem é reconhecid por um utômto não-determinístico com n estdos, então

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 4 Proprieddes ds Lingugens Regulres Estmos no momento de colocr seguinte questão: quão gerl são s lingugens regulres? Seri tod lingugem forml regulr? Tlvez qulquer conjunto que possmos especificr

Leia mais

I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS

I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS Lingugens Formis e Autômtos João Luís Grci Ros 2005 I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS 1.1. A Primeir Lingugem A teori modern ds lingugens formis vem de dus fontes: crcterizção precis d estrutur

Leia mais

Última atualização 03/09/2009

Última atualização 03/09/2009 FACIN-PPGCC 2 1. PANO DE FUNDO Sumário 2. LINGUAGENS Teori d Computilidde Prte I - Teori de Autômtos 3. DEFINIÇÕES RECURSIVAS 4. EXPRESSÕES REGULARES 5. AUTÔMATOS FINITOS Ney Lert Vilr Clzns & Avelino

Leia mais

<S> ::= <L><C> <L> ::= l <C> ::= l<c> n<c> n l λ. L(G 1 ) = {a n b 2m n>0 m 0} L(G 2 ) = {lw w {l, n} * } L(G 3 ) = {a n b 2m n>0 m 0}

<S> ::= <L><C> <L> ::= l <C> ::= l<c> n<c> n l λ. L(G 1 ) = {a n b 2m n>0 m 0} L(G 2 ) = {lw w {l, n} * } L(G 3 ) = {a n b 2m n>0 m 0} 1) Dds s seguintes grmátics: UNIVERIDADE ETADUAL DE MARINGÁ UEM ENTRO DE TENOLOGIA T DEPARTAMENTO DE INFORMÁTIA DIN BAHARELADO EM INFORMÁTIA DIIPLINA: LINGUAGEN FORMAI E AUTÔMATO PROFEOR: YANDRE MALDONADO

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

O Autômato Adaptativo como Modelo de Computação e sua Aplicação em Reconhecimento de Padrões*

O Autômato Adaptativo como Modelo de Computação e sua Aplicação em Reconhecimento de Padrões* O utômto dpttivo como Modelo de Computção e su plicção em econhecimento de Pdrões* I WOPEC Workshop de Pesquis em Engenhri e Computção mury ntônio de Cstro Junior mury@ec.ucd.r Orientdor: Prof. Dr. João

Leia mais

Aula 5: Autômatos Finitos Remoção de Não-Determinismo

Aula 5: Autômatos Finitos Remoção de Não-Determinismo Teori d Computção Primeiro Semestre, 25 DAINF-UTFPR Aul 5: Autômtos Finitos 3 Prof. Rirdo Dutr d Silv 5. Remoção de Não-Determinismo As lsses de utômtos definids nteriormente são tods equivlentes. Vmos

Leia mais

Draft-v Autómatos finitos. 4.1 Autómatos finitos determinísticos

Draft-v Autómatos finitos. 4.1 Autómatos finitos determinísticos 4 Autómtos finitos Neste cpítulo vmos introduzir outrs estruturs que permitem crcterizr s lingugens regulres. A principl vntgem, dests novs estruturs, sore representção com expressões regulres é de terem,

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

CAPÍTULO 2 AUTÓMATOS FINITOS

CAPÍTULO 2 AUTÓMATOS FINITOS Teori d Computção Cpítulo 2. Autómtos Finitos CAPÍTULO 2 AUTÓMATOS FINITOS 2.. Introdução 45 2.2.Aceitdores determinísticos 46 2.3. A rte de construir DFA s 59 2.4. Lingugens regulres 75 2.5. Autómtos

Leia mais

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos Licencitur em Engenhri Informátic DEI/ISEP Lingugens de Progrmção 26/7 Fich 4 Autómtos Finitos Determinísticos Ojectivos: Vlidção de plvrs utilizndo Autómtos Finitos; Conversão de utómtos finitos não determinísticos

Leia mais

FACIN-PPGCC. Teoria da Computabilidade Parte II - Autômatos de Pilha e Máquinas de Turing. Sumário. Ney Laert Vilar Calazans. 12.

FACIN-PPGCC. Teoria da Computabilidade Parte II - Autômatos de Pilha e Máquinas de Turing. Sumário. Ney Laert Vilar Calazans. 12. FACIN-PPGCC Teori d Computbilidde Prte II - Autômtos de Pilh e Máquins de Turing Ney Lert Vilr Clzns clzns@inf.pucrs.br 2 Sumário 12. GRAMÁTICAS LIVRES DO CONTEXTO 14. AUTÔMATOS DE PILHA 19. MÁQUINAS DE

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) PU-Rio Lingugens Formis e Autômtos (LFA) omplemento d Aul de 21/08/2013 Grmátics, eus Tipos, Algums Proprieddes e Hierrqui de homsky lrisse. de ouz, 2013 1 PU-Rio Dic pr responder Pergunts finis d ul lrisse.

