Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação

Tamanho: px
Começar a partir da página:

Download "Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação"

Transcrição

1 LFA - PARTE 1 Lingugens Regulres e Autômtos de Estdos Finitos Um Modelo Frco de Computção João Luís Grci Ros LFA-FEC-PUC-Cmpins 2002 R. Gregory Tylor: 1 Lingugens Formis lfeto X = {, } plvr sore X (exemplos,,, ) comprimento w d plvr w plvr vzi ou plvr nul λ: λ = pr n () = 2 e n () = 1 2 Lingugens Formis (cont.) X* pr o conjunto de tods s plvrs sore X Lingugens = suconjuntos de X* L = {w X*: w = 3} = {,,,,,,, } L = {w X*: w é pr} = {λ,,,,,,,...} 3 1

2 Csos Especiis Lingugem vzi Lingugem unidde L = {} 4 Expressões Regulres Denotm Lingugens * denot lingugem { n n 0} ().() ou pens denot lingugem unidde {} ** denot { n m n, m 0} 2 3 denot {} n não é expressão regulr + denot { n n 1} 5 Expressões Regulres (cont.) denot {, } Definição indutiv é expressão regulr (sore X) e denot lingugem λ é expressão regulr (sore X) e denot lingugem {λ}. 6 2

3 Lingugens Formis (revisão) X* pr o conjunto de tods s plvrs sore X Lingugens = suconjuntos de X* Operções de formção de lingugens L 1 L 2 L 1. L 2 L * 1 (fechmento de Kleene) 7 Lingugens Regulres Sej L um lingugem sore o lfeto X, i.e., L X*. Então L é lingugem regulr se L é denotd por lgum expressão regulr sore X X é o lfeto finito e L 1 e L 2 são lingugens regulres sore X. Então L 1 L 2, L 1.L 2, e L 1 * são tmém regulres 8 Lemre-se X é lfeto finito e w é qulquer plvr sore X. Então lingugem unidde {w} é regulr. Qulquer lingugem finit sore X é regulr. 9 3

4 Autômtos de Estdos Finitos Determinístico q 0 q 1 q 2 Figure 9.2.1() 10 Outro Exemplo strt Figure 9.2.1() 11 Determinismo Determinismo signific que, dentro de qulquer digrm de estdos pr o AEF, o cminho rotuldo pel plvr dd w é único: pr plvr w X*, há extmente um cminho começndo em q 0 rotuldo por w 12 4

5 Funções de Trnsição Figure 9.2.1(c) 13 Definição Forml AEF é um quíntupl X, Q, q 0, F, δ Μ X é o lfeto de entrd Q é o conjunto finito de estdos, não vzio q 0 Q é o estdo inicil F Q é um (possivelmente vzio) conjunto de estdos de ceitção ou terminis δ Μ : Q X Q é função de trnsição (totl) 14 Aceitção d Plvr O utômto de estdos finitos determinístico M ceit plvr w X* se um único cminho começndo em q 0 e rotuldo por w lev lgum elemento de F, i.e., lgum estdo de ceitção de M. 15 5

6 Aceitção d Lingugem A lingugem ceit por M é o conjunto de tods e pens s plvrs sore X que são ceits por M. L(M) é lingugem ceit por M. AEFs são ceitdores de lingugens 16 Um Máquin Não Determinístic q 1 q 2 q 0 q 4 q 3 Figure Não Determinismo δ Μ : Q X Q é um mpemento de trnsição Assumid como totl ( completmente definid ) ms permitid ser multivlord 18 6

7 Aceitção d Plvr A plvr w X* ceit por M provê que existe pelo menos um cminho, rotuldo por w, no digrm de estdos de M levndo de q 0 pr um estdo terminl Compre com o cso determinístico 19 Aceitção d Lingugem A lingugem ceit por um utômto de estdos finitos não determinístico AND é o conjunto de plvrs ceits por M. 20 O Projeto Não Determinístico é Freqüentemente Mis Fácil q 1 q 0 q 3 Figure This nondeterministic finitestte utomton ccepts the lnguge denoted y regulr expression * ((*) + ) q 2 *((*) +) 21 7

8 Met Suponh um ddo AND não determinístico M que ceit L. Apresent-se um lgoritmo pr construir, sedo em M, um novo AEF determinístico M que ceit L 22 Construção de Suconjuntos Estdos do AND não determinístico M corresponderão conjuntos de estdos não vzios do AEF determinístico M Como q 0 é o estdo inicil de M, use {q 0 } como estdo inicil de M. Estdos de ceitção de M serão os conjuntos de estdos que contêm pelo menos um estdo de ceitção de M. 23 Algoritmo Pr o conjunto inicil {q 0 }, verifique quis trnsições prtir de q 0 há em M e crie um novo estdo composto pelo conjunto de estdos destinos ds trnsições pr cd símolo terminl. Repit pr cd novo estdo crido, té que não hj mis estdos novos. 24 8

9 Teorem de Kleene Sej M um utômto não determinístico (AND) que ceit L. Então existe um utômto de estdos finitos determinístico (AEF) M que tmém ceit L. 25 Teorem Qulquer lingugem finit é AEF-ceitável Exemplo L = {,, } 26 Lem do Bomemento pr Lingugens AEF-Aceitáveis Prece que L = { n n n 0} não é ceit por nenhum AEF (rgumento intuitivo) Ms isto pode ser demonstrdo? Conseqüênci do Lem do Bomemento 27 9

10 Lem do Bomemento Suponh que L é AEF-ceitável e infinit. Então há plvrs u, w e v com w λ tl que uw i v está em L pr todo i 0 Escreve-se w i pr o resultdo d conctenção d plvr w consigo mesm i vezes (iterção) 28 Prov Figure pth leled y w q 0... d... q t pth leled y u pth leled y v 29 Teorem L = { n n n > 0} não é ceit por nenhum utômto de estdos finitos Aplicção do Lem do Bomemento 30 10

11 Prov Indiret Suponh que L é AEF-ceitável por contrdição. 3 possiiliddes: w consiste de pens s O omemento de w lev à contrdição (s demis) 31 Prov (Apens Outrs Possiiliddes) w consiste pens de s Como o primeiro cso (Dest vez o omemento lev s demis) w consiste de s seguido de s 32 Rótulos Vzios A execução de rcos rotuldos por λ não vnçm entrd Arcos-λ podem ou não introduzir não determinismo 33 11

12 Exemplo λ e 0 1 λ e 2 c c c 3 c This FSA ccepts the lnguge L(**c* ). (**c*) Figure Resultdo de Equivlênci Sej M um utômto de estdos finitos com movimentos λ. Então existe um utômto de estdos finitos M com nenhum movimento λ tl que L(M) = L(M ) 35 Grmátics Gertivs Exemplo com pens 2 produções (1) S S (2) S λ Ger tods s plvrs d form n n pr n

13 Definição Produções vzis terminis d grmátic (minúsculs) lfeto terminl X não terminis d grmátic (miúsculs) lfeto não terminl V símolo inicil S em V conjunto de produções P 37 Segundo Exemplo (1) S Xcc (2) X Xc (3) X Ger tods s plvrs d form n c n pr n 2 38 Terceiro Exemplo (1) S S c (2) S λ (3) S S C (4) S λ (5) C C (6) Cc cc Ger lingugem { n n c n n 0} 39 13

14 Lingugens de Estrutur de Frse Sej G = X, V, S, P um grmátic gertiv. Então lingugem L(G) gerd por G consistirá de tods e pens s plvrs w sore X tl que S * G w L é um lingugem de estrutur de frse desde que L = L(G) pr lgum grmátic gertiv G 40 Equivlênci Dus grmátics gertivs G nd G são equivlentes se L(G) = L(G )

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens:

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens: BCC244-Teori d Computção Prof. Lucíli Figueiredo List de Exercícios DECOM ICEB - UFOP Lingugens. Liste os strings de cd um ds seguintes lingugens: ) = {λ} ) + + = c) {λ} {λ} = {λ} d) {λ} + {λ} + = {λ}

Leia mais

Apostila 02 - Linguagens Regulares Exercícios

Apostila 02 - Linguagens Regulares Exercícios Cursos: Bchreldo em Ciênci d Computção e Bchreldo em Sistems de Informção Disciplins: (1493A) Teori d Computção e Lingugens Formis, (4623A) Teori d Computção e Lingugens Formis e (1601A) Teori d Computção

Leia mais

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular.

