CAPÍTULO 1 Exercícios Propostos

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 1 Exercícios Propostos"

Transcrição

1 CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz, após um ano, um montante de $1.750? Dados: P = $1.0, S = $1.750, =? S = P (1 + ) $1.750 = $1.0 (1 + ) = 34,61% a.a. 2. Qual é a remuneração obtda em um captal de $2.400 aplcado durante 17 meses à taxa de juros smples de 60% a.a.? Dados: P = $2.400, = 60% a.a., n = 17 meses, J =? 0,6 J = $ J= $ Calcular o rendmento de um captal de $ aplcado durante 28 das à taxa de juros smples de 26% a.m.. Dados: P = $80.000, = 26% a.m., n = 28 das, J =? 0,26 J = $ J= $19.413,33 4. Aplcando $ durante 17 meses, resgatamos $ Qual é a taxa anual de juros smples obtda na operação? Dados: P = $80.000, S = $ , n = 17 meses, =? S = P (1 + n) $ = $ (1 + 17) = 52,94% a.a. 5. Em quantos meses um captal de $28.000, aplcado à taxa de juros smples de 48% a.a., produz um montante de $38.080? Dados: P = $28.000, S = $38.080, = 48% a.a., n =? 0,48 S = P (1 + n) $ = $ (1 + n) n= 9 meses 6. Um captal aplcado transformou-se em $ Consderando-se uma taxa de juros smples de 42% a.a e uma remuneração de $4.065,29, determnar o prazo da aplcação. Dados: S = $13.000, = 42% a.a., J = $4.065,29, n =? (meses) 0, 42 $ n S n J = $4.065, 29 = 1 + n 0, n 455 n $4.065, 29 = n = 13 meses 1 + 0,035 n 7. Um captal de $ transformou-se em $ após 44 das de aplcação. Calcular a taxa de juros obtda na operação. Dados: P = $ , S = $ , n = 44 das, =? 2

2 S = P (1 + n) $ = $ (1 + 44) = 22,73% a.m. 8. João tem uma dívda de $ que vence em 16 meses. Pretende pagar $.000 no fm de 158 das e $ das depos desse prmero pagamento. Quanto deve pagar na data de vencmento para lqudar a dívda? Consdere juros smples de 50% a.a. e data focal no vencmento da dívda. Dados: = 50% a.a $ $ $ das 322 das 0,50 0,50 Valor no vencmento = $ $ $ $2.231,95 + = 9. Um captal acrescdo de seus juros de 21 meses soma $ O mesmo captal dmnuído de seus juros de nove meses é reduzdo a $ Calcular o captal e a taxa de juros smples obtda. Dados: S 1 = $ , S 2 = $88.400, n 1 = 21 meses, n 2 = 9 meses, P =?, =? Podemos montar 2 equações para 2 ncógntas: P + P 21 = $ P P 9 = $ = 2,083333%a.m.(25% a.a.) P = Um captal de $4.500 fo dvddo em três parcelas que foram aplcadas pelo prazo de um ano. A prmera a juros smples de 4% a.t., a segunda a juros smples de 6% a.t. e a tercera a juros smples de 10% a.t.. Consderando-se que o rendmento da prmera parcela fo $160 e o rendmento das três parcelas totalzou $ 1.320, calcular o valor de cada parcela. Dados: P 1 + P 2 + P 3 = $4.500, 1 = 4% a.t., 2 = 6% a.t., 3 = 10% a.t., n = 1 ano = 4 trmestres, J 1 = $160, J 1 + J 2 + J 3 = $1.320, P 1 =?, P 2 =?, P 3 =? Logo, J1 = P1 1 n $160 = P1 0,04 4 P1 = $1.000 J2 = P2 2 n J3 = P3 3 n J1 + J2+ J3 = (P1 1 + P2 2 + P3 3) n $1.320 = ( 40 + P2 0,06 + P3 0,1) 4 P2 0,06 + P3 0,1 = $290 Portanto, P2 0,06+ P3 0,1 = $ 290 P 2= $1.500, P 3= $2.000 P 2 + P 3 = $ Dos captas, um de $2.400 e outro de $1.800, foram aplcados a uma mesma taxa de juros smples. Calcular a taxa, consderando-se que o prmero captal em 48 das rendeu $17,00 a mas que o segundo em das. Dados: J 1 J 2 = $17, n 1 = 48 das, n 2 = das, P 1 = $2.400, P 2 = $1.800, =? J1 - J 2 = (P1 n 1 - P2 n 2 ) $17 = ( $ $1.800 ) = 0,833% a.m. 3