Leia mais

SISTEMAS DIGITAIS (SD)

SISTEMAS DIGITAIS (SD) SISTEMAS DIGITAIS (SD) MEEC Acettos ds Auls Teórics Versão 20 - Português Aul N o 03: Título: Sumário: Álger de Boole Álger de Boole (operções ásics, proprieddes, ports lógics); Leis de DeMorgn (simplificção

Leia mais

Métodos Varacionais aplicados ao modelamento de Descontinuidades em Guia em dois planos

Métodos Varacionais aplicados ao modelamento de Descontinuidades em Guia em dois planos . Métodos Vrcionis plicdos o modelmento de Descontinuiddes em Gui em dois plnos. Introdução Conforme esperdo, os resultdos presentdos no Cpítulo 9 mostrrm s fortes limitções do modelo simplificdo de impedânci.

Leia mais

Análise Sintáctica Descendente

Análise Sintáctica Descendente Cpítulo 4 nálise intáctic Descendente Os utomátos finitos presentdos no cpítulo nterior são suficientes pr trtr os elementos léxicos de um lingugem de progrmção, o trtmento d estrutur sintáctic de um lingugem

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto Lingugens ormis Cpítulo 5: Lingugens e grmátics livres de contexto José Lucs Rngel, mio 1999 5.1 - Introdução Vimos no cpítulo 3 definição de grmátic livre de contexto (glc) e de lingugem livre de contexto

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês CAL (00-0) MIEIC/FEUP Algoritmos em Grfos (0-0-0) Algoritmos em Grfos: Circuitos de Euler e Prolem do Crteiro Chinês R. Rossetti, A.P. Roch, A. Pereir, P.B. Silv, T. Fernndes FEUP, MIEIC, CPAL, 00/0 Circuitos

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Linguagens Regulares. Prof. Daniel Oliveira

Linguagens Regulares. Prof. Daniel Oliveira Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões

Leia mais

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Progrmção II Ordenção (sort) Bruno Feijó Dept. de Informátic, PUC-Rio Bule Sort Bule Sort Apens de interesse didático e de referênci A idéi é ir comprndo dois vizinhos e trocndo o menor pelo mior té que

Leia mais

AA4J: uma biblioteca para implementação de autômatos adaptativos

AA4J: uma biblioteca para implementação de autômatos adaptativos 1 AA4J: um iliotec pr implementção de utômtos dpttivos P. R. M. Cered e J. José Neto Astrct Este rtigo present um iliotec pr implementção de utômtos dpttivos, utilizndo lingugem Jv, de form consistente

Leia mais

Unidimensional pois possui apenas uma única dimensão

Unidimensional pois possui apenas uma única dimensão Vetores e Mtrizes José Augusto Brnusks Deprtmento de Físic e Mtemátic FFCLRP-USP Sl 6 Bloco P Fone (6) 60-6 Nest ul veremos estruturs de ddos homogênes: vetores (ou rrys) e mtrizes Esss estruturs de ddos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

LINGUAGEM DE PROGRAMAÇÃO ESTRUTURADA CAPÍTULO 6 ARRAYS (VETORES E MATRIZES)

LINGUAGEM DE PROGRAMAÇÃO ESTRUTURADA CAPÍTULO 6 ARRAYS (VETORES E MATRIZES) LINGUGEM DE PROGRMÇÃO ESTRUTURD CPÍTULO 6 RRYS VETORES E MTRIZES trdução do termo rry pr língu portugues seri rrnjo. Em progrmção, empreg-se este termo pr representção de um vriável com diversos elementos

Leia mais

1 A Integral de Riemann

1 A Integral de Riemann Medid e Integrção. Deprtmento de Físic e Mtemátic. USP-RP. Prof. Rfel A. Rosles 22 de mio de 27. As seguintes nots presentm lgums limitções d integrl de Riemnn com o propósito de justificr construção d

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

Capítulo 3. Autómatos e respectivas linguagens

Capítulo 3. Autómatos e respectivas linguagens Cpítulo 3. Neste estudo, os utómtos serão considerdos principlmente como dispositivos de ceitção d lingugem, e respectiv estrutur intern será discutid pens n medid em que se relcione com lingugem ceite.

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ;

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ; TÍTULO: NÚMEROS COMPLEXOS INTRODUÇÃO: Os números complexos form desenvolvidos pelo mtemático K Guss, prtir dos estudos d trnsformção de Lplce, com o único ojetivo de solucionr prolems em circuitos elétricos

Leia mais

DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS: UMA ABORDAGEM UTILIZANDO REDES DE PETRI

DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS: UMA ABORDAGEM UTILIZANDO REDES DE PETRI DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS: UMA ABORDAGEM UTILIZANDO REDES DE PETRI Felipe Gomes de Oliveir Cbrl Dissertção de Mestrdo presentd o Progrm

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação

Leia mais

Sistemas Digitais (SD) Álgebra de Boole

Sistemas Digitais (SD) Álgebra de Boole Sistems Digitis (SD) Álgebr de Boole Aul Anterior N ul nterior: Sistems de numerção Bse 10 Bse 2 Bse 8 e 16 Operções ritmétics básics Mudnç de sistem de numerção Códigos Prof Nuno Rom Sistems Digitis 2012/13