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular. Lingugens Formis Nom Chomsky definiu que s lingugens nturis podem ser clssificds em clsses de lingugens. egundo Hierrqui de Chomsky, s lingugens podem ser dividids em qutro clsses, sendo els: Regulres

Leia mais

Gramáticas Regulares. Capítulo Gramáticas regulares

Gramáticas Regulares. Capítulo Gramáticas regulares Cpítulo Grmátics Regulres Ests nots são um complemento do livro e destinm-se representr lguns lgoritmos estuddos ns uls teórics. É ddo um exemplo de plicção de cd conceito. Mis exemplos form discutidos

Leia mais

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação

Pontifícia Universidade Católica de Campinas Centro de Ciências Exatas, Ambientais e de Tecnologias Faculdade de Engenharia de Computação Pontifíci Universidde Ctólic de Cmpins Centro de Ciêncis Exts, Ambientis e de Tecnologis Fculdde de Engenhri de Computção LINGUAGENS FORMAIS E AUTÔMATOS List de Exercícios 1 1. Que lingugem grmátic ger?

Leia mais

Hierarquia de Chomsky

Hierarquia de Chomsky Universidde Ctólic de Pelots Centro Politécnico 364018 Lingugens Formis e Autômtos TEXTO 1 Lingugens Regulres e Autômtos Finitos Prof. Luiz A M Plzzo Mrço de 2011 Hierrqui de Chomsky Ling. Recursivmente

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) Lingugens Formis e Autômtos (LFA) Aul de 11/09/2013 Conjuntos Regulres, Expressões Regulres, Grmátics Regulres e Autômtos Finitos 1 Conjuntos Regulres Conjuntos regulres sobre um lfbeto finito são LINGUAGENS

Leia mais

Modelos de Computação Folha de trabalho n. 3

Modelos de Computação Folha de trabalho n. 3 Modelos de Computção Folh de trlho n. 3 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10. Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,

Leia mais

Exemplos de autómatos finitos

Exemplos de autómatos finitos Exemplos de utómtos finitos s s 2 reconhece lingugem: {x {, } x termin em e não têm s consecutivos} s s 2 reconhece lingugem {x x {, } e tem como suplvr} Deprtmento de Ciênci de Computdores d FCUP MC Aul

Leia mais

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1 DCC-UFRJ Lingugens Formis Primeir Prov 28/. Constru um utômto finito determinístico que ceite lingugem L = {w ( ) w contém pelos menos dois zeros e no máximo um }. 2. Use o lgoritmo de substituição pr

Leia mais

I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS

I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS Lingugens Formis e Autômtos João Luís Grci Ros 2005 I. LINGUAGENS REGULARES E AUTÔMATOS FINITOS 1.1. A Primeir Lingugem A teori modern ds lingugens formis vem de dus fontes: crcterizção precis d estrutur

Leia mais

Modelos de Computação -Folha de trabalho n. 2

Modelos de Computação -Folha de trabalho n. 2 Modelos de Computção -Folh de trlho n. 2 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

Compiladores ANÁLISE LEXICAL.