3 . Um captal fo aplcado a juros smples de 42% a.a. durante 50 das. Calcular o captal, consderando-se que, se a dferença entre ele e os juros obtdos fosse aplcada à mesma taxa, rendera $988,75 em um trmestre. Dados: = 42% a. a., n 1 = 50 das, n 2 = 90 das, P =? 0,42 juros obtdos no prazo de 50 das = P n1 = P 50 0,42 0,42 0,42 0,42 P- P = $988,75 P ( 1 50) 90 = $988,75 P= $ Certo captal fo aplcado a juros smples de % a.a. durante 50 das. Calcular o captal e o rendmento obtdo, consderando-se que, se a dferença entre ambos, acrescda de $10.000, fosse aplcada à mesma taxa, rendera $ no prazo de um ano. Dados: = % a. a., n 1 = 50 das, n 2 = 1 ano, P =? J= P n 1 1 0, ( 1 ) 2 ( ) P-J + $ n = $ P , 1+ $ , 1 = $ Logo, P= $ ,3 J 1= P n1 J 1= $ J 1= $13.333, Uma pessoa aplcou dos captas a juros smples, o prmero a 33% a.a. e o segundo a 45% a.a. Consderando-se que o rendmento de ambas as aplcações totalzou $ no prazo de um ano, determnar o valor dos captas, sabendo-se que o prmero é 37,5% menor que o segundo. Dados: P 1 = (1 0,375) P 2, 1 = 33% a.a., 2 = 45% a.a., n = 1 ano, S 1 + S 2 = $ Logo, + ( ) ( ) J J = P + P n $ = 0,625 0, ,45 1 P P 2 = $ P 1 = $ Há 13 meses e dez das um captal de $ fo aplcado à taxa de juros smples de 6% a.a. Se hoje for aplcada a mportânca de $8.000 a juros smples de % a.a. e o prmero captal contnuar aplcado à mesma taxa, em que prazo os montantes respectvos serão guas? Dados: n 1 = 400 das, P 1 = $ , P 2 = $ 8.000, 1 = 6% a.a., 2 = % a.a.., n =? Na data focal, S = P (1 + n) 0,06 0, $ (n+400) = $ n n = das = 7 anos, 4 meses e 27 das 16. Uma empresa obteve um empréstmo de $ a juros smples de 10% a.a.. Algum tempo depos lqudou a dívda, nclusve os juros, e tomou um novo empréstmo de $0.000 a juros smples de 8% a.a.. Dezoto meses após o prmero empréstmo, lqudou todos os seus débtos, tendo pago $ de juros totas nos dos empréstmos. Determnar os prazos (em meses) dos dos empréstmos. Dados: J 1 + J 2 = $35.000, n 1 + n 2 = 18 meses, P 1 = $ , P 2 = $0.000, 1 = 10% a.a., 2 = 8% a.a., n 1 =?, n 2 =? 4

4 1 2 0,1 0,08 J 1 + J 2 = P1 n 1 + P2 n 2 $ = $ n 1 + $0.000 (18 n 1) n1= 3 meses,n2= 15 meses 17. Uma pessoa tomou um empréstmo a juros smples de 9% a.a.. Quarenta e cnco das depos, pagou a dívda e contrau um novo empréstmo duas vezes maor que o prmero, pelo prazo de dez meses a juros smples de 6% a.a.. Sabendo-se que pagou ao todo $ de juros pelos dos empréstmos, calcular o valor do prmero. Dados: J 1 + J 2 = $ , n 1 = 45 das, n 2 = 10 meses, P 2 = 2 P 1, 1 = 9% a.a.., 2 = 6% a.a., P 1 =? 1 2 0,09 0,06 J 1+ J 2= P1 n 1 + P2 n 2 $ = P P 1 = $ Um captal fo dvddo em duas parcelas e aplcado a taxas e prazos dferentes. A prmera fo aplcada a juros smples de 10% a.m. durante ses meses, e a segunda a juros smples de 2% a.m. durante meses. Sabendo-se que a prmera parcela fo $50 maor e rendeu $60 a mas que a segunda, determnar os valores de ambas as parcelas. Dados: J 1 - J 2 = $60, n 1 = 6 meses, n 2 = meses, 1 = 10% a.m., 2 = 2% a.m., P 1 = $50 + P 2, P 1 =?, P 2 =? 1 2 J1 - J 2 = P1 n 1 - P2 n 2 $60 = ( $50+P2) 6 0,1 - P2 0,02 P 1= $133, 33, P 2= $83, Aplcado a juros smples pelo prazo de um ano, um captal transformou-se em $ Esse montante fo reaplcado por mas dos anos a uma taxa 20% maor que a taxa ganha na prmera aplcação, obtendo-se um montante fnal de $22.. Calcular o valor do captal ncalmente aplcado e a taxa de juros ao ano à qual ele fo aplcado. Dados: S 1 = $13.000, S 2 = $22., n 1 = 1 ano, n 2 = 2 anos, 2 = 1,2 1, P 1 =?, 1 =? S S n 2 = 1 ( ) $22. = $ ( ) 2 = 36% a.a. 1 = = % a.a. 1,2 Por outro lado, S 1 = P 1 (1 + 1 n 1) $ = P 1 (1 + 0,3 1) P 1= $ Um pessoa aplcou um captal em uma conta remunerada que rende juros smples de % a.a.. Depos de três anos, resgatou metade dos juros obtdos e reaplcou a outra metade por um ano à taxa smples de 32% a.a., obtendo um rendmento de $20,16 nessa últma aplcação. Calcular o valor do captal aplcado ncalmente. Dados: P 2 = 0,5. J 1, J 2 = $20,16,-n 1 = 3 anos, n 2 = 1 ano, 1 = % a.a., 2 = 32% a.a., P =? Juros ganhos ao térmno dos 3 anos: P 0, 3 valor reaplcado ao térmno do tercero ano: rendmento do captal reaplcado ao térmno de 1 ano: P= $140 ( ) 0,50 P 0, 3 ( ) $20,16 = 0,50 P 0, 3 0, Dos captas foram aplcados a juros smples. O prmero à taxa de 20% a.a., e o segundo a 40% a.a.. Calcular os captas, consderando-se que, somados, eles perfazem $500 e que os dos, em um ano, renderam juros totas de $1. Dados: P 1 + P 2 = $500, 1 = 20% a.a., 2 = 40% a.a., n = 1 ano, J 1 + J 2 = $1, P 1 =?, P 2 =?, 5