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturs de Ddos, Análise de Algoritmos e Complexidde Estruturl Crlos Alberto Alonso Snches CT-234 7) Busc de pdrões Knuth-Morris-Prtt, Boyer-Moore, Krp-Rbin Pdrões e lfbetos Pdrões (ptterns ou

Leia mais

EXAME DE INGRESSO 2014 3º Período

EXAME DE INGRESSO 2014 3º Período PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ÁREA DE ENGENHARIA DE COMPUTAÇÃO (141) ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO EXAME DE INGRESSO 2014 º Período NOME: Oservções Importntes: 1. Não

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Aula 6: Determinantes

Aula 6: Determinantes Aul 6: Determinntes GAN-Álg iner- G 8 Prof An Mri uz F do Amrl Determinntes Relembrndo Vimos que: Se A é x e det(a) então existe A - ; Se existe A - então o sistem liner Axb tem solução únic (x A - b)

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Exercícios de Revisão Edgard Jamhour. Terceiro Bimestre: MPLS

Exercícios de Revisão Edgard Jamhour. Terceiro Bimestre: MPLS Exercícios de Revisão Edgrd Jmhour Terceiro Bimestre: MPLS Cenário 1: Considere o seguinte cenário MPLS FEC A FEC B LER1 LER2 L:1000 c L:2000 L:1001 LSR2 LSR1 d LSR3 L:1002 L:2001 L:2002 LER3 c FEC C Cenário

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

UMA REDE DE PETRI DIAGNOSTICADORA PARA SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS. Felipe Gomes de Oliveira Cabral

UMA REDE DE PETRI DIAGNOSTICADORA PARA SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS. Felipe Gomes de Oliveira Cabral UMA REDE DE PETRI DIAGNOSTICADORA PARA SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS Felipe Gomes de Oliveir Cbrl Projeto de Grdução presentdo o Curso de Engenhri Elétric d Escol Politécnic,

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

TEORIA GEOMÉTRICA DE GRUPOS. Pedro V. Silva

TEORIA GEOMÉTRICA DE GRUPOS. Pedro V. Silva TEORIA GEOMÉTRICA DE GRUPOS Curso de pré-doutordo, Universidde Federl d Bhi 2014 Pedro V. Silv Neste curso, fremos um digressão por lguns dos grndes desenvolvimentos que teori de grupos sofreu nos últimos

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação Método SIMPLEX Mrcone Jmilson Freits Souz Deprtmento de Computção Progrm de Pós-Grdução em Ciênci d Computção Universidde Federl de Ouro Preto http://www.decom.ufop.br/prof/mrcone E-mil: mrcone@iceb.ufop.br

Leia mais

Prof. Rômulo Silva. Teoria. Computação. Maio/2007

Prof. Rômulo Silva. Teoria. Computação. Maio/2007 Prof. Rômulo Silv Teori d Computção Mio/2007 1 Prof. Rômulo Silv Ojetivo dest postil Est postil foi desenvolvid om o ojetivo de filitr o entendimento d Teori d Computção, priniplmente no que se refere

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Fich de Trlho Álger - Rdicis Mtemátic - 0 o no Fich de Trlho Álger - Rdicis Grupo I. Sejm e dois números nturis diferentes que tis que x =. onclui-se então que x pode ser ddo por qul ds expressões ixo?

Leia mais

operation a b result operation a b MUX result sum i2 cin cout cout cin

operation a b result operation a b MUX result sum i2 cin cout cout cin Módulo 5 Descrição e simulção em VHDL: ALU do MIPS Ojectivos Pretende-se que o luno descrev, n lingugem VHDL, circuitos comintórios reltivmente complexos, usndo, pr esse efeito, lguns mecnismos d lingugem

Leia mais

Coálgebras de Kleene

Coálgebras de Kleene Coálgers de Kleene Mri Teres Fernndes Clssificção ACM: F.TheoryofComputtion;F.3Logicsndmeningofprogrms; F.4 Mthemticl logic nd forml lnguges; Plvrs-chve: Teori de Computção, Teorem de Kleene, Coálger,

Leia mais

Análise Sintática I: Analisadores Descendentes com Retrocesso

Análise Sintática I: Analisadores Descendentes com Retrocesso Análise intátic I: Anlisdores Descendentes com Retrocesso Definição A nálise sintátic é o processo de determinr se um cdei de átomos (tokens), isto é, o progrm já nlisdo pelo nlisdor léxico, pode ser gerdo

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Analisadores Sintáticos. Análise Recursiva com Retrocesso. Análise Recursiva Preditiva. Análise Recursiva Preditiva 05/04/2010

Analisadores Sintáticos. Análise Recursiva com Retrocesso. Análise Recursiva Preditiva. Análise Recursiva Preditiva 05/04/2010 Anlisdores intáticos Análise Descendente (Top-down) Anlisdores sintáticos descendentes: Recursivo com retrocesso (bcktrcking) Recursivo preditivo Tbulr preditivo Análise Redutiv (Bottom-up) Anlisdores

Leia mais