Custos operacionais eficientes das distribuidoras de energia elétrica: um estudo comparativo dos modelos DEA e SFA

Tamanho: px
Começar a partir da página:

Download "Custos operacionais eficientes das distribuidoras de energia elétrica: um estudo comparativo dos modelos DEA e SFA"

Transcrição

1 Gest. Prod., São Carlos, v. 7, n. 4, p , 200 Cstos operaconas efcentes das dstrbdoras de energa elétrca: m estdo comparatvo dos modelos DEA e SFA The cost effcency of the Brazlan electrcty dstrbton tltes: a comparatve stdy wth DEA and SFA models Marcs Vncs Perera de Soza Renaldo Castro Soza 2 José Francsco Morera Pessanha 3 Resmo: Este artgo apresenta meddas de efcênca para 40 dstrbdoras de energa elétrca qe operam no setor elétrco braslero. As meddas foram obtdas por modelos de análse envoltóra de dados (DEA) e modelos de frontera estocástca (SFA), das técncas qe podem mtgar a assmetra de nformação e aprmorar a habldade do agente reglador comparar os desempenhos das dstrbdoras, reqstos fndamentas em esqemas de reglação ncentvada. As das abordagens são apresentadas e os resltados obtdos pelos dferentes modelos são comparados. Palavras-chave: Análse envoltóra de dados. Frontera estocástca. Reglação econômca. Abstract: Ths paper shows the effcency measrements of 40 Brazlan electrcty dstrbton companes. The effcency scores are obtaned sng the data envelopment analyss (DEA) and stochastc fronter analyss (SFA) models, technqes that can redce the nformaton asymmetry and mprove the reglator sklls to compare the performance of the electrcty companes, whch are fndamental aspects of reglatory regmes. The two approaches are descrbed, and the man reslts obtaned from the dfferent models are compared. Keywords: Data envelopment analyss. Stochastc fronter. Economc reglaton. Introdção o Setor Elétrco Braslero (SEB) as tarfas de fornecmento são revsadas perodcamente a cada qatro o cnco anos, dependendo do contrato de concessão das empresas dstrbdoras. o ano de realzação da revsão peródca as tarfas são reposconadas em m nível compatível com a cobertra dos cstos operaconas efcentes e com a remneração adeqada dos nvestmentos realzados prdentemente pelas dstrbdoras, garantndo a mantenção do eqlíbro econômco-fnancero (EEF) da concessão. o período entre das revsões tarfáras, as tarfas são reajstadas analmente pelo IRT (Índce de Reajste Tarfáro) com a fnaldade de assegrar qe o eqlíbro econômco-fnancero da concessão não sofrerá a corrosão do processo nflaconáro. a Fgra são lstrados os processos de revsão tarfára e reajste tarfáro. Para smplfcar, admte-se qe as varações do IGPM sejam nlas. A tarfa ncal T0, fxada no contrato de concessão, permanece constante (em termos reas) até a prmera revsão tarfára (2003). Esta tarfa garante o EEF da concessão no prmero período tarfáro ( ), cobrndo os cstos não gerencáves pela dstrbdora (compras de energa e encargos setoras) e os cstos gerencáves pela dstrbdora (mão de obra, servços de terceros, materal, deprecação e remneração adeqada dos atvos nvestdos e do captal de gro). este período ncal, os ganhos de prodtvdade decorrentes do crescmento do mercado e da redção dos cstos operaconas alcançados pela gestão efcente da concessonára, conforme ndcado pelo trânglo cnza na Fgra, Departamento de Engenhara Indstral, Pontfíca Unversdade Católca PUC, Ra Marqês de São Vcente, 225, Gávea, CEP , Ro de Janero RJ, E-mal: 2 Departamento de Engenhara Elétrca, Pontfíca Unversdade Católca PUC, Ra Marqês de São Vcente, 225, Gávea, CEP , Ro de Janero RJ, E-mal: 3 Insttto de Matemátca e Estatístca, Unversdade do Estado do Ro de Janero UERJ, Ra São Francsco Xaver, 524, Maracanã, CEP , Ro de Janero RJ, E-mal: Recebdo em /6/200 Aceto em 29/0/200 Sporte fnancero: CPq.

2 654 Soza et al. Gest. Prod., São Carlos, v. 7, n. 4, p , 200 Fgra. Processo de revsão tarfára (BRASIL, 2003). são ntegralmente aproprados pela concessonára, amentando sa remneração. o fnal do prmero período tarfáro acontece a prmera revsão tarfára peródca (2003), a qal transcorre em das etapas. Prmero, o reglador reposcona a tarfa em m nível (T) compatível com a receta necessára para atender às condções efcentes de mantenção e operação da atvdade de dstrbção, bem como ma taxa de retorno consderada adeqada ao rsco do negóco e qe remnere o captal nvestdo. Em segda, a partr dos ganhos de efcênca projetados o metas de prodtvdade para o segndo período tarfáro ( ), o reglador defne o Fator X, m componente do índce de reajste tarfáro (IRT) a ser aplcado analmente drante o próxmo período tarfáro, Eqação : IRT = VPA + VPB0 IGPM X RA0 () em qe: VPA é a parcela referente aos cstos não gerencáves pela dstrbdora na data do reajste, RA0 é a receta anal calclada consderando-se as tarfas vgentes (sem ICMS) na data da revsão tarfára e o respectvo mercado de referênca, e VPB0 é a parcela relatva aos cstos gerencáves pela dstrbdora na data da revsão (VPB0 = RA0 VPA0). Conforme ndcado na Eqação, os cstos não gerencáves (VPA) são repassados ntegralmente às tarfas fnas, enqanto a parcela relatva aos cstos gerencáves (VPB) é atalzada pelo IGPM, descontado do Fator X. Este fator ncde apenas sobre os cstos gerencáves e constt o mecansmo qe permte compartlhar com os consmdores os ganhos de prodtvdade decorrentes do crescmento da demanda atendda pela dstrbdora. a dstrbção de energa elétrca, os ganhos de prodtvdade decorrem prncpalmente do crescmento do mercado atenddo pela concessonára, tanto pelo maor consmo das ndades consmdoras exstentes como pela lgação de novas ndades. Em fnção da presença de economas de escala, a expansão do mercado é atendda com cstos ncrementas decrescentes, resltando em m ganho de prodtvdade para a dstrbdora qe não decorre de ma gestão mas efcente da empresa e qe, portanto, deve ser repassado para os consmdores com a fnaldade de promover a modcdade tarfára. Conforme ndcado na Fgra, no segndo período tarfáro ( ), a tarfa sege a trajetóra decrescente representada pela lnha tracejada, cobrndo o repasse ntegral dos cstos não gerencáves e ma parte dos cstos gerencáves qe se redz analmente em fnção do se reajste pelo IGPM descontado do Fator X. O resltado deste mecansmo é qe a projeção dos ganhos de prodtvdade decorrentes do crescmento do mercado no período 2004/2007, conforme ndcado pelo trânglo em branco na Fgra, não são aproprados ntegralmente pela concessonára, mas compartlhados com os consmdores. o segndo período tarfáro, a aplcação efetva do Fator X

3 Cstos operaconas efcentes das dstrbdoras de energa elétrca redz a parcela dos ganhos de efcênca qe podem ser aproprados pela concessonára, lmtando os ganhos qe ltrapassem as metas de prodtvdade defndas na data da revsão tarfára, conforme ndcado pela estreta faxa em cnza na Fgra. Assm, a concessonára é ncentvada a explorar se potencal de efcênca, e qanto maor for a efcênca da concessonára maor será se benefíco, dado pela dferença entre a meta de prodtvdade e o csto efetvamente realzado. o entanto, a concessonára fca sjeta ao rsco de perdas, caso os cstos não sgam ma trajetóra mas efcente qe metas de prodtvdade. Em resmo, permte-se m ganho extraordnáro temporáro, a fm de mnmzar cstos, e posterormente há o compartlhamento desse ganho com os cons mdores. Em concordânca com o exposto, a Resolção da Agênca aconal de Energa Elétrca (AEEL) o 55/2004 defne o Fator X como sendo a combnação de três componentes (X e, X a e X c ), conforme a Eqação 2: X = X + X IGPM X + X (2) e c a a A componente X a reflete o efeto da aplcação do IPCA na componente mão de obra do VPB da concessonára. A componente X c relacona-se com a qaldade percebda pelos consmdores atenddos pela concessonára. Por fm, a componente X e reflete os ganhos esperados de prodtvdade da concessonára em vrtde do crescmento do mercado atenddo pela concessonára. Esta últma componente é a mas mportante, sendo defnda com base no método do flxo de caxa descontado do tpo forward lookng de manera a galar o valor presente líqdo do flxo de caxa da concessonára no período tarfáro, acrescdo do valor resdal, com o valor dos atvos da concessonára no níco do período tarfáro, Eqação 3: A 0 = t ROt ( Xe) T OM d. ( g) d I + t ( + r ) A + t t t + t t t= WACC ( + r ) WACC (3) em qe: é o período em anos entre das revsões tarfáras, A 0 é o valor dos atvos da concessonára na data da revsão tarfára, A é o valor dos atvos da concessonára no fnal do período tarfáro, g são as alíqotas do mposto de renda e da Contrbção Socal sobre o Lcro Líqdo (CSLL), r WACC é o csto médo ponderado do captal, RO t é a receta operaconal da concessonára, T t são os valores dos trbtos (PIS/PASEP, COFIS e P&D), OM t são os cstos de operação e mantenção da concessonára, I t é o montante de nvestmentos realzados e d t é a deprecação, todos referentes ao ano t. Vale esclarecer qe as parcelas qe compõem o flxo de caxa na Eqação 3 são projetadas segndo os crtéros descrtos na Resolção AEEL o 55/2004. Por exemplo, a projeção da receta operaconal é determnada pelo prodto entre o mercado prevsto e a tarfa méda do reposconamento tarfáro, enqanto, os cstos operaconas (cstos de operação, mantenção, admnstração e gestão comercal) são projetados com base nos cstos da Empresa de Referênca, referencados à data do reposconamento tarfáro. A empresa de referênca é ma dstrbdora vrtal na qal se smla a prestação do servço de dstrbção de energa elétrca nas mesmas condções qe opera ma dstrbdora real. Para m dado nível de qaldade exgdo pelo reglador, a empresa de referênca é orentada para a tlzação efcente dos recrsos, estabelecendo assm m padrão de desempenho (benchmark) a ser persegdo pela empresa real. Esta estratéga sege as lnhas geras da reglação por comparação (yardstck competton), pos emla a competção entre ma dstrbdora real e a respectva empresa de referênca. A metodologa da empresa de referênca adotada no prmero cclo de revsões tarfáras (BRASIL, 2006) sege ma abordagem tpo bottom-p qe se nca com a dentfcação de todos os processos nerentes à atvdade de dstrbção de energa elétrca nas áreas comercal e técnca, passa pelo estabelecmento dos cstos efcentes de cada m dos processos dentfcados e se encerra com ma estmatva para o total dos cstos operaconas efcentes. Portanto, trata-se de ma metodologa complexa e qe abre a possbldade de envolver o reglador em ma espéce de mcrogestão da empresa, jstamente o contráro do qe recomenda a boa prátca da ação regladora. Para evtar a complexdade da atal metodologa da empresa de referênca e tornar mas objetvo o processo de estabelecmento dos cstos operaconas efcentes, a AEEL não descarta a possbldade de tlzar técncas de benchmarkng, entre as qas as fronteras de efcênca, conforme o modelo atal adotado na qantfcação dos cstos operaconas efcentes das empresas de transmssão (BRASIL, 2007). De posse dessas nformações, a segr, na seção 2, é feto m breve hstórco acerca da reglação do setor elétrco. A seção 3 aborda os modelos de frontera estocástca para dados tpo cross-secton, enqanto,

4 656 Soza et al. Gest. Prod., São Carlos, v. 7, n. 4, p , 200 a análse envoltóra de dados é descrta na seção 4. O mapa de Kohonen, ma rede neral não spervsonada tlzada na dentfcação dos grpos de dstrbdoras smlares, é apresentado na seção 5. As especfcações dos modelos DEA e SFA são dsctdas na seção 6 e os prncpas resltados obtdos são reportados na seção 7. Fnalmente, na seção 8, são resmdas as prncpas conclsões do trabalho. 2 Reglação econômca do setor elétrco A pesqsa realzada por Jasmab e Pollt (2000) mostra qe os prncpas métodos de benchmarkng sados na reglação dos servços de dstrbção de eletrcdade são: a) Análse Envoltóra de Dados (DEA Data Envelopment Analyss), ma técnca baseada em programação lnear (COOPER; SEIFORD; TOE, 2000); b) modelos econométrcos, entre os qas destacam-se os modelos de frontera estocástca (SFA Stochastc Fronter Analyss) (KUMBHAKAR; LOVELL, 2000). Isto posto, vale enfatzar qe os prmeros trabalhos desenvolvdos à lz da técnca DEA, para avalar a efcênca das empresas de eletrcdade, são credtados a Färe, Grosskopf e Logan (983) e Charnes et al. (989). Adconalmente, é mportante ctar os estdos elaborados por Jasmab e Pollt (2003), qe comparam 63 dstrbdoras em 6 países eropes, a partr de modelos DEA, SFA e COLS (Corrected Ordnary Least Sqare) e Estache, Ross e Rzzer (2004) qe realzam análse smlar para as empresas de eletrcdade da Amérca do Sl. o âmbto do SEB, Resende (200), Vdal e Távora Jnor (2003), Pessanha, Soza e Larencel (2004) e Sollero e Lns (2004) dvlgam resltados estmados por dstntos modelos DEA na avalação da efcênca das dstrbdoras de energa elétrca. Índces de efcênca obtdos por modelos SFA são apresentados por Zann (2004) e Arcoverde, Tannr-Panto e Sosa (2005). Soza, Soza e Pessanha (2007) preconzam ma comparação dos modelos DEA e SFA. Além dessas referêncas, Soza (2008) dscte dversos modelos DEA e SFA (clássco e Bayesano). Deve ser ressaltado, contdo, qe os modelos econométrcos com enfoqe Bayesano, regstrados em Soza (2008) e Soza et al. (200), são mas complexos e, conforme se sabe, tlzam smlação estocástca (Markov chan Monte Carlo MCMC). Por fm, os métodos DEA e SFA partem de presspostos dferentes e, de acordo com a aplcação em qe são empregados, exbem vantagens e desvantagens. Por esta razão, é nteressante nvestgar os índces de efcêncas obtdos pelas das abordagens aplcados em m mesmo conjnto de dados. esse sentdo, aq, os dos métodos são aplcados na avalação dos cstos operaconas efcentes de 40 dstrbdoras qe operam no SEB. 3 Modelos de frontera estocástca 3. Frontera de prodção Consdere ma amostra tpo cross-secton com I DMUs (decson makng nts), neste caso cada DMU é ma concessonára de dstrbção qe tlza n tpos de nsmos representados pelo vetor de qantdades de nsmos x R n, =,I, na prodção + de ma qantdade y de m únco tpo de prodto. A medda de efcênca técnca para a -ésma DMU (0 TE ) é defnda pela razão entre a sa prodção (y ) e a máxma prodção possível, especfcada pela v frontera estocástca de efcênca [ f( x, β ) e ], em qe β é o vetor de parâmetros da fnção de prodção a ser estmada e ν é ma varável aleatóra rrestrta em snal, Eqação 4: y TE = (4) v f x, β e Arranjando os termos da galdade (Eqação 4), tem-se a eqação da frontera estocástca, Eqação 5: v y = TE f x, β e A frontera estocástca é composta de das partes: a frontera determnístca f(x, β), comm a todos os prodtores, e o termo e ν, cja fnaldade é captrar o efeto de choqes aleatóros qe afetam especfcamente a -ésma DMU. Fazendo TE = e, em qe 0 é ma varável aleatóra, e sbsttndo-se na Eqação 5, tem-se qe, Eqação 6: v (5) y = f x, β e (6) Admtndo-se qe f(x, β) seja lnear nos logartmos, tem-se o segnte modelo, após a aplcação de ma transformação logarítmca na Eqação 6, em qe = ln TE 0, Eqação 7: lny =β +β lnx β ln x + v (7) 0 n n a Eqação 7, o desvo entre o nível de prodção observado e a parte determnístca da frontera de prodção é dado pela combnação de das componentes:, m erro qe assme apenas valores não negatvos e qe captra o efeto da nefcênca técnca, e v, m erro smétrco qe captra qalqer choqe aleatóro não gerencável. A hpótese de smetra da dstrbção de v é sportada pelo fato de qe condções ambentas desfavoráves e favoráves são galmente prováves. Fazendo-se ε = v, tem-se a segnte eqação de regressão, Eqação 8: lny =β +β lnx β ln x +ε (8) 0 n n

5 Cstos operaconas efcentes das dstrbdoras de energa elétrca Admtndo-se qe v seja..d. com dstrbção smétrca, salmente ma dstrbção normal, e qe seja ndependente de, o qal sempre assme m valor não negatvo, a dstrbção do erro composto ε é assmétrca. Portanto, métodos de estmação qe admtem erros smetrcamente dstrbídos e com méda zero não são aproprados para estmar a fnção frontera estocástca na Eqação 8. a formlação básca dos modelos de frontera estocástca (modelo ormal/half-ormal), são admtdas as segntes hpóteses acerca dos termos aleatóros e v : (H) (H2) 2 ( 0 σv) ( v ) + 2 ( 0 σ) v ~ d, 2 2 v 2 v f v = 2πσ e σ ~ d, ( Half ormal não negatva) ( ) 2 2 2σ f = 2 2πσ e (H3) é ndependente de v (H4) v e são ndependentes de x As hpóteses acma permtem estmar os parâmetros da Eqação 8 por máxma verossmlhança. A partr da hpótese (H3), tem-se qe a dstrbção conjnta de e v é o prodto das densdades margnas em (H) e (H2), Eqação 9: v 2 2 v 2 2 2σ 2σ v 2 (9) f (,v) = e 2 πσ σ Lembrando qe ε = v -, obtém-se a dstrbção conjnta de e ε, Eqação 0: 2 ( ε+ ) σ 2σ v f (, ε ) = e (0) 2 πσ σ Fgra 2. Fnção densdade do erro composto no modelo ormal/half-ormal. v A dstrbção margnal de ε é obtda pela ntegração da densdade da Eqação 0 em relação à, Eqação : 2 ελ f ( ε ) = f (, ε ) d = Φ 0 2πσ σ 2 () ε 2 2. e 2 σ ε ελ = φ Φ σ σ σ 2 2 em qe: λ = σ /σ ν, σ= σ +σ v, φ é a fnção densdade de ma (0,) e Φ é a respectva fnção dstrbção de probabldade acmlada. Conforme lstrado na Fgra 2 para dferentes valores de σ 2 e σ2, a dstrbção de ε é negatvamente assmétrca com méda e varânca dadas v pelas Eqações 2 e 3: E E 2 ε = = σ π (2) ( 2) 2 2 v V ε =σ π π+σ (3) Lembrando qe ε = lny (β 0 + β lnx β n lnx n ) e sando-se a fnção densdade na Eqação, tem-se o logartmo da fnção de verossmlhança para ma amostra com I prodtores, Eqação 4: In L = constante I lnσ+ ελ (4) 2 + lnφ ε 2 σ 2σ As estmatvas de máxma verossmlhança, são os valores de σ, σ ν e β j, j = 0, n, qe maxmzam a Eqação 4. Estas estmatvas são assntotcamente consstentes. A parametrzação do logartmo da verossmlhança em termos de σ 2 = σ 2 + σ2 e γ = ν σ2 / (σ2 + σ2) [0,] ν ajda na maxmzação da fnção de verossmlhança e faclta a nterpretação do modelo. Qando = 0, não há nefcênca, pos σ 2 domna a varânca do ν erro composto e os desvos em relação à frontera devem-se ncamente a rídos aleatóros, por otro lado, qando γ =, σ 2 domna a varânca do erro composto e o desvo em relação à frontera deve-se nteramente à nefcênca. Portanto, pode-se tlzar o teste da razão da verossmlhança (LR test) para testar a hpótese nla H0: γ = 0. Porém, como γ pode car nos lmtes do ntervalo [0,], a dstrbção da razão de verossmlhança é aproxmadamente ma χ 2. Para estmar a efcênca técnca de cada prodtor deve-se ter ma estmatva de, a componente do erro qe captra o efeto da nefcênca técnca. Esta estmatva pode ser obtda a partr dos resídos ˆε. Com as fnções densdade nas Eqações 0 e, pode-se estmar como sendo a méda/moda da segnte

6 658 Soza et al. Gest. Prod., São Carlos, v. 7, n. 4, p , 200 dstrbção condconada, em qe m * = εσ 2 / σ2 e σ 2 * = σ2 σ2 ν / σ2, Eqação 5: ( ε) f ( ε) f, f ε = = ( m m ) 2 * * m 2 Φ 2 * σ* σ = e 2πσ * + 2 * * ε ~ ( m, σ ) (5) A estmatva pontal de é defnda pela méda de f( ε), Eqação 6: û = Eε =m + * ( * σ* ) ( * σ* ) ( ) φ m +σ * = Φ m φ ελ σ ελ =σ* Φ ελ σ σ o pela moda de f( ε), Eqação 7: û 2 2 (6) = Mε = ε σ σ, se ε 0 (7) û = 0, caso contráro Lembrando qe = ln TE, a estmatva da efcênca técnca do -ésmo prodtor é, Eqação 8: TE 3.2 Frontera de csto û e = (8) Como na frontera de prodção, v é rrestrta em snal e captra choqes aleatóros não gerencáves e, é ma varável não negatva qe reflete o gra de nefcênca do prodtor. o entanto, na frontera de csto o erro captra o efeto da nefcênca econômca,.e., reflete as parcelas alocatva e técnca da nefcênca. A medda de efcênca econômca da -ésma DMU é a razão entre o csto da -ésma DMU (E ) e o mínmo csto possível especfcado pela fnção frontera estocástca C (y, w, β), Eqação 9: v CE = E C y,w, β e = e (9) em qe: w = (w,.., w n ) é o vetor de preços dos npts, β é o vetor de parâmetros da tecnologa de prodção, y é o vetor de otpts prodzdos, x é o T vetor de npts, E = w x é o csto total ncorrdo pela -ésma DMU, C (y, w, β) e ν é o csto estabelecdo pela frontera estocástca. Arranjando-se os termos da galdade na Eqação 9, encontra-se a segnte Eqação 20: v+ E = C y,w, β e, =,I (20) este trabalho são apresentados modelos de frontera com eqação únca. Tas modelos baseam-se no csto total, nas qantdades dos prodtos e nos preços dos nsmos e não permtem decompor a medda de efcênca econômca nas componentes alocatva e técnca. Se a efcênca alocatva é assmda, o erro é relaconado com a nefcênca técnca e os modelos apresentados estmam meddas de efcênca técnca, segndo ma orentação ao nsmo (npt). Assmndo qe a parcela determnístca da frontera estocástca de csto, C (y, w, β), tenha apenas m prodto (otpt), pode-se adotar ma forma fnconal Cobb-Doglas qe após a transformação logarítmca reslta na segnte eqação, em qe = ln CE 0, Eqação 2: lne =β +β lny +β lnw y +β lnw + v + n n (2) Comparando-se as Eqações 7 e 2, pode-se perceber qe na frontera de csto o termo relaconado à nefcênca,, é adconado à frontera. A razão para tal consste no fato de qe a fnção csto representa o csto mínmo enqanto a fnção de prodção representa o prodto máxmo. Apesar destas dferenças, a estmação dos parâmetros da Eqação 2 e dos índces de efcênca das DMUs é realzada da mesma forma qe na frontera de prodção. 4 Análse envoltóra de dados Uma tecnologa de prodção transforma m vetor de nsmos X={x,..., x s } R + S em m vetor de prodtos Y ={y,..., y m } R +m. A não de todas as maneras possíves de transformar X em Y forma o Conjnto de Possbldades de Prodção (CPP), defndo como, Eqação 22: T(X,Y) = { (X,Y) é vável prodzr Y a partr de X} (22) Sob o enfoqe da conservação de recrsos (orentação ao nsmo), defne-se a efcênca técnca para ma DMU (X,Y) como sendo a máxma contração radal do vetor de nsmos qe permte prodzr as mesmas qantdades de prodtos, o seja, Eqação 23: Efcênca técnca = Mn {θ (θ X,Y) T(X,Y)} (23) A varável θ assme m valor entre 0 e. Um valor ntáro ndca qe não é possível redzr a qantdade de nsmos e manter a mesma prodção. este caso a DMU é classfcada como sendo tecncamente efcente. Caso contráro, há m excesso de nsmos qe deve ser redzdo (θ < ) e consdera-se a DMU tecncamente nefcente. Com base nestes resltados e admtndo as hpóteses de rendmentos constantes de escala e tecnologa convexa, Charnes, Cooper e Rhodes (978) propseram

7 Cstos operaconas efcentes das dstrbdoras de energa elétrca o modelo DEA-CRS (24). este modelo o cálclo da efcênca é formlado como m problema de programação lnear (PPL), cja fnção objetvo é a máxma contração dos nsmos (orentação ao nsmo) e as restrções representam o CPP. Posterormente, Banker, Charnes e Cooper (984) adconaram ma restrção de combnação convexa [λ + λ λ = no PPL em (25)] ao CRS, crando m modelo qe contempla a hpótese de rendmentos varáves de escala, conhecdo como DEA-VRS (25). a Tabela são apresentados modelos DEA orentados ao nsmo nas versões CRS e VRS, em qe é o total de DMUs analsadas, o par (Xj,Yj) representa os vetores de nsmos e prodtos da j-ésma DMU, j=, e j 0 denota a DMU avalada. Seja θ*, λ*,..., λ* a solção ótma dos modelos (24) o (25), a DMUj 0 é efcente, se, e somente se, θ* = e todas as folgas nas restrções são nlas. Caso contráro, qando θ* < o θ* =, porém com algma folga postva, a DMUj 0 é nefcente. este caso, o conjnto de referênca (benchmarks) da DMUj 0 é formado pelas DMUs assocadas aos coefcentes λ* j > 0. 5 Mapa de Kohonen O mapa de Kohonen o rede SOM (Self Organzng Map) é ma rede neral com trenamento compettvo e não spervsonado (CARVALHO; BRAGA; LUDERMIR, 998) aplcada em problemas de classfcação. esta classe de redes neras, os nerônos da camada de saída são organzados em ma grade, geralmente n o bdmensonal, conforme lstrado na Fgra 3. Esta grade forma m sstema de coordenadas sobre o qal são projetados padrões de entrada com m atrbtos e qe permte mapear o espaço de entrada, cja dmensão é m, em m espaço de saída com dmensão redzda, neste caso, bdmensonal. Cada nerôno recebe todas as varáves de entrada e Tabela. Modelos DEA na versão envelope e orentados ao nsmo. Modelo CRS Modelo VRS Mnθ (24) Mnθ θλ, θλ, (25) s.a. s.a. θxj0 λjxj θxj0 λjxj j= j= Y j0 λjyj j= λj 0 j =, Y j0 λjyj j= λ = j= j λj 0 j =, fncona como m dscrmnador de característcas, cjos parâmetros (pesos snáptcos) são ajstados por m processo de aprendzagem compettvo. Qando m padrão de entrada é apresentado, a rede SOM classfca-o no nerôno com o maor valor da fnção de atvação, o seja, no nerôno com o vetor de pesos mas parecdo com o padrão de entrada. Drante a fase de aprendzado, os nerônos se especalzam na detecção de m conjnto de padrões de entrada e se organzam topologcamente, fazendo com qe os padrões detectados por m dado nerôno estejam relaconados com a sa posção na grade de saída. Assm, o Mapa de Kohonen obtém m mapeamento entrada-saída, onde a topologa do espaço de entrada é preservada no espaço de saída, de tal forma qe padrões de entrada semelhantes atvem nerônos fscamente próxmos na grade de saída. O trenamento da rede SOM ocorre em das fases (SOUZA, 2002): fase de ordenação e fase de convergênca. a fase de ordenação, os vetores de pesos, ncalmente orentados de forma aleatóra, são topologcamente ordenados de forma a agrpar os nerônos do mapa em clsters qe refltam a dstrbção espacal dos padrões de entrada. Ao fnal desta fase a rede descobre qantos clsters deve dentfcar e qas as sas posções relatvas no mapa. Drante o trenamento, a taxa de aprendzado, é decrescente. O mesmo acontece com a regão de vznhança qe se redz gradalmente, conforme mostra a Fgra 4. A segr tem-se o algortmo de trenamento da rede SOM:. Incalze os pesos (w j ) e os parâmetros da rede SOM : taxa de aprendzado η e vznhança. O peso w j é o peso da conexão entre o -ésmo elemento do padrão de entrada (x) e o neorôno j. 2. Para cada padrão de trenamento x; 2.. dentfqe o nerôno vencedor; 2.2. atalze os pesos deste nerôno e de ses vznhos. Se o nerôno j Λ(t),.e., pertencer à vznhança do nerôno vencedor no nstante de tempo t, faça w j (t + ) = w j (t) + η(t) [x (t) w j (t)], caso contráro, faça w j (t + ) = w j (t); 2.3. Se o número de cclos de trenamento for múltplo de, redza a taxa de aprendzado η e a área de vznhança; e 3. Repetr o passo 2 até qe o mapa de característcas não mde. 6 Especfcação dos análse envoltóra de dados e modelos de frontera estocástca a aplcação dos modelos DEA e SFA, é mportante garantr a comparabldade entre as dstrbdoras analsadas. Para atender a este reqsto, os dados das

8 660 Soza et al. Gest. Prod., São Carlos, v. 7, n. 4, p , dstrbdoras analsadas foram processados por ma rede neral ato-organzável com 25 ndades de saída arranjadas em ma grade qadrada 5 5, conforme apresentado em Pessanha, Soza e Larencel (2005). A escolha do mapa de Kohonen deve-se ao fato desta rede neral fornecer m mapa topologcamente ordenado das dstrbdoras, o qe faclta a vsalzação e a nterpretação dos agrpamentos. a constrção do mapa, caracterzo-se cada concessonára por oto atrbtos referentes ao tamanho, concentração e composção do mercado, conforme apresentado na Tabela 2. Os dados tlzados referem-se ao ano de 200 e no trenamento da rede neral tomaram-se os valores padronzados dos ses logartmos com o objetvo de evtar qe a segmentação das dstrbdoras se concentrasse apenas nas varáves mas heterogêneas. O trenamento da rede neral fo realzado por rotnas da Toolbox de redes neras qe acompanha o Matlab. As 40 dstrbdoras analsadas foram ordenadas topologcamente no mapa 5 5 (25 nerônos) da Fgra 5, onde são apresentados os perfs das dstrbdoras (cada crva representa ma empresa). A dentfcação das dstrbdoras em cada nerôno pode ser vsalzada na Fgra 6. Por ser m mapa topologcamente ordenado, as dstrbdoras com perfs semelhantes ocpam o mesmo nerôno (Lght e a Eletropalo) o ocpam nerônos vznhos (Lght e as concessonáras Banderante, CPFL e Pratnnga), conforme lstrado na Fgra 6. Com base em ma análse pctórca do mapa de perfs (Fgra 6) bsco-se agrpar os nerônos qe apresentassem concessonáras com perfs semelhantes. Desta manera as dstrbdoras foram agrpadas em três agrpamentos maores A, B e C, conforme ndcado na Fgra 6. o agrpamento A foram classfcadas as dstr bdoras qe atendem a mercados grandes, concentrados e com expressva partcpação da classe ndstral. Este grpo é composto pelas prncpas dstrbdoras das regões Sl e Sdeste. O agrpamento B é formado pelas prncpas concessonáras da regão ordeste e pelas concessonáras das regões Centro-Oeste (Celg, Cemat e Enersl). Por fm, o agrpamento C é formado por concessonáras de menor porte. Com relação à avalação das efcêncas das dstrbdoras, esta fo caracterzada por qatro atrbtos, conforme ndcados na Tabela 3. esse aspecto, o únco npt é o OPEX e, portanto, as meddas de efcênca obtdas pelos modelos DEA e SFA devem expressar o potencal de redção dos cstos operaconas de cada concessonára,.e., trata-se de meddas orentadas ao nsmo. Por otro lado, os otpts são os cost-drvers do OPEX; assm, fo seleconado o número de consmdores (C) como ma proxy da qantdade de servço e o montante de energa fornecda (MWh) como ma proxy do prodto total. A consderação da extensão da rede (KM) como m otpt é nteressante, pos esta varável reflete a dspersão dos consmdores na área de concessão, m fator determnante dos cstos da concessonára. o qe se refere ao rendmento de escala do modelo DEA, das opções foram avaladas: rendmentos constantes (CRS) e rendmentos varáves (VRS). O modelo DEA/CRS fo aplcado separadamente em cada agrpamento de DMUs, pos, desta forma, pode-se garantr qe as DMUs avaladas sejam comparáves,.e., homogêneas com relação ao tamanho. Já no modelo DEA/VRS, a restrção de convexdade λ + λ λ = garante qe as DMUs nefcentes sejam comparadas somente com as DMUs com mesmo tamanho o nível de atvdade (COELLI et al., 2005). Fgra 3. Mapa de Kohonen.

9 Cstos operaconas efcentes das dstrbdoras de energa elétrca Desta forma, o modelo DEA/VRS pode ser aplcado ao conjnto formado por todas as dstrbdoras sem a necessdade de classfcá-las prevamente. o entanto, a aplcação do modelo VRS ao conjnto de todas as dstrbdoras não evta qe as DMUs nefcentes em m determnado agrpamento sejam comparadas com as dstrbdoras dos demas agrpamentos. Uma propredade ndesejável do modelo VRS é qe as DMUs qe apresentam os menores níves de nsmos o os maores níves de prodto, em pelo menos ma das varáves, são classfcadas como efcentes. Assm ma dstrbdora pode ser consderada efcente pelo fato de atender ao maor mercado o por ter a maor rede de dstrbção. Em fnção da hpótese de convexdade, a frontera de efcênca estmada pelo modelo VRS é sempre caracterzada por rendmentos crescentes de escala nos menores níves de atvdade e por rendmentos decrescentes de escala nos maores níves de atvdade. Ressalta-se qe esta propredade do modelo VRS ndepende dos dados contdos na amostra de DMUs. Em resmo, na frontera gerada pelo modelo VRS, os rendmentos não são crescentes ao longo de toda frontera e a prodtvdade dmn à medda qe o nível de atvdade amenta para além da escala ótma. Esta característca da frontera VRS não atende aos objetvos da reglação econômca, em partclar o estímlo aos ganhos de prodtvdade. Para fns de m esqema de reglação por ncentvo, a alternatva ao modelo VRS consste em estmar a frontera pelo modelo DRS (non-decreasng retrn to scale), ma varante do modelo VRS qe não admte rendmentos decrescentes de escala, conforme ndcado na Fgra 7 para o caso de m nsmo (X) e m prodto (Y) e pelo modelo em 26, em qe a restrção + λ λ sbstt a restrção convexa λ + λ λ = no modelo DEA/VRS. Qanto aos modelos SFA, foram testadas qatro especfcações dstntas para a frontera estocástca de cstos, resltantes das combnações de das formas fnconas (Cobb-Doglas e Translog) com das dstrbções para o termo aleatóro (Half-ornal e ormal trncada) Eqações 26 e 27: Cobb-Doglas lnopex =β 0 +β ln MWh + + β 2ln C +β 3ln KM + v + (26) Translog lnopex =β 0 +β ln MWh + + β 2ln C +β 3ln KM + β 2MWhC + (27) 05, +β 3MWhKM + + v + +β23ckm a dstrbção ormal-trncada, ~ d (m, σ 2) consdero-se a méda defnda como sendo m = δ 0 + δ ln (OPEX /MWh ), em qe a razão OPEX/ MWh é m índce tradconalmente consderado na avalação da prodtvdade das concessonáras de dstrbção de energa elétrca. A aplcação do método DEA fo realzada com o axílo do software DEAP (www.q.ed.a/economcs/cepa/software.htm). as dstntas versões para o modelo SFA, estmadas com o FROTIER 4. (www.q.ed.a/economcs/cepa/ software.htm), foram adconadas das varáves dmmes na forma adtva com o objetvo de nformar em qe clster se encontra cada dstrbdora. Vale nformar qe, sob a perspectva da metodologa SFA, Tabela 2. Varáves consderadas na classfcação das dstrbdoras. Dmensões Varáves Estrtra Partcpação da classe resdencal no consmo (%R) Partcpação da classe comercal no consmo (%C) Partcpação da classe ndstral no consmo (%I) Concentração Tamanho da rede de dstrbção (km) Carregamento da rede (MWh/km) Consmo médo resdencal (CMR) Tamanho o de ndades consmdoras (C) Energa elétrca dstrbda (MWh) Fgra 4. Redção gradal da regão de vznhança entre os nstantes t = e t = 3. Tabela 3. Varáves consderadas na avalação da efcênca. Tpo da varável Varável Descrção Insmo (DEA) o dependente (SFA) OPEX Csto operaconal (R$.000) Prodtos (DEA) o Independentes (SFA) MWh C KM Qantdade de energa dstrbída (MWh) Total de ndades consmdoras atenddas Extensão da rede de dstrbção (km)

10 662 Soza et al. Gest. Prod., São Carlos, v. 7, n. 4, p , 200 Fgra 5. Mapa de Kohonen com os perfs das concessonáras. Fgra 6. Agrpamentos de concessonáras.

11 Cstos operaconas efcentes das dstrbdoras de energa elétrca Tabela 4. Índces de efcênca (θ ) para as dstrbdoras avaladas. DMUs (clster) SFA Half ormal SFA ormal Trncada DEA Cobb Doglas Translog Cobb-Doglas Translog SFA H CD SFA H TL SFA T CD SFA T TL CRS a DRS b AES-SUL (A),000 0,990,000 0,980,000,000 AMPLA (A) 0,629 0,962 0,382 0,847 0,764 0,744 BADEIRATES(A) 0,552 0,645 0,800 0,662 0,799 0,799 CEEE (A) 0,25 0,264 0,90 0,254 0,278 0,274 CELESC (A) 0,424 0,469 0,40 0,46 0,439 0,439 CEMIG (A) 0,532 0,943 0,508 0,962 0,73 0,654 COPEL (A) 0,74 0,97 0,427,000,000,000 CPFL (A) 0,775 0,926 0,694 0,877 0,86 0,80 ELEKTRO (A) 0,758 0,808 0,649 0,83 0,837 0,834 ELETROPAULO (A) 0,595 0,78 0,495 0,794 0,622 0,65 ESCELSA (A) 0,654 0,606 0,585 0,60 0,68 0,682 LIGHT (A) 0,63 0,763 0,52 0,758 0,637 0,63 PIRATIIGA (A) 0,909 0,97 0,97,000 0,93 0,93 RGE (A) 0,935 0,862 0,787 0,870 0,999 0,999 Méda (A) 0,669 0,783 0,598 0,778 0,75 0,742 CAT-LEO (B) 0,602 0,602 0,277 0,602 0,70 0,626 CEAL (B) 0,67 0,67 0,265 0,62 0,606 0,64 CELG (B) 0,43 0,549 0,227 0,606 0,558 0,507 CELPE (B),000 0,943 0,455,000,000,000 CEMAR (B) 0,595 0,67 0,24 0,633 0,69 0,679 CEMAT (B) 0,385 0,562 0,243 0,552 0,590 0,459 CEPISA (B) 0,58 0,67 0,205 0,62 0,683 0,668 COELBA (B) 0,74 0,658 0,33 0,709 0,735 0,735 COELCE (B) 0,775 0,758 0,340 0,800 0,824 0,796 COSER (B) 0,90 0,870 0,444 0,877 0,977 0,842 EERGIPE (B) 0,800 0,834 0,420 0,820 0,92 0,77 EERSUL (B) 0,602 0,926 0,366,000,000,000 SAELPA (B) 0,806 0,833 0,298 0,847 0,890 0,889 SULGIPE (B) 0,735 0,990 0,246 0,926 0,93 0,943 Méda (B) 0,684 0,74 0,309 0,758 0,792 0,748 CAUIÁ (C) 0,763 0,97 0,262 0,870 0,8 0,48 CEB (C) 0,58 0,704 0,27 0,680 0,563 0,29 CELTIS (C) 0,54 0,855 0,50 0,794 0,606 0,394 CEF (C) 0,870 0,943 0,262 0,980 0,887 0,599 CHESP (C) 0,935 0,787 0,237 0,800,000,000 CPEE (C) 0,962,000 0,388 0,935,000 0,683 ELETROCAR (C) 0,847 0,826 0,30 0,775 0,870 0,722 P. DE CALDAS (C) 0,763 0,943 0,303 0,885,000 0,750 PAAMBI (C) 0,74 0,862 0,262 0,935 0,75 0,979 SATA MARIA (C) 0,840 0,90 0,29 0,855 0,907 0,637 URUSSAGA (C) 0,42 0,926 0,267 0,83 0,690,000 XAXERÊ (C) 0,606 0,625 0,253 0,58 0,65 0,547 Méda (C) 0,729 0,848 0,270 0,820 0,807 0,674 a O modelo DEA/CRS é aplcado ao conjnto de empresas em m mesmo agrpamento. b O modelo DEA/DRS fo aplcado ao conjnto forado pelas 40 dstrbdoras.

12 664 Soza et al. Gest. Prod., São Carlos, v. 7, n. 4, p , 200 Mn θ (26) θλ, s.a. j0 jxj j= θx λ Y j0 λjyj j= λ j= j λj 0 j =, Fgra 7. Modelo VRS e fronteras de efcênca estmadas por dferentes modelos DEA. as efcêncas são calcladas sando o predtor baseado no valor esperado de (8), o qal é programado no software FROTIER 4.. Matematcamente, tem-se, Eqação 28: TE û ( ) = E e (28) 7 Resltados a Tabela 4, são apresentadas as meddas de efcênca para as 40 dstrbdoras analsadas. Conforme revelam as médas dos índces de efcênca na Tabela 4 e os boxplots na Fgra 8, os índces de efcênca obtdos pelo modelo SFA, com especfcação Cobb-Doglas e ormal trncada (SFA T CD), são bastante dscrepantes dos índces encontrados pelos demas modelos. Contrastando com resltados dos modelos SFA/Cobb-Doglas, os índces de efcênca obtdos pelos modelos SFA/Translog são mas aderentes aos índces obtdos pelos modelos DEA CRS e DRS, em especal nos clsters A e B conforme evdencado pelos boxplots na Fgra 8 e pelos elevados coefcentes Pearson e de Spearman (SPIEGEL, 993) na Tabela 5. Vale observar qe em todos os modelos SFA a estatístca γ é sgnfcatva e assme m valor gal a 0,999, ndcando a presença da nefcênca técnca, e qe nos modelos SFA com normal trncada os coefcentes δ 0 e δ são sgnfcatvos. Os modelos DEA/CRS e DEA/DRS são aplcados em dferentes conjntos de concessonáras de dstrbção, o prmero compara apenas as empresas classfcadas em m mesmo agrpamento, enqanto o segndo compara as 40 empresas analsadas. Esta dferença explca os desvos entre os índces obtdos pelos dos modelos e também o fato de qe na maora dos casos os índces de efcênca obtdos pelo modelo CRS são maores qe os encontrados pelo modelo DRS. Esta últma observação deve-se à perda do poder de dscrmnação dos modelos DEA provocada pela redção do número de DMUs avaladas. ote qe na mplementação efetada o modelo DRS é aplcado ao conjnto das 40 dstrbdoras, enqanto o modelo CRS é aplcado em conjntos com 2 e 4 dstrbdoras. Os resltados na Tabela 4, jntamente com os boxplots na Fgra 8 e as correlações na Tabela 5, mostram qe as maores dscrepâncas entre os índces de efcênca obtdos pelos modelos CRS e DRS resdem nas empresas classfcadas no clster C, dstrbdoras de menor porte e qe por sso operam em ma regão no níco da frontera efcente VRS, caracterzada por rendmentos crescentes de escala (Fgra 7). Para estas empresas a frontera DRS confnde-se com a frontera VRS, a qal ncl as DMUs com os menores valores nos nsmos, neste caso a dstrbdora Urssanga (efcênca gal no modelo DRS), pelo fato de apresentar o menor csto operaconal, a únca varável nsmo. Por sa vez, as dstrbdoras do agrpamento A operam na regão de rendmentos decrescentes de escala, no fnal da frontera VRS, pos atendem aos maores mercados. Para estas empresas a frontera DRS confnde-se com ma frontera de rendmentos constantes de escala, conforme lstrado na Fgra 7. Por esta razão, os índces obtdos pelos modelos CRS e DRS (Tabela 4) são fortemente correlaconados nas empresas classfcadas no agrpamento A (Tabela 5), nclsve os dos modelos dentfcaram as mesmas empresas efcentes: Aes-Sl e Copel. As empresas do agrpamento B ocpam ma posção ntermedára na frontera VRS com algmas dstrbdoras na regão de rendmentos decrescentes de escala e otras na regão com rendmentos crescentes de escala. Para empresas na regão da frontera VRS com rendmentos decrescentes de escala, o modelo DRS calcla os índces de efcênca tomando como referênca ma frontera com rendmentos constantes de escala, já para as empresas com rendmentos crescentes de escala, estas provavelmente ocpam ma regão em qe a frontera VRS é próxma da frontera com rendmentos constantes de escala. Assm,

13 Cstos operaconas efcentes das dstrbdoras de energa elétrca Tabela 5. Coefcentes de correlação (Pearson; Spearman) entre os índces de efcênca. Clster A Clster B Clster C Modelos SFA H CD SFA H TL SFA T CD SFA T TL DEA CRS sfa hn tl 0,78 a ; 0,69 a sfa nt cd 0,82 a ; 0,7 a 0,53; 0,39 sfa nt tl 0,80 a ; 0,68 a 0,99 a ; 0,96 a 0,57 b ; 0,43 dea-crs 0,9 a ; 0,85 a 0,85 a ; 0,80 a 0,73 a ; 0,64 b 0,88 a ; 0,82 a DEA-DRS 0,92 a ; 0,87 a 0,82 a ; 0,77 a 0,73 a ; 0,65 b 0,84 a ; 0,78 a 0,99 a ; 0,99 a sfa hn tl 0,74 a ; 0,74 a sfa nt cd 0,78 a ; 0,83 a 0,65 b ; 0,67 a sfa nt tl 0,74 a ; 0,72 a 0,97 a ; 0,96 a 0,7 a ; 0,68 a dea-crs 0,80 a ; 0,77 a 0,95 a ; 0,92 a 0,78 a ; 0,83 a 0,96 a ; 0,92 a DEA-DRS 0,75 a ; 0,70 a 0,93 a ; 0,93 a 0,59 b ; 0,65 b 0,95 a ; 0,97 a 0,92 a ; 0,92 a sfa hn tl 0,37; 0,35 sfa nt cd 0,58 a ; 0,47 0,48; 0,64 b sfa nt tl 0,53; 0,46 0,90 a ; 0,85 a 0,39; 0,44 dea-crs 0,86 a ; 0,85 a 0,56; 0,55 0,68 b ; 0,62 b 0,56; 0,56 DEA-DRS 0,23; 0,26 0,28; 0,25 0,33; 0,45 0,34; 0,30 0,43; 0,54 a Sgnfcatvo ao nível de %. b Sgnfcatvo ao nível de 5%. DEA DRS Fgra 8. Boxplots dos índces de efcênca segndo dferentes modelos. no agrpamento B, os índces de efcênca obtdos pelos modelos DRS e CRS são bem aderentes, conforme ndcado pelas correlações na Tabela 5, nclsve as empresas efcentes são as mesmas: Celpe e Enersl. ote qe esta aderênca é menor qe a observada no agrpamento A, porém mto speror à observada no agrpamento C, no qal o peqeno porte das empresas permte nferr qe elas

14 666 Soza et al. Gest. Prod., São Carlos, v. 7, n. 4, p , 200 ocpam ma regão no níco da frontera VRS com rendmentos crescentes de escala e bem dstante da frontera de rendmentos constantes de escala do modelo DRS. Um mportante resltado dos modelos DEA é a dentfcação do conjnto de referênca (peer set) para cada dstrbdora nefcente. Este conjnto fornece m benchmark a ser persegdo pela empresa nefcente, conferndo ma transparênca ao processo de avalação dos cstos operaconas efcente. o modelo CRS, a segmentação por clster garante qe o peer set de ma dstrbdora nefcente é formado apenas por empresas efcentes classfcadas no mesmo clster onde se encontra a dstrbdora. Por sa vez, na mplementação do modelo DRS não há a segmentação por clster e o peer set de ma empresa nefcente pode ser consttído por empresas classfcadas em otros agrpamentos e com poca smlardade com a dstrbdora avalada, portanto, o benchmark pode não ser factível. Por esta razão, a aplcação do modelo DEA/CRS segmentada por clster parece ser ma estratéga mas atraente. 8 Conclsões os próxmos cclos de revsão tarfára a AEEL snalza com a possbldade de tlzar modelos DEA e SFA na determnação dos cstos operaconas efcentes, m elemento fndamental no cálclo do Fator X das dstrbdoras. As das abordagens partem de presspostos dferentes; o método DEA é determnístco e os desvos em relação à frontera de efcênca são tomados como sendo ncamente devdo às nefcêncas das dstrbdoras. Além dsso, conforme explcado em (SOUZA et al. 200), os modelos DEA são sensíves a otlers e pontos dscrepantes, afetando, portanto, sensvelmente na mensração das efcêncas. Já o método SFA tem ma natreza estocástca e estma ma medda de efcênca lvre dos mpactos dos fatores aleatóros não controláves pelas DMUs. o entanto, para este caso, o problema dz respeto às especfcações da forma fnconal e dstrbção de probabldade para as efcêncas. De qalqer forma, ndependentemente do método a ser escolhdo pelo reglador, é nteressante tlzar as das abordagens, pos ma complementa a otra e permte avalar a robstez dos resltados. Apesar das sgnfcatvas dferenças metodológcas entre os modelos DEA e SFA/Translog, as respectvas meddas de efcêncas para as 40 dstrbdoras analsadas são aderentes. Por fm, na passagem dos índces de efcênca para os cstos operaconas efcentes, a AEEL pode consderar m crtéro semelhante ao adotado para as transmssoras, no qal são reconhecdos pelo menos 80% dos cstos operaconas. Isto mplca na segnte normalzação (BRASIL, 2007) dos índces de efcênca (θ ) obtdos pelos modelos DEA e SFA, antes de serem aplcados no cálclo dos cstos operaconas efcentes OPEX ( θ * ) Eqação 28: Referêncas * θ = 0, 20. [ θ mín ( θ )] / [ máx ( θ ) mín ( θ )] + 0,80 (28) ARCOVERDE, F. D.; TAURI-PIATO, M. E.; SOUSA, M. C. S. Mensração das efcêncas das dstrbdoras do setor energétco braslero sando fronteras estocástcas. In: ECOTRO ACIOAL DE ECOOMIA, 33., 2005, atal. Anas BAKER, R. D.; CHARES, A.; COOPER, W. W. Some models for estmatng techncal and scale neffcences. Management Scence, v. 39, 984. BRASIL. Agênca aconal de Energa Elétrca AEEL. ota Técnca nº 52/2003. Brasíla, DF, BRASIL. Agênca aconal de Energa Elétrca AEEL. ota Técnca nº 262/2006. Brasíla, DF, BRASIL. Agênca aconal de Energa Elétrca AEEL. ota Técnca nª 25/2007. Brasíla, DF, CARVALHO, A. C. P. L. F.; BRAGA, A. P.; LUDERMIR, T. B. Fndamentos de redes neras artfcas.. ed. Ro de Janero: Escola de Comptação, 998. CHARES, A. et al. Comparsons of DEA and exstng rato and regresson systems for effectng effcency evalaton of reglated electrc cooperatves n Texas. Research n Governmental and onproft Accontng, v. 5, p , 989. CHARES, A.; COOPER, W. W.; RHODES, E. Measrng the effcency of decson makng nts. Eropean Jornal of Operatonal Research, v. 2, 978. COELLI, T. J. et al. An ntrodcton to effcency and prodctvty analyss. 2 nd ed. Sprnger, COOPER, W. W.; SEIFORD, L. M.; TOE, K. Data envelopment analyss: a comprehensve text wth models applcatons, reference and dea-solver software. Klwer Academc Pblshers, ESTACHE, A.; ROSSI, M. A.; RUZZIER, C. A. The case for nternatonal coordnaton of electrcty reglaton: evdence from the measrement of effcency n Soth Amerca. Jornal of Reglatory Economcs, v. 25, n. 3, p , FÄRE, R.; GROSSKOPF, S.; LOGA, J. The relatve effcency of Illnos electrc tltes. Resorces and Energy Economcs, 983. JASMAB, T.; POLLIT, M. Benchmarkng and reglaton: nternatonal electrcty experence. Utltes Polcy, v. 9, n. 3, p , JASMAB, T.; POLLIT, M. Internatonal benchmarkng and reglaton: an applcaton to Eropean electrcty dstrbton tltes. Energy Polcy, v. 3, p. 2-30, KUMBHAKAR, S. C.; LOVELL, C. A. K. Stochastc fronter analyss. Cambrdge, 2000.

15 Cstos operaconas efcentes das dstrbdoras de energa elétrca PESSAHA, J. F. M.; SOUZA, R. C.; LAURECEL, L. C. Usando DEA na avalação da efcênca operaconal das dstrbdoras do setor elétrco braslero. In: COGRESO LATIO-IBEROAMERICAO DE IVESTIGACIÓ DE OPERACIOES Y SISTEMAS, 2., 2004, Havana, Cba, Anas... PESSAHA, J. F. M.; SOUZA, R. C.; LAURECEL, L. C. Utlzando a análse envoltóra de dados na reglação da contndade do fornecmento de energa elétrca. In: SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIOAL, 37., 2005, Gramado. Anas RESEDE, M. Relatve effcency measrement and prospects for yardstck competton n Brazlan electrcty dstrbton. Energy Economcs, 200. SOLLERO, M. K. V.; LIS, M. P. E. Avalação de efcênca de dstrbdoras de energa elétrca através da análse envoltóra de dados com restrções aos pesos. In: SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIOAL, 36., 2004, São João del Re. Anas SOUZA, M. V. P. et al. The cost effcency of the Brazlan electrcty dstrbton tltes: a comparson of Bayesan SFA and DEA models. Mathematcal Problems n Engneerng, p. -20, 200. SOUZA, M. V. P. Identfcação da efcênca de empresas de telecomncações empregando análse de envoltóra de dados e redes neras de Kohonen, Dssertação de Mestrado em Engenhara Mecânca-Aeronátca, Insttto Tecnológco de Aeronátca, São José dos Campos, SOUZA, M. V. P. Uma abordagem Bayesana para o cálclo dos cstos operaconas efcentes das dstrbdoras de energa elétrca Tese (Dotorado em Engenhara Elétrca)-PUC-Ro, Ro de Janero, SOUZA, M. V. P.; SOUZA, R. C.; PESSAHA, J. F. M. Cstos operaconas efcentes das dstrbdoras de energa elétrca: comparando modelos DEA e SFA. In: SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIOAL, 39., 2007, Fortaleza. Anas... SPIEGEL, M. R. Estatístca. São Palo: Makron Books, 993. VIDAL, D.. A.; TÁVORA JUIOR, J. L. Avalação da efcênca técnca das empresas de dstrbção de energa elétrca brasleras tlzando a metodologa DEA. In: SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIOAL, 35., 2003, atal. ZAII, A. Reglação econômca no setor elétrco braslero: ma metodologa para defnção de fronteras de efcênca e cálclo do fator X para empresas dstrbdoras de energa elétrca. Tese (Dotorado em Engenhara Elétrca)-PUC-Ro, Ro de Janero, 2004.

EFICIÊNCIA NO CONSUMO DE ENERGIA EM MUNICIPIOS FLUMINENSES CONSIDERANDO TEMPERATURAS

EFICIÊNCIA NO CONSUMO DE ENERGIA EM MUNICIPIOS FLUMINENSES CONSIDERANDO TEMPERATURAS EFICIÊNCIA NO CONSUMO DE ENERGIA EM MUNICIPIOS FLUMINENSES CONSIDERANDO TEMPERATURAS João Carlos Correa Baptsta Soares de Mello Unversdade Federal Flmnense Lda Anglo Meza Unversdade Federal Flmnense Elane

Leia mais

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica.

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica. Análse do Retorno da Edcação na Regão Norte em 2007: Um Estdo à Lz da Regressão Qantílca. 1 Introdcão Almr Rogéro A. de Soza 1 Jâno Macel da Slva 2 Marnalva Cardoso Macel 3 O debate sobre o relaconamento

Leia mais

Avaliação do Ensino nos Cursos de Pós-Graduação em Engenharia: Um Enfoque Quantitativo de Avaliação em Conjunto

Avaliação do Ensino nos Cursos de Pós-Graduação em Engenharia: Um Enfoque Quantitativo de Avaliação em Conjunto Avalação do Ensno nos Crsos de Pós-Gradação em Engenhara: Um Enfoqe Qanttatvo de Avalação em Connto Lda Anglo Meza Insttto de Cênca e Tecnologa Unversdade Vega de Almeda Ra Ibtrna, 108, 4º andar, Maracanã,

Leia mais

EFICIÊNCIAS AEROPORTUÁRIAS: UMA ABORDAGEM COMPARATIVA COM ANÁLISE DE ENVOLTÓRIA DE DADOS

EFICIÊNCIAS AEROPORTUÁRIAS: UMA ABORDAGEM COMPARATIVA COM ANÁLISE DE ENVOLTÓRIA DE DADOS EFICIÊNCIAS AEROPORTUÁRIAS: UMA ABORDAGEM COMPARATIVA COM ANÁLISE DE ENVOLTÓRIA DE DADOS AIRPORT EFFICIENCIES: A COMPARATIVE APPROACH BASED ON DATA ENVELOPMENT ANALYSIS João Carlos C. B. Soares de Mello

Leia mais

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X ANEXO II Nota Técnca nº 256/2009-SRE/ANEEL Brasíla, 29 de julho de 2009 METODOLOGIA E ÁLULO DO FATOR X ANEXO II Nota Técnca n o 256/2009 SRE/ANEEL Em 29 de julho de 2009. Processo nº 48500.004295/2006-48

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Fast Multiresolution Image Querying

Fast Multiresolution Image Querying Fast Multresoluton Image Queryng Baseado no artgo proposto por: Charles E. Jacobs Adan Fnkelsten Davd H. Salesn Propõe um método para busca em um banco de dados de magem utlzando uma magem de consulta

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

DESENVOLVIMENTO DE UM ALGORITMO PARA RECONS- TRUÇÃO DE IMAGENS UTILIZANDO A TÉCNICA DE TOMO- GRAFIA POR IMPEDÂNCIA ELÉTRICA

DESENVOLVIMENTO DE UM ALGORITMO PARA RECONS- TRUÇÃO DE IMAGENS UTILIZANDO A TÉCNICA DE TOMO- GRAFIA POR IMPEDÂNCIA ELÉTRICA PUCRS PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E TECNO- LOGIA DE MATERIAIS Facldade de Engenhara Facldade de

Leia mais

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações.

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações. A CONSTRUÇÃO DE CARTEIRAS EFICIENTES POR INTERMÉDIO DO CAPM NO MERCADO ACIONÁRIO BRASILEIRO: UM ESTUDO DE CASO PARA O PERÍODO 006-010 Rodrgo Augusto Vera (PROVIC/UEPG), Emerson Martns Hlgemberg (Orentador),

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE)

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE) IPECE ota Técnca GOVERO DO ESTADO DO CEARÁ SECRETARIA DO PLAEJAMETO E GESTÃO (SEPLAG) ISTITUTO DE PESQUISA E ESTRATÉGIA ECOÔMICA DO CEARÁ (IPECE) OTA TÉCICA º 33 METODOLOGIA DE CÁLCULO DA OVA LEI DO ICMS

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Acumulação de Capital, Metas de Inflação e Política Fiscal num Modelo Kaldoriano

Acumulação de Capital, Metas de Inflação e Política Fiscal num Modelo Kaldoriano Acmlação de Captal, Metas de Inflação e Polítca Fscal nm Modelo Kaldorano Artr Henrqe da Slva Santos * José Ls Orero ** Resmo: o objetvo do presente artgo é analsar a relação entre a polítca fscal e a

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

PESQUISA OPERACIONAL E ANÁLISE ENVOLTÓRIA DOS DADOS: APLICAÇÕES EM PROBLEMAS AMBIENTAIS

PESQUISA OPERACIONAL E ANÁLISE ENVOLTÓRIA DOS DADOS: APLICAÇÕES EM PROBLEMAS AMBIENTAIS Anas do XX Encontro de Incação Centífca ISSN 98-78 Anas do V Encontro de Incação e Desenvolvento Tecnológco e Inovação ISSN 37- e 3 de setebro de 5 PESQUISA OPERACIONAL E ANÁLISE ENVOLTÓRIA DOS DADOS:

Leia mais

Organização da Aula. Gestão de Obras Públicas. Aula 2. Projeto de Gestão de Obras Públicas Municipais. Contextualização

Organização da Aula. Gestão de Obras Públicas. Aula 2. Projeto de Gestão de Obras Públicas Municipais. Contextualização Gestão de Obras Públcas Aula 2 Profa. Elsamara Godoy Montalvão Organzação da Aula Tópcos que serão abordados na aula Admnstração e Gestão Muncpal Problemas Admnstração e Gestão Muncpal Gestão do Conhecmento

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 XXX.YY 22 a 25 Novembro de 2009 Recfe - PE GRUPO -VI GRUPO DE ESTUDO DE COMERCIALIZAÇÃO, ECONOMIA E REGULAÇÃO DE ENERGIA

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010 Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon

Leia mais

ANÁLISE COMPARATIVA DA PRODUTIVIDADE SETORIAL DO TRABALHO ENTRE OS ESTADOS BRASILEIROS: DECOMPOSIÇÕES USANDO O MÉTODO ESTRUTURAL- DIFERENCIAL,

ANÁLISE COMPARATIVA DA PRODUTIVIDADE SETORIAL DO TRABALHO ENTRE OS ESTADOS BRASILEIROS: DECOMPOSIÇÕES USANDO O MÉTODO ESTRUTURAL- DIFERENCIAL, ANÁLISE COMPARATIVA DA PRODUTIVIDADE SETORIAL DO TRABALHO ENTRE OS ESTADOS BRASILEIROS: DECOMPOSIÇÕES USANDO O MÉTODO ESTRUTURAL- DIFERENCIAL, 1980/2000 2 1. INTRODUÇÃO 2 2. METODOLOGIA 3 3. ANÁLISE COMPARATIVA

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS PREVISÃO DE PRTIDS DE FUTEBOL USNDO MODELOS DINÂMICOS Oswaldo Gomes de Souza Junor Insttuto de Matemátca Unversdade Federal do Ro de Janero junor@dme.ufrj.br Dan Gamerman Insttuto de Matemátca Unversdade

Leia mais

ISEP - ÍNDICE DE SHARPE ESCOLAR A PARTIR DA PROVA BRASIL: CRIAÇÃO E ESTUDO

ISEP - ÍNDICE DE SHARPE ESCOLAR A PARTIR DA PROVA BRASIL: CRIAÇÃO E ESTUDO ISEP - ÍNDICE DE SHARPE ESCOLAR A PARTIR DA PROVA BRASIL: CRIAÇÃO E ESTUDO Roberta Montello Amaral (UNIFESO) amaralroberta@yahoo.com.br Crado em 1990, o Saeb é um sstema de avalação do MEC que, junto à

Leia mais

O Uso do Software Matlab Aplicado à Previsão de Índices da Bolsa de Valores: Um Estudo de Caso no Curso de Engenharia de Produção

O Uso do Software Matlab Aplicado à Previsão de Índices da Bolsa de Valores: Um Estudo de Caso no Curso de Engenharia de Produção O Uso do Software Matlab Aplcado à Prevsão de Índces da Bolsa de Valores: Um Estudo de Caso no Curso de Engenhara de Produção VICENTE, S. A. S. Unversdade Presbterana Mackenze Rua da Consolação, 930 prédo

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Programa de reforma agrária Cédula da Terra: medindo a eficiência dos beneficiários

Programa de reforma agrária Cédula da Terra: medindo a eficiência dos beneficiários Programa de reforma agrára Cédula da Terra: medndo a efcênca dos benefcáros RESUMO Hldo Merelles de Souza Flho Mguel Rocha de Sousa Antôno Márco Buanan José Mara Slvera Marcelo Marques Magalhães Esse artgo

Leia mais

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1 Como aposentadoras e pensões afetam a educação e o trabalo de jovens do domcílo 1 Rodolfo Hoffmann 2 Resumo A questão central é saber como o valor da parcela do rendmento domclar formada por aposentadoras

Leia mais

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

ANALISADOR DE EVENTOS EM TEMPO QUASE-REAL

ANALISADOR DE EVENTOS EM TEMPO QUASE-REAL XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 GPC.01 22 a 25 Novembro de 2009 Recfe - PE GRUPO -V GRUPO DE ESTUDO DE PROTEÇÃO, MEDIÇÃO, CONTROLE E AUTOMAÇÃO EM SISTEMAS

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

reducing income disparities in Brazil and the Northeast and Southeast regions of the country, showing that the fight against social inequalities

reducing income disparities in Brazil and the Northeast and Southeast regions of the country, showing that the fight against social inequalities A Importânca da Educação para a Recente Queda da Desgualdade de Renda Salaral no Brasl: Uma análse de decomposção para as regões Nordeste e Sudeste Valdemar Rodrgues de Pnho Neto Técnco de pesqusa do Insttuto

Leia mais

Análise multivariada do risco sistemático dos principais mercados de ações da América Latina: um enfoque Bayesiano

Análise multivariada do risco sistemático dos principais mercados de ações da América Latina: um enfoque Bayesiano XXVI ENEGEP - Fortaleza, CE, Brasl, 9 a 11 de Outubro de 006 Análse multvarada do rsco sstemátco dos prncpas mercados de ações da Amérca Latna: um enfoque Bayesano André Asss de Salles (UFRJ) asalles@nd.ufrj.br

Leia mais

ESTUDO COMPARATIVO ENTRE OS MODELOS LES E DES PARA SIMULAÇÃO DE ESCOAMENTO COMPRESSÍVEL TURBULENTO

ESTUDO COMPARATIVO ENTRE OS MODELOS LES E DES PARA SIMULAÇÃO DE ESCOAMENTO COMPRESSÍVEL TURBULENTO NELSON PEDRÃO ESTUDO COMPARATIVO ENTRE OS MODELOS LES E DES PARA SIMULAÇÃO DE ESCOAMENTO COMPRESSÍVEL TURBULENTO Dssertação apresentada à Escola Poltécnca da Unversdade de São Palo para obtenção do títlo

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída INTRODUÇÃO O que é sstema? O que é um sstema de controle? SISTEMAS O aspecto mportante de um sstema é a relação entre as entradas e a saída Entrada Usna (a) Saída combustível eletrcdade Sstemas: a) uma

Leia mais

Métodos de Monitoramento de Modelo Logit de Credit Scoring

Métodos de Monitoramento de Modelo Logit de Credit Scoring Métodos de Montoramento de Modelo Logt de Credt Scorng Autora: Armando Chnelatto Neto, Roberto Santos Felíco, Douglas Campos Resumo Este artgo dscute algumas técncas de montoramento de modelos de Credt

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE

UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE Dssertação de mestrado em matemátca aplcada fnancada pelo CNPq IMECC - UNICAMP Pedro Ferraz Vllela Prof.

Leia mais

Investigação do desempenho das cooperativas de

Investigação do desempenho das cooperativas de Investgação do desempenho das cooperatvas de crédto de Mnas Geras por meo da Análse Envoltóra de Dados (DEA) Marco Aurélo Marques Ferrera Rosane Mara Lma Gonçalves Marcelo José Braga Resumo Este trabalho

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

! Superlntenrlencia Reg.onaJ do Ma:toGro$So. Qualificação e Reinserção Profissional dos Resgatados do Trabalho Escravo elou em AÇÃO INTEGRADA

! Superlntenrlencia Reg.onaJ do Ma:toGro$So. Qualificação e Reinserção Profissional dos Resgatados do Trabalho Escravo elou em AÇÃO INTEGRADA ",, 1," ;,,," 1, C?5lMnstérO Públco do "':'1"') Trabalho PRT 23,! Superlntenrlenca RegonaJ do Ma:toGro$So!! (', ' \_ \ '1 j t t' 1 PROJETO: Qualfcação e Renserção Profssonal dos Resgatados do Trabalho

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002 AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002 Regulamenta o estabelecdo na Resolução CNPE n 7, de 21 de agosto de 2002, aprovada pela Presdênca da Repúblca em 22

Leia mais

Otimização de Custos de Transporte e Tributários em um Problema de Distribuição Nacional de Gás

Otimização de Custos de Transporte e Tributários em um Problema de Distribuição Nacional de Gás A pesqusa Operaconal e os Recursos Renováves 4 a 7 de novembro de 2003, Natal-RN Otmzação de ustos de Transporte e Trbutáros em um Problema de Dstrbução Naconal de Gás Fernanda Hamacher 1, Fernanda Menezes

Leia mais

ESTRATÉGIAS PARA OFERTAS EM LEILÕES DE ENERGIA ELÉTRICA DE LONGO-PRAZO ATRAVÉS DE ALGO- SERGIO A. TROVÃO 1, OSVALDO R. SAAVEDRA 1

ESTRATÉGIAS PARA OFERTAS EM LEILÕES DE ENERGIA ELÉTRICA DE LONGO-PRAZO ATRAVÉS DE ALGO- SERGIO A. TROVÃO 1, OSVALDO R. SAAVEDRA 1 ESTRATÉGIAS PARA OFERTAS EM LEILÕES DE ENERGIA ELÉTRICA DE LONGO-PRAZO ATRAVÉS DE ALGO- RITMOS GENÉTICOS SERGIO A. TROVÃO 1, OSVALDO R. SAAVEDRA 1 1. Laboratóro de Sstemas de Potênca, Depto Eng a. Elétrca,

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,

Leia mais

RAE-eletrônica ISSN: 1676-5648 rae@fgv.br. Escola de Administração de Empresas de São Paulo. Brasil

RAE-eletrônica ISSN: 1676-5648 rae@fgv.br. Escola de Administração de Empresas de São Paulo. Brasil RAE-eletrônca ISSN: 676-5648 rae@fgv.br Escola de Admnstração de Empresas de São Paulo Brasl Gumarães, Ináco Andrusk; Chaves Neto, Anselmo RECONHECIMENTO DE PADRÕES: METODOLOGIAS ESTATÍSTICAS EM CRÉDITO

Leia mais

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES Paper CIT02-0026 METODOLOGIA PARA CORRELAÇÃO DE DADOS CINÉTICOS ENTRE AS TÉCNICAS DE

Leia mais

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO J. W. B. Lopes 1 ; E. A. R. Pnhero 2 ; J. R. de Araújo Neto 3 ; J. C. N. dos Santos 4 RESUMO: Esse estudo fo conduzdo

Leia mais

Palavras-chave: jovens no mercado de trabalho; modelo de seleção amostral; região Sul do Brasil.

Palavras-chave: jovens no mercado de trabalho; modelo de seleção amostral; região Sul do Brasil. 1 A INSERÇÃO E O RENDIMENTO DOS JOVENS NO MERCADO DE TRABALHO: UMA ANÁLISE PARA A REGIÃO SUL DO BRASIL Prscla Gomes de Castro 1 Felpe de Fgueredo Slva 2 João Eustáquo de Lma 3 Área temátca: 3 -Demografa

Leia mais

162 EFICIÊNCIA TÉCNICA EM PROPRIEDADES SANTOS, J. A. dos et LEITEIRAS al. DA MICRORREGIÃO DE VIÇOSA-MG: UMA ANÁLISE NÃO-PARAMÉTRICA

162 EFICIÊNCIA TÉCNICA EM PROPRIEDADES SANTOS, J. A. dos et LEITEIRAS al. DA MICRORREGIÃO DE VIÇOSA-MG: UMA ANÁLISE NÃO-PARAMÉTRICA 162 EFICIÊNCIA TÉCNICA EM PROPRIEDADES SANTOS J. A. dos et LEITEIRAS al. DA MICRORREGIÃO DE VIÇOSA-MG: UMA ANÁLISE NÃO-PARAMÉTRICA Techncal effcency n mlk producton n the regon of VIÇOSA-MG: a non-parametrc

Leia mais

SELEÇÃO DE ROTA MARÍTIMA DE CONTÊINERES UTILIZANDO ANÁLISE ENVOLTÓRIA DE DADOS: UM ESTUDO DE CASO

SELEÇÃO DE ROTA MARÍTIMA DE CONTÊINERES UTILIZANDO ANÁLISE ENVOLTÓRIA DE DADOS: UM ESTUDO DE CASO SELEÇÃO DE ROTA MARÍTIMA DE CONTÊINERES UTILIZANDO ANÁLISE ENVOLTÓRIA DE DADOS: UM ESTUDO DE CASO Marco Arzua Callaux Unversdade Federal Flumnense Annbal Parracho Sant anna Unversdade Federal Flumnense

Leia mais

Análise da Correlação entre a Taxa de Performance e o Desempenho de Fundos de Investimentos Multimercados

Análise da Correlação entre a Taxa de Performance e o Desempenho de Fundos de Investimentos Multimercados Análse da Correlação entre a Taxa de Performance e o Desempenho de Fundos de Investmentos Multmercados Wanderle Lma de Paulo, FEA/USP Professor de Atuára da FEA/USP Doutor em Engenhara pela Pol/USP wldepaulo@gmal.com

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

E FICIÊNCIA EM S AÚDE E C OBERTURA DE P LANOS DE S AÚDE NO B RASIL

E FICIÊNCIA EM S AÚDE E C OBERTURA DE P LANOS DE S AÚDE NO B RASIL E FICIÊNCIA EM S AÚDE E C OBERTURA DE P LANOS DE S AÚDE NO B RASIL Clarssa Côrtes Pres Ernesto Cordero Marujo José Cechn Superntendente Executvo 1 Apresentação Este artgo examna se o rankng das Undades

Leia mais

Decisão de Recompra de Ações: Intenção de Blindagem em Período de Turbulência Financeira?

Decisão de Recompra de Ações: Intenção de Blindagem em Período de Turbulência Financeira? Decsão de Recompra de Ações: Intenção de Blndagem em Período de Turbulênca Fnancera? Resumo Autora: Llam Sanchez Carrete Este trabalho tem como objetvo avalar se o anúnco de programas de recompra de ações

Leia mais

Exemplos. representado a seguir, temos que: são positivas. são negativas. i

Exemplos. representado a seguir, temos que: são positivas. são negativas. i 6 Prodto Vetoral Para defnrmos o prodto etoral entre dos etores é ndspensáel dstngrmos o qe são bases postas e bases negatas Para sso consderemos ma base do espaço { } e m obserador Este obserador dee

Leia mais

O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS*

O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS* O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS* Sóna Costa** Luísa Farnha** 173 Artgos Resumo As nsttuções fnanceras

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

Carlos Sérgio Araújo dos Santos José Antonio Aleixo da Silva Gauss Moutinho Cordeiro Joseilme Fernandes Gouveia Alisson de Oliveira Silva

Carlos Sérgio Araújo dos Santos José Antonio Aleixo da Silva Gauss Moutinho Cordeiro Joseilme Fernandes Gouveia Alisson de Oliveira Silva Modelos Smétrcos Transformados não lneares com aplcação na estmatva volumétrca em Híbrdo de Eucalyptus teretcorns no Pólo Gessero do Ararpe - PE Carlos Sérgo Araújo dos Santos José Antono Alexo da Slva

Leia mais

UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE

UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE Unversdade Estadual de Campnas Insttuto de Matemátca, Estatístca e Computação Centífca Departamento de Matemátca Aplcada DISSERTAÇÃO DE MESTRADO UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS

Leia mais

Variáveis dummy: especificações de modelos com parâmetros variáveis

Variáveis dummy: especificações de modelos com parâmetros variáveis Varáves dummy: especfcações de modelos com parâmetros varáves Fabríco Msso, Lucane Flores Jacob Curso de Cêncas Econômcas/Unversdade Estadual de Mato Grosso do Sul E-mal: fabrcomsso@gmal.com Departamento

Leia mais