5 ( ) ( ) J 1+ J 2= P1 1 + P2 2 n $1 = P1 0,2 + ($500 - P 1) 0,4 1 P 1 = $350 P 2 = $ Um captal de $50.000, aplcado a juros smples, rendeu $1.875 em um determnado prazo. Se o prazo fosse 36 das maor, o rendmento aumentara em $250. Calcular a taxa de juros smples ao ano e o prazo da operação em das. Dados: P = $50.000, J 1 = $1.875, J 2 - J 1 = $250, n 2 - n = 36 das, =?, n =?, J2 - J 1 = P ( n2 - n ) $250 = $ = 5% a.a. J 1 = P n $1.875 = $ n n = 270 das = 9 meses 23. Uma pessoa levantou um empréstmo de $3.000 a juros smples de 18% a.a. para ser lqudado depos de 270 das. Consderando-se que a pessoa amortzou $1.000 no 75 o da, quanto deverá pagar na data de vencmento de modo a lqudar a dívda? (data focal: 270 o da). 270 das $ $ das 0,18 0,18 Valor de resgate: = $ $ $2.7,50 + = 24. Uma empresa tem duas dívdas a pagar. A prmera de $2.500, contratada a juros smples de 2,5% a.m., com vencmento em 45 das; e a segunda, de $3.500, a juros smples de 3% a.m., com vencmento em 90 das. Calcular a quanta necessára para lqudação de ambas as dívdas em 180 das, consderando-se que no o da do seu prazo a prmera dívda fo amortzada com $1.500, e no 60 o da do seu prazo a segunda fo amortzada com $3.000 (efetuar os cálculos na data focaldo 180 o da). 150 das $1.500 $ das 0 das $3.000 $ das 0,025 0,025 Valor do resgate = $ $ ,03 0, $ $ = $1.548,75 6

6 25. Uma pessoa tem duas dívdas a pagar: a prmera de $1.000, com vencmento em 45 das, e a segunda, de $3.500, com vencmento em 0 das. A pessoa pretende lqudar as dívdas por meo de dos pagamentos guas com vencmentos em 90 e 180 das, respectvamente. Calcular o mporte de cada pagamento, consderando-se que ambas as dívdas foram contratadas a juros smples de 2% a.m. (data focal: 180 o da) 90 das $ X $ X 135 das 60 das 0,02 0,02 0,02 X = $ $ X X =$2.296, 26. Determnar: a. O tempo necessáro para que seja trplcado um captal aplcado a juros smples de 5% a.m.. S = P (1 + n) 3P = P (1 + 0,05 n) n = 40 meses b. O tempo necessáro para que seja quntuplcado um captal aplcado a juros smples de 15% a.t.. S = P (1 + n) 5P = P (1 + 0,15 n) n = 26,67 trmestres = 80 meses c. O tempo em que um captal de $.000 rende $541,68 quando aplcado a juros smples de,5% a.a.. 0,5 $541,68 = $.000 n n = 1 das d. O tempo necessáro para que um captal de $7.000 transforme-se em um montante de $7.933,34 quando aplcado a juros smples de 24% a.a.. S = P (1 + n) 0,24 $7.933,34 = $7.000 (1 + n) n = 200 das 27. Determnar: a. A taxa de juros smples anual que produz um rendmento de $60 em 36 das a partr de um captal de $ $60 = $ = % a.a. b. A taxa de juros smples mensal que produz um rendmento de $6.000 em meses a partr de um captal de $ $6.000 = $8.000 = 2,5% a.m. c. A taxa de juros smples anual embutda na compra de um bem cujo valor à vsta é de $3.000, sendo que o pagamento consste de uma entrada de $1.000 mas uma parcela de $2.200 para 60 das. 7