Compiladores ANÁLISE LEXICAL. Compildores ANÁLISE LEXICAL www.pedrofreire.com Este documento tem lguns direitos reservdos: Atriuição-Uso Não-Comercil-Não Ors Derivds 2.5 Portugl http://cretivecommons.org/licenses/y-nc-nd/2.5/pt/ Isto

Leia mais

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução Dep. Mtemátic e Aplicções 27 de Aril de 2011 Universidde do Minho 1 o Teste de Teori ds Lingugens Lic. Ciêncis Computção Propost de resolução 1. Considere lingugem L = A sore o lfeto A = {,}. Durção: 2

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos

Aula 4: Autômatos Finitos 2. 4.1 Autômatos Finitos Não-Determinísticos Teori d Computção Primeiro Semestre, 25 Aul 4: Autômtos Finitos 2 DAINF-UTFPR Prof. Ricrdo Dutr d Silv 4. Autômtos Finitos Não-Determinísticos Autômtos Finitos Não-Determinísticos (NFA) são um generlizção

Leia mais

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto Construção de Compildores Cpítulo 2 Análise Léxic José Romildo Mlquis Deprtmento de Computção Universidde Federl de Ouro Preto 2014.1 1/23 1 Análise Léxic 2/23 Tópicos 1 Análise Léxic 3/23 Análise léxic

Leia mais

Autômato Finito. Autômato Finito Determinístico. Autômato Finito Determinístico

Autômato Finito. Autômato Finito Determinístico. Autômato Finito Determinístico Autômto Finito Prof. Yndre Mldondo - 1 Prof. Yndre Mldondo e Gomes d Cost yndre@din.uem.r Autômto Finito Determinístico Prof. Yndre Mldondo - 2 AFD - modelo mtemático p/ definição de lingugem Cráter reconhecedor

Leia mais

Autômato Finito. Prof. Yandre Maldonado e Gomes da Costa. Prof. Yandre Maldonado - 1

Autômato Finito. Prof. Yandre Maldonado e Gomes da Costa. Prof. Yandre Maldonado - 1 Autômto Finito Prof. Yndre Mldondo - 1 Prof. Yndre Mldondo e Gomes d Cost yndre@din.uem.r Autômto Finito Determinístico Prof. Yndre Mldondo - 2 AFD - modelo mtemático p/ definição de lingugem Cráter reconhecedor

Leia mais

Aula 5: Autômatos Finitos Remoção de Não-Determinismo

Aula 5: Autômatos Finitos Remoção de Não-Determinismo Teori d Computção Primeiro Semestre, 25 DAINF-UTFPR Aul 5: Autômtos Finitos 3 Prof. Rirdo Dutr d Silv 5. Remoção de Não-Determinismo As lsses de utômtos definids nteriormente são tods equivlentes. Vmos

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais (cont.) Referência Teoria da Computação (Divério, 2000) Teori d Computção Unidde 3 Máquins Universis (cont.) Referênci Teori d Computção (Divério, 2000) 1 Máquin com Pilhs Diferenci-se ds MT e MP pelo fto de possuir memóri de entrd seprd ds memóris de trblho

Leia mais

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε)

3.3 Autómatos finitos não determinísticos com transições por ε (AFND-ε) TRANSIÇÕES POR (AFND-) 43 3.3 Autómtos finitos não determinísticos com trnsições por (AFND-) Vmos gor considerr utómtos finitos que podem mudr de estdo sem consumir qulquer símbolo, isto é, são utómtos

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Lingugens Formis e Autômtos - 0 emestre 2006 Professor : ndr Aprecid de Amo List de Exercícios n o - 4/08/2006 Observção : os exercícios

Leia mais

<S> ::= <L><C> <L> ::= l <C> ::= l<c> n<c> n l λ. L(G 1 ) = {a n b 2m n>0 m 0} L(G 2 ) = {lw w {l, n} * } L(G 3 ) = {a n b 2m n>0 m 0}

<S> ::= <L><C> <L> ::= l <C> ::= l<c> n<c> n l λ. L(G 1 ) = {a n b 2m n>0 m 0} L(G 2 ) = {lw w {l, n} * } L(G 3 ) = {a n b 2m n>0 m 0} 1) Dds s seguintes grmátics: UNIVERIDADE ETADUAL DE MARINGÁ UEM ENTRO DE TENOLOGIA T DEPARTAMENTO DE INFORMÁTIA DIN BAHARELADO EM INFORMÁTIA DIIPLINA: LINGUAGEN FORMAI E AUTÔMATO PROFEOR: YANDRE MALDONADO

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

Última atualização 03/09/2009

Última atualização 03/09/2009 FACIN-PPGCC 2 1. PANO DE FUNDO Sumário 2. LINGUAGENS Teori d Computilidde Prte I - Teori de Autômtos 3. DEFINIÇÕES RECURSIVAS 4. EXPRESSÕES REGULARES 5. AUTÔMATOS FINITOS Ney Lert Vilr Clzns & Avelino

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 4 Proprieddes ds Lingugens Regulres Estmos no momento de colocr seguinte questão: quão gerl são s lingugens regulres? Seri tod lingugem forml regulr? Tlvez qulquer conjunto que possmos especificr

Leia mais

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos

Draft-v Autómatos mínimos. 6.1 Autómatos Mínimos 6. Autómtos Mínimos 6 Autómtos mínimos Dd um lingugem regulr L, muitos são os utómtos determinísticos que representm. Sej A L o conjunto dos utómtos tis que (8A)(A 2A L =) L(A) =L). Os utómtos de A L não

Leia mais

FACIN-PPGCC. Teoria da Computabilidade Parte II - Autômatos de Pilha e Máquinas de Turing. Sumário. Ney Laert Vilar Calazans. 12.

FACIN-PPGCC. Teoria da Computabilidade Parte II - Autômatos de Pilha e Máquinas de Turing. Sumário. Ney Laert Vilar Calazans. 12. FACIN-PPGCC Teori d Computbilidde Prte II - Autômtos de Pilh e Máquins de Turing Ney Lert Vilr Clzns clzns@inf.pucrs.br 2 Sumário 12. GRAMÁTICAS LIVRES DO CONTEXTO 14. AUTÔMATOS DE PILHA 19. MÁQUINAS DE

Leia mais

Autômatos determinísticos grandes

Autômatos determinísticos grandes Autômtos determinísticos grndes Arnldo Mndel 27 de outubro de 2009 A construção dos subconjuntos implic n seguinte firmtiv: se um lingugem é reconhecid por um utômto não-determinístico com n estdos, então

Leia mais

Draft-v Autómatos finitos. 4.1 Autómatos finitos determinísticos

Draft-v Autómatos finitos. 4.1 Autómatos finitos determinísticos 4 Autómtos finitos Neste cpítulo vmos introduzir outrs estruturs que permitem crcterizr s lingugens regulres. A principl vntgem, dests novs estruturs, sore representção com expressões regulres é de terem,

Leia mais

CAPÍTULO 2 AUTÓMATOS FINITOS

CAPÍTULO 2 AUTÓMATOS FINITOS Teori d Computção Cpítulo 2. Autómtos Finitos CAPÍTULO 2 AUTÓMATOS FINITOS 2.. Introdução 45 2.2.Aceitdores determinísticos 46 2.3. A rte de construir DFA s 59 2.4. Lingugens regulres 75 2.5. Autómtos

Leia mais

O Autômato Adaptativo como Modelo de Computação e sua Aplicação em Reconhecimento de Padrões*

O Autômato Adaptativo como Modelo de Computação e sua Aplicação em Reconhecimento de Padrões* O utômto dpttivo como Modelo de Computção e su plicção em econhecimento de Pdrões* I WOPEC Workshop de Pesquis em Engenhri e Computção mury ntônio de Cstro Junior mury@ec.ucd.r Orientdor: Prof. Dr. João

Leia mais

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto Lingugens ormis Cpítulo 5: Lingugens e grmátics livres de contexto José Lucs Rngel, mio 1999 5.1 - Introdução Vimos no cpítulo 3 definição de grmátic livre de contexto (glc) e de lingugem livre de contexto

Leia mais

Linguagens Formais e Autômatos (LFA)

Linguagens Formais e Autômatos (LFA) PU-Rio Lingugens Formis e Autômtos (LFA) omplemento d Aul de 21/08/2013 Grmátics, eus Tipos, Algums Proprieddes e Hierrqui de homsky lrisse. de ouz, 2013 1 PU-Rio Dic pr responder Pergunts finis d ul lrisse.

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

Introdução. Implementação de Linguagens de Programação MO403 / MC900 mo403. Objetivos

Introdução. Implementação de Linguagens de Programação MO403 / MC900  mo403. Objetivos Implementção de Lingugens de Progrmção MO403 / MC900 www.ic.unicmp.r/ mo403 omsz Kowltowski Instituto de Computção Universidde stdul de Cmpins Copyright c 2007 omsz Kowltowski Instituto de Computção Universidde

Leia mais

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês CAL (00-0) MIEIC/FEUP Algoritmos em Grfos (0-0-0) Algoritmos em Grfos: Circuitos de Euler e Prolem do Crteiro Chinês R. Rossetti, A.P. Roch, A. Pereir, P.B. Silv, T. Fernndes FEUP, MIEIC, CPAL, 00/0 Circuitos

Leia mais

Exercícios de Revisão Edgard Jamhour. Terceiro Bimestre: MPLS

Exercícios de Revisão Edgard Jamhour. Terceiro Bimestre: MPLS Exercícios de Revisão Edgrd Jmhour Terceiro Bimestre: MPLS Cenário 1: Considere o seguinte cenário MPLS FEC A FEC B LER1 LER2 L:1000 c L:2000 L:1001 LSR2 LSR1 d LSR3 L:1002 L:2001 L:2002 LER3 c FEC C Cenário

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

Solução da Terceira Lista de Exercícios Profa. Carmem Hara

Solução da Terceira Lista de Exercícios Profa. Carmem Hara Exercíco 1: Consdere grmátc G xo: B ǫ ǫ B B Introdução eor d Computção olução d ercer Lst de Exercícos Prof. Crmem Hr. Mostre um dervção ms esquerd d plvr. B B B B B. Quntos pssos de dervção tem o tem

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

TEORIA GEOMÉTRICA DE GRUPOS. Pedro V. Silva

TEORIA GEOMÉTRICA DE GRUPOS. Pedro V. Silva TEORIA GEOMÉTRICA DE GRUPOS Curso de pré-doutordo, Universidde Federl d Bhi 2014 Pedro V. Silv Neste curso, fremos um digressão por lguns dos grndes desenvolvimentos que teori de grupos sofreu nos últimos

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Prof. Rômulo Silva. Teoria. Computação. Maio/2007

Prof. Rômulo Silva. Teoria. Computação. Maio/2007 Prof. Rômulo Silv Teori d Computção Mio/2007 1 Prof. Rômulo Silv Ojetivo dest postil Est postil foi desenvolvid om o ojetivo de filitr o entendimento d Teori d Computção, priniplmente no que se refere

Leia mais

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos

Autómatos Finitos Determinísticos. 4.1 Validação de palavras utilizando Autómatos Licencitur em Engenhri Informátic DEI/ISEP Lingugens de Progrmção 26/7 Fich 4 Autómtos Finitos Determinísticos Ojectivos: Vlidção de plvrs utilizndo Autómtos Finitos; Conversão de utómtos finitos não determinísticos

Leia mais

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c},

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c}, 8/6/7 Orgnizção Aul elções clássics e relções Fuzz Prof. Dr. Alendre d ilv imões Produto Crtesino elções Crisp Produto crtesino Forç d relção Crdinlidde Operções em relções Crisp Proprieddes de relções

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

Projeto de Compiladores Professor Carlos de Salles

Projeto de Compiladores Professor Carlos de Salles Projeto de Compildores 2006.1 Professor Crlos de Slles Trlho 1 Autômto pr Plvrs Reservds Ojetivo do trlho: implementr um progrm que recee como entrd um list de plvrs reservds e define como síd um função

Leia mais

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Progrmção II Ordenção (sort) Bruno Feijó Dept. de Informátic, PUC-Rio Bule Sort Bule Sort Apens de interesse didático e de referênci A idéi é ir comprndo dois vizinhos e trocndo o menor pelo mior té que

Leia mais

4 GRAFOS NÃO-ORIENTADOS. 4.1 Definições. O caminho v 1, v 2,..., v n conecta v 1 a v n. Ciclo: caminho de um vértice a ele mesmo de comprimento

4 GRAFOS NÃO-ORIENTADOS. 4.1 Definições. O caminho v 1, v 2,..., v n conecta v 1 a v n. Ciclo: caminho de um vértice a ele mesmo de comprimento GRAFOS Aspectos geris Grfos orientdos Problems clássicos sobre grfos orientdos Grfos não-orientdos GRAFOS NÃO-ORIENTADOS. Definições m grfo não-orientdo tmbém é chmdo de grfo nãodirigido, ou breidmente

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Coálgebras de Kleene

Coálgebras de Kleene Coálgers de Kleene Mri Teres Fernndes Clssificção ACM: F.TheoryofComputtion;F.3Logicsndmeningofprogrms; F.4 Mthemticl logic nd forml lnguges; Plvrs-chve: Teori de Computção, Teorem de Kleene, Coálger,

Leia mais

VERIFICAÇÃO DA DIAGNOSTICABILIDADE E DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS HÍBRIDOS. Victor Ruas Alvarez

VERIFICAÇÃO DA DIAGNOSTICABILIDADE E DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS HÍBRIDOS. Victor Ruas Alvarez VERIFICAÇÃO DA DIAGNOSTICABILIDADE E DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS HÍBRIDOS Victor Rus Alvrez Dissertção de Mestrdo presentd o Progrm de Pós-grdução em Engenhri Elétric, COPPE, d Universidde

Leia mais

GRUPO I. Espaço de rascunho: G 2 10

GRUPO I. Espaço de rascunho: G 2 10 GRUPO I I.1) Considere o seguinte grfo de estdos de um problem de procur. Os vlores presentdos nos rcos correspondem o custo do operdor (cção) respectivo, enqunto os vlores nos rectângulos correspondem

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS

EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS.) Considere tbel de trefs seguir pr construção de um cs de mdeir: TAREFAS PRÉ-REQUISITOS DIAS. Limpez do terreno Nenhum. Produção e colocção d fundção. Produção

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

Capítulo 3. Autómatos e respectivas linguagens

Capítulo 3. Autómatos e respectivas linguagens Cpítulo 3. Neste estudo, os utómtos serão considerdos principlmente como dispositivos de ceitção d lingugem, e respectiv estrutur intern será discutid pens n medid em que se relcione com lingugem ceite.

Leia mais

Unidimensional pois possui apenas uma única dimensão

Unidimensional pois possui apenas uma única dimensão Vetores e Mtrizes José Augusto Brnusks Deprtmento de Físic e Mtemátic FFCLRP-USP Sl 6 Bloco P Fone (6) 60-6 Nest ul veremos estruturs de ddos homogênes: vetores (ou rrys) e mtrizes Esss estruturs de ddos

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação Método SIMPLEX Mrcone Jmilson Freits Souz Deprtmento de Computção Progrm de Pós-Grdução em Ciênci d Computção Universidde Federl de Ouro Preto http://www.decom.ufop.br/prof/mrcone E-mil: mrcone@iceb.ufop.br

Leia mais

Analisadores Sintáticos. Análise Recursiva com Retrocesso. Análise Recursiva Preditiva. Análise Recursiva Preditiva 05/04/2010

Analisadores Sintáticos. Análise Recursiva com Retrocesso. Análise Recursiva Preditiva. Análise Recursiva Preditiva 05/04/2010 Anlisdores intáticos Análise Descendente (Top-down) Anlisdores sintáticos descendentes: Recursivo com retrocesso (bcktrcking) Recursivo preditivo Tbulr preditivo Análise Redutiv (Bottom-up) Anlisdores

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Aula 8: Gramáticas Livres de Contexto

Aula 8: Gramáticas Livres de Contexto Teori d Computção Segundo Semestre, 2014 ul 8: Grmátics Livres de Contexto DINF-UTFPR Prof. Ricrdo Dutr d Silv Veremos gor mneir de gerr s strings de um tipo específico de lingugem, conhecido como lingugem

Leia mais

DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS: UMA ABORDAGEM UTILIZANDO REDES DE PETRI

DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS: UMA ABORDAGEM UTILIZANDO REDES DE PETRI DIAGNÓSTICO ONLINE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS: UMA ABORDAGEM UTILIZANDO REDES DE PETRI Felipe Gomes de Oliveir Cbrl Dissertção de Mestrdo presentd o Progrm

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Análise Sintáctica Descendente

Análise Sintáctica Descendente Cpítulo 4 nálise intáctic Descendente Os utomátos finitos presentdos no cpítulo nterior são suficientes pr trtr os elementos léxicos de um lingugem de progrmção, o trtmento d estrutur sintáctic de um lingugem

Leia mais

AA4J: uma biblioteca para implementação de autômatos adaptativos

AA4J: uma biblioteca para implementação de autômatos adaptativos 1 AA4J: um iliotec pr implementção de utômtos dpttivos P. R. M. Cered e J. José Neto Astrct Este rtigo present um iliotec pr implementção de utômtos dpttivos, utilizndo lingugem Jv, de form consistente

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Funções Lógicas: Formas Padrão. Mintermos x Maxtermos. Forma Padrão: soma de produtos. Forma Padrão: produto de somas 22/3/2010

Funções Lógicas: Formas Padrão. Mintermos x Maxtermos. Forma Padrão: soma de produtos. Forma Padrão: produto de somas 22/3/2010 22/3/2 Funções Lógics: Forms Pdrão Mintermos x Mxtermos De Morgn Aul 4 Funções lógics podem ser pdronizds dus forms pdrão : form pdrão de som de produtos expressão é um som (OR) de produtos (AND) de vriáveis

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

PARTE I - Circuitos Resistivos Lineares

PARTE I - Circuitos Resistivos Lineares Prolem 1.1 Leis de Kirchhoff PARTE I Circuitos Resistivos Lineres i 1 v 2 R 1 10A 1 R 2 Considere o circuito d figur 1.1. ) Constru o seu grfo e indique o número de rmos e de nós. ) Clcule os vlores ds

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano Mteril Teórico - Módulo Teorem de itágors e plicções lgums demonstrções do Teorem de itágors - rte 2 Nono no utor: rof. Ulisses Lim rente Revisor: rof. ntonio minh M. Neto 27 de ril de 2019 1 lgums plicções

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017 Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics

Leia mais

EXAME DE INGRESSO 2014 3º Período

EXAME DE INGRESSO 2014 3º Período PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ÁREA DE ENGENHARIA DE COMPUTAÇÃO (141) ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO EXAME DE INGRESSO 2014 º Período NOME: Oservções Importntes: 1. Não

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :... SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

UMA REDE DE PETRI DIAGNOSTICADORA PARA SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS. Felipe Gomes de Oliveira Cabral

UMA REDE DE PETRI DIAGNOSTICADORA PARA SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS. Felipe Gomes de Oliveira Cabral UMA REDE DE PETRI DIAGNOSTICADORA PARA SISTEMAS A EVENTOS DISCRETOS MODELADOS POR AUTÔMATOS FINITOS Felipe Gomes de Oliveir Cbrl Projeto de Grdução presentdo o Curso de Engenhri Elétric d Escol Politécnic,

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

Matemática (e geometria) para CG

Matemática (e geometria) para CG Licencitur em Engenhri Informátic e de Computdores Computção Gráfic Mtemátic (e geometri) pr CG 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL Edwrd Angel, Cp. 3 Questão 1, exme de 06/06/11

Leia mais

TRANSFORMAÇÃO DE FONTES

TRANSFORMAÇÃO DE FONTES TRANSFORMAÇÃO DE FONTES OBJECTIVO: Trnsformção de um fonte de tensão em série com um resistênci num fonte de corrente em prlelo com ess mesm resistênci ou iceers. EXEMPLO s i Rs L L R L is Rsi i L L R

Leia mais