7 valor à vsta = valor da entrada + valor presente da parcela $2.200 $3.000 = $ = 60% a.a Calcular: a. O valor do captal que, aplcado a juros smples de 24% a.a., rende $0 em 6 das. 0,24 $0 = P 6 P = $3.571,43 b. O valor do captal que, aplcado a juros smples de 26% a.a., rende $800 em 7 trmestres. 0,26 $800 = P 7 P = $1.758,24 4 c. O rendmento de uma aplcação de $ por 446 das a juros smples de 24% a.a.. 0,24 = $ = $2.973, Calcular: a. O rendmento de um captal de $2.000 aplcado a juros smples de 2,5% a.m. desde o da de março até o da 5 de junho do mesmo ano. 0,025 = $2.000 (156-71) = $141,66 b. O valor do captal que rendeu $3.000 no período compreenddo entre 4 de abrl e 31 de mao do mesmo ano a juros smples de 2% a.m.. 0,02 $3.000 = P (151-94) P = $78.947,37 c. O valor de resgate de um captal de $5.000 aplcado a juros smples de 2% a.m. pelo período compreenddo entre 6 de abrl e 26 de junho do mesmo ano. 0,02 S = P (1 + n) = $5.000 ( 1 + (177-96)) = $5.270 d. O valor do captal que se transformou em um montante de $ no período compreenddo entre de junho e 31 de dezembro do corrente ano, a juros smples de 2% a.m.. S = P (1 + n) 0,02 ( ) $ = P 1 + ( ) P = $17.814,73 e. A taxa de juros smples mensal ganha por uma aplcação de $ que rendeu $2.800 no período compreenddo entre 23 de mao e 18 de agosto do mesmo ano. $2.800 = $ (2-143) = 4,023% a.m.. No da 26 de mao fo contratado um empréstmo de $7.000 a juros smples de 24% a.a. para ser totalmente lqudado em 90 das. No da 16 de junho foram amortzados $3.000, e no da 11 de julho, $ Determnar a data de vencmento da dívda e o valor da quanta que deverá ser paga naquela data para lqudar a dívda (consderar ano cvl e data focal no 90 o da). 8

8 Dados: = 24% a.a. Determnação da data de resgate da aplcação usando a Tábua para Contagem de Das do ano cvl: número de das da data posteror (?) = +n número de das da data anteror (26 de mao) = 146 prazo: 90 Logo, n = 90 n =236, que na a tábua para contagem de das entre duas datas (capítulo 1 do lvro) corresponde ao da 24 de agosto. 90 das 26/ 05 16/ 06 11/ 07 24/ 08 $ $ $ das 44 das 0,24 0,24 0,24 Valor de resgate = $ $ $ = $1.708, Determnar o rendmento de um captal de $2.000 aplcado do da 3 de março até o da 28 de junho do corrente ano. A taxa de juros smples ncalmente contratada fo 3% a.m., mas posterormente teve queda para 2,8% a.m. no da 16 de abrl e para 2,6% a.m. no da 16 de junho. Dados: P = $2.000, 1 = 3% a.m., 2 = 2,8% a.m., 3 = 2,6% a.m., J =? n = 03/03 até 16/04 = n = 44 das n 2 = 16/04 até 16/06 = n 2 = 61 das n 3 = 16/06 até 28/06 = n 3= das 0,03 0,028 0,026 = $222,67 J = P (1 n n n 3) = $ Uma dívda de $2.000 contraída no da 8 de junho para ser lqudada no da 8 de julho fo contratada orgnalmente a juros smples de 2% a.m.. Calcular o rendmento da aplcação, sabendo-se q ue a taxa de juros subu para 2,5% a.m. no da de junho, para 3% a.m. no da 24 de junho e para 3,5% a.m. no da 3 de julho (consderar o ano cvl). Dados: P = $2.000, 1 = 2% a.m., 2 = 2,5% a.m., 3 = 3% a.m., 4 = 3,5% a.m., J =? n = 08/06 até /06 = n = 4 das n 2 = /06 até 24/06 = n 2 = das n 3 = 24/06 até 03/07 = n 3= 9 das n 4 = 03/07 até 08/07 = n 4= 5 das 0,02 0,025 0,03 0,035 J = P (1 n 1+ 2 n 2+ 3 n n 4) = $ = $ Uma aplcação fnancera fo ncada no da 2 de junho com $ Posterormente foram efetuados dos depóstos adconas de $500 e de $0 nos das 8 e 16 e um saque de $200 no da 26 de junho. Consderando-se que ncalmente fo contratada uma taxa de juros smples de 28% a.a., que depos baxou para 26% a.a. no da 16 de junho, calcular o saldo dsponível no da 1 o de julho. 9

9 14 das 02/06 08/06 16/06 $2.000 $500 + $0 8 das 0,28 0,28 Valor em 16/06 = $ $ $0 = $ das 16/06 26/06 01/07 $ $200 5 das 0,26 0,26 Saldo dsponível em 01/07 = $ $ = $2.654, Hoje uma pessoa tem duas dívdas: a prmera, de $8.000, vence em 36 das, e a segunda, de $.000, vence em 58 das. A pessoa propõe-se a qutá-las por meo de dos pagamentos guas dentro de 45 e 90 das, respectvamente. A juros smples de 24% a.a., calcular o valor de cada pagamento (data focal: 90 o da). 45 das $ X $ X 54 das 32 das 0,24 0,24 0,24 X = $ $ X X = $10.0, Resolver o exercíco anteror tomando como data focal o 45 o da das $ X $ X 9 das - 13 das 1 1 0,24 0,24 0,24 X = $ $ X X = $10.119,82 CAPÍTULO 2 10

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

GST0045 MATEMÁTICA FINANCEIRA

GST0045 MATEMÁTICA FINANCEIRA GST0045 MATEMÁTICA FINANCEIRA Concetos Báscos e Smbologa HP-12C Prof. Antono Sérgo A. do Nascmento asergo@lve.estaco.br GST0045 Matemátca Fnancera 2 Valor do dnhero no tempo q O dnhero cresce no tempo

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Fnancera 007. Prof.: Luz Gonzaga Damasceno E-mals: amasceno04@yahoo.com.br amasceno@nterjato.com.br amasceno@hotmal.com 5. Taxa Over mensal equvalente. Para etermnar a rentablae por a útl one

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

GABARITO DOS EXERCÍCIOS EXERCÍCIOS PROPOSTOS (Fator de Acumulação de Capital Pagamento Simples)

GABARITO DOS EXERCÍCIOS EXERCÍCIOS PROPOSTOS (Fator de Acumulação de Capital Pagamento Simples) Bertolo MATEMÁTICA FINANCEIRA Gab_fin2 1 GABARITO DOS EXERCÍCIOS EXERCÍCIOS PROPOSTOS (Fator de Acumulação de Capital Pagamento Simples) 1. Uma pessoa toma R$ 30.000,00 emprestados, a juros de 3% ao mês,

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas Análse de Projectos ESAPL / IPVC Taxas Equvalentes Rendas Taxas Equvalentes Duas taxas e, referentes a períodos dferentes, dzem-se equvalentes se, aplcadas a um mesmo captal, produzrem durante o mesmo

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação números e funções Gua do professor Software Como comprar sua moto Objetvos da undade 1. Aplcar o conceto de juros compostos; 2. Introduzr o conceto de empréstmo sob juros; 3. Mostrar aplcações de progressão

Leia mais

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Vtóra Agosto de 2013 Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Leia mais

A Matemática Financeira nos Financiamentos Habitacionais

A Matemática Financeira nos Financiamentos Habitacionais 2013: Trabalho de Conclusão de Curso do Mestrado Profssonal em Matemátca - PROFMAT Unversdade Federal de São João del-re - UFSJ Socedade Braslera de Matemátca - SBM A Matemátca Fnancera nos Fnancamentos

Leia mais

RESOLUÇÃO Nº 3259 RESOLVEU:

RESOLUÇÃO Nº 3259 RESOLVEU: Resolução nº 3259, de 28 de janero de 2005. RESOLUÇÃO Nº 3259 Altera o dreconamento de recursos captados em depóstos de poupança pelas entdades ntegrantes do Sstema Braslero de Poupança e Empréstmo (SBPE).

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Matemática Financeira

Matemática Financeira Aula 02 Matemática Financeira Prof. Ms. João Domiraci Paccez Aula 02 Conversão das taxas de juros 1. Conversão da taxa de juros 2. Equivalência das taxas de juros na capitalização simples e na composta

Leia mais

Conceitos de: juro, capital, taxa de juros, montante e capitalização simples

Conceitos de: juro, capital, taxa de juros, montante e capitalização simples UFS FM DEPARTAMENTO DE MATEMÁTIA MTM 5151 MATEMÁTIA FINAEIRA I PROF. FERNANDO GUERRA. UNIDADE 1 JUROS SIMPLES onceitos de: juro, capital, taxa de juros, montante e capitalização simples Juro j É uma compensação

Leia mais

Matemática Régis Cortes JURO SIMPLES

Matemática Régis Cortes JURO SIMPLES JURO SIMPLES 1 Juros é o rendimento de uma aplicação financeira, valor referente ao atraso no pagamento de uma prestação ou a quantia paga pelo empréstimo de um capital. Atualmente, o sistema financeiro

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Em minha opinião pessoal, não acredito que as duas questões sejam anuladas, porém não custa tentar!!!!

Em minha opinião pessoal, não acredito que as duas questões sejam anuladas, porém não custa tentar!!!! Vamos ao que interessa. As questões 69 e 75 são passíveis de anulação. Veja suas resoluções. Em minha opinião pessoal, não acredito que as duas questões sejam anuladas, porém não custa tentar!!!! A prova

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

JUROS: CONCEITOS E APLICAÇÕES. (moreirafrmat@hotmail.com) RESUMO

JUROS: CONCEITOS E APLICAÇÕES. (moreirafrmat@hotmail.com) RESUMO JUROS: CONCEITOS E APLICAÇÕES Fernando Rcardo Morera 1, Esdras Texera Costa 2, Rodrgo Couto Santos 3, Wendy Carnello Ferrera 4, Chrstan Das Cabacnha 5 1 Professor Mestre do Curso de Matemátca da Unversdade

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA

SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA Prof. Quilelli 1 ) Uma dívida contraída à taxa de juros simples de 10% ao mês, deverá ser paga em duas parcelas, respectivamente iguais a R$ 126,00, daqui a

Leia mais

Cálculo Financeiro Fixa nº2

Cálculo Financeiro Fixa nº2 Cálculo Financeiro Fixa nº2 2. Regimes de Capitalização 2.1. O Regime de Juro Simples 2.2. O Regime de Juro Composto 8 Considere um empréstimo de 300 000 Euros, pelo prazo de 4 anos, à taxa anual de juro

Leia mais

JUROS SIMPLES - EXERCÍCIOS PARA TREINAMENTO - LISTA 02

JUROS SIMPLES - EXERCÍCIOS PARA TREINAMENTO - LISTA 02 JUROS SIMPLES - EXERCÍCIOS PARA TREINAMENTO - LISTA 0 01. Calcular a taxa mensal proporcional de juros de: a) 14,4% ao ano; b) 6,8% ao quadrimestre; c) 11,4% ao semestre; d) 110,4% ao ano e) 54,7% ao biênio.

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento CAP RATES, YIELDS E AALIAÇÃO DE IMÓEIS pelo étodo do rendento Publcado no Confdencal Iobláro, Março de 2007 AMARO NAES LAIA Drector da Pós-Graduação de Gestão e Avalação Ioblára do ISEG. Docente das caderas

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 4.3 Decsão Intertemporal do Consumdor O Mercado de Captal Isabel Mendes 2007-2008 4/17/2008 Isabel Mendes/MICRO II 1 3. EQUILÍBRIO

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Administração - UniFAI

Administração - UniFAI CENTRO UNIVERSITÁRIO ASSUNÇÃO UniFAI Matemática Financeira Exercícios - Parte II Desconto de Títulos de Crédito Desconto de um Conjunto de Títulos 1 Desconto de Títulos de Crédito 1) Calcular o desconto

Leia mais

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X ANEXO II Nota Técnca nº 256/2009-SRE/ANEEL Brasíla, 29 de julho de 2009 METODOLOGIA E ÁLULO DO FATOR X ANEXO II Nota Técnca n o 256/2009 SRE/ANEEL Em 29 de julho de 2009. Processo nº 48500.004295/2006-48

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1

Soluções integrais. Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo. Soluções do Capítulo 1 Soluções integrais Há cinco degraus para se alcançar a sabedoria: calar, ouvir, lembrar, agir, estudar. Anônimo Soluções do Capítulo 1 Basta somar os valores, lembrando que seta para baixo indica valor

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Roberto César Faria e Silva MATEMÁTICA FINANCEIRA Aluno: SUMÁRIO 1. CONCEITOS 2 2. JUROS SIMPLES 3 Taxa Efetiva e Proporcional 10 Desconto Simples 12 Desconto Comercial, Bancário ou Por Fora 13 Desconto

Leia mais

Taxas: Proporcional e Equivalente

Taxas: Proporcional e Equivalente Taxas: Proporcional e Equivalente Taxa Proporcional Considere duas taxas de juros arbitrárias i 1 e i 2, relacionadas respectivamente aos períodos n 1 e n 2, referidos à unidade comum de tempo das taxas.

Leia mais

2 - Um capital de R$ 2.000,00 é aplicado a juros composto durante 4 anos a taxa de 2% a.a. Qual o montante e qual os juros totais auferidos?

2 - Um capital de R$ 2.000,00 é aplicado a juros composto durante 4 anos a taxa de 2% a.a. Qual o montante e qual os juros totais auferidos? LISTA 02 MATEMÁTICA FINANCEIRA Professor Joselias TAXAS EQUIVALENTES A JUROS COMPOSTOS, TAXA NOMINAL, TAXA EFETIVA, DESCONTO RACIONAL SIMPLES E COMPOSTO, DESCONTO COMERCIAL SIMPLES E COMPOSTO. DESCONTO

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler Tipos de Formação de Juros Os juros são formados através do processo denominado regime de capitalização, que pode ocorrer de modo simples ou composto, conforme apresentado a seguir: Juros Simples No regime

Leia mais

Centro Universitário Católico Salesiano Auxilium. Séries Uniformes de Pagamento

Centro Universitário Católico Salesiano Auxilium. Séries Uniformes de Pagamento Centro Universitário Católico Salesiano Auxilium Disciplina: Matemática Financeira I Prof.: Marcos José Ardenghi Séries Uniformes de Pagamento As séries uniformes de pagamentos, anuidades ou rendas são

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

mat fin 2008/6/27 13:15 page 53 #50

mat fin 2008/6/27 13:15 page 53 #50 mat fin 2008/6/27 13:15 page 53 #50 Aula 4 DESCONTO NA CAPITALIZAÇ ÃO SIMPLES O b j e t i v o s Ao final desta aula, você será capaz de: 1 entender o conceito de desconto; 2 entender os conceitos de valor

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS*

O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS* O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS* Sóna Costa** Luísa Farnha** 173 Artgos Resumo As nsttuções fnanceras

Leia mais

Matemática Financeira

Matemática Financeira 1)Um vestdor aplcou R$6,, gerado uma remueração de R$3, ao fal de um período de um ao (36 das). Calcular a taxa de juros paga a operação. = J/ = 3/6 =, ou % ou 63 = 6 (1+ 1) 63 = 6 + 6 63 6 = 6 3 = 6 =

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

F=1.038,50. F = P. (1+i) n F=1.000(1+0,12) 4/12. F = P. (1+i) n J=F-P J=1.000(1+0,02) 12 1.000 = 268,24

F=1.038,50. F = P. (1+i) n F=1.000(1+0,12) 4/12. F = P. (1+i) n J=F-P J=1.000(1+0,02) 12 1.000 = 268,24 1 Quais serão os juros pagos pelo empréstimo de $1. durante um ano a uma taxa de 2% am? P=1. i=2%am n=1 ano(=12meses) F = P. (1+i) n J=F-P J=1.(1+,2) 12 1. = 268,24 3 Qual será o montante pago pelo empréstimo

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Conceitos Básicos de Juros

Conceitos Básicos de Juros Conceitos Básicos de Juros Prof. Wanderson S. Paris, M.Eng. prof@cronosquality.com.br Porcentagem e cálculo de taxa (per + cento + agem) corresponde a uma fração de cem (cento) de qualquer coisa mensurável.

Leia mais

22.5.1. Data de Equivalência no Futuro... 22.5.2. Data de Equivalência no Passado... 2. 22.5. Equivalência de Capitais Desconto Comercial...

22.5.1. Data de Equivalência no Futuro... 22.5.2. Data de Equivalência no Passado... 2. 22.5. Equivalência de Capitais Desconto Comercial... Aula 22 Juros Simples. Montante e juros. Descontos Simples. Equivalência Simples de Capital. Taxa real e taxa efetiva. Taxas equivalentes. Capitais equivalentes. Descontos: Desconto racional simples e

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

Aula 04 Matemática Financeira. Equivalência de Capitais a Juros Compostos

Aula 04 Matemática Financeira. Equivalência de Capitais a Juros Compostos Aula 04 Matemática Financeira Equivalência de Capitais a Juros Compostos Introdução O conceito de equivalência permite transformar formas de pagamentos (ou recebimentos) em outras equivalentes e, consequentemente,

Leia mais

Elementos de Análise Financeira Juros Compostos Profa. Patricia Maria Bortolon

Elementos de Análise Financeira Juros Compostos Profa. Patricia Maria Bortolon Elementos de Análise Financeira Juros Compostos Juros Compostos Os juros formados em cada período são acrescidos ao capital formando o montante (capital mais juros) do período. Este montante passará a

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

EXERCÍCIOS IV SÉRIES DE PAGAMENTOS IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais

EXERCÍCIOS IV SÉRIES DE PAGAMENTOS IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais IGUAIS E CONSECUTIVOS 1. Calcular o montante, no final de 2 anos, correspondente à aplicação de 24 parcelas iguais e mensais de $ 1.000,00 cada uma, dentro do conceito de termos vencidos, sabendo-se que

Leia mais

Pra que serve a Matemática Financeira? AVALIAÇÃO DE PROJETOS DE INVESTIMENTOS MATEMÁTICA FINANCEIRA 20/01/2016. Danillo Tourinho Sancho da Silva, MSc

Pra que serve a Matemática Financeira? AVALIAÇÃO DE PROJETOS DE INVESTIMENTOS MATEMÁTICA FINANCEIRA 20/01/2016. Danillo Tourinho Sancho da Silva, MSc AVALIAÇÃO DE PROJETOS DE INVESTIMENTOS Danillo Tourinho Sancho da Silva, MSc MATEMÁTICA FINANCEIRA Danillo Tourinho Sancho da Silva, MSc Pra que serve a Matemática Financeira? 1 NOÇÕES GERAIS SOBRE A MATEMÁTICA

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Juros Compostos. Ao substituirmos cada uma das variáveis pelo seu respectivo valor teremos:

Juros Compostos. Ao substituirmos cada uma das variáveis pelo seu respectivo valor teremos: Introdução a Matemática Financeira Profº.: Ramon S. de Freitas Juros Compostos Juro composto é aquele que em cada período, a partir do segundo, é calculado sobre o montante relativo ao período anterior.

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Modelos estatísticos para previsão de partidas de futebol

Modelos estatísticos para previsão de partidas de futebol Modelos estatístcos para prevsão de partdas de futebol Dan Gamerman Insttuto de Matemátca, UFRJ dan@m.ufrj.br X Semana da Matemátca e II Semana da Estatístca da UFOP Ouro Preto, MG 03/11/2010 Algumas perguntas

Leia mais

MATEMÁTICA FINANCEIRA - ADMINISTRAÇÃO

MATEMÁTICA FINANCEIRA - ADMINISTRAÇÃO MATEMÁTICA FINANCEIRA - ADMINISTRAÇÃO DESCONTO 1) Determinar o desconto por fora sofrido por uma letra de R$ 5.000,00 à taxa de 5% aa, descontada 5 anos antes de seu vencimento. Resp: R$ 1.250,00 2) Uma

Leia mais

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Professor: Custódio Nascimento 1- Análise da prova Neste artigo, faremos a análise das questões de cobradas na prova

Leia mais

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações.

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações. A CONSTRUÇÃO DE CARTEIRAS EFICIENTES POR INTERMÉDIO DO CAPM NO MERCADO ACIONÁRIO BRASILEIRO: UM ESTUDO DE CASO PARA O PERÍODO 006-010 Rodrgo Augusto Vera (PROVIC/UEPG), Emerson Martns Hlgemberg (Orentador),

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

CIÊNCIAS CONTÁBEIS MATEMATICA FINANCEIRA JUROS SIMPLES

CIÊNCIAS CONTÁBEIS MATEMATICA FINANCEIRA JUROS SIMPLES DEFINIÇÕES: CIÊNCIAS CONTÁBEIS MATEMATICA FINANCEIRA JUROS SIMPLES Taxa de juros: o juro é determinado através de um coeficiente referido a um dado intervalo de tempo. Ele corresponde à remuneração da

Leia mais

Capital = 100 Juros simples Juros compostos Nº de anos Montante simples Montante composto

Capital = 100 Juros simples Juros compostos Nº de anos Montante simples Montante composto Juros compostos Cada período, os juros são incorporados ao principal e passam, por sua vez, a render juros. Também conhecido como juros sobre juros. Vamos ilustrar a diferença entre os crescimentos de

Leia mais

1. (TTN ESAF) Um capital de R$ 14.400,00, aplicado a 22% ao ano, rendeu R$ 880,00 de juros. Durante quanto tempo esteve empregado?

1. (TTN ESAF) Um capital de R$ 14.400,00, aplicado a 22% ao ano, rendeu R$ 880,00 de juros. Durante quanto tempo esteve empregado? 1. (TTN ESAF) Um capital de R$ 14.400,00, aplicado a 22% ao ano, rendeu R$ 880,00 de juros. Durante quanto tempo esteve empregado? a) 3 meses e 3 dias b) 3 meses e 8 dias c) 2 meses e 23 dias d) 3 meses

Leia mais

MATEMÁTICA FINANCEIRA - FGV

MATEMÁTICA FINANCEIRA - FGV MATEMÁTICA FINANCEIRA - FGV 01. (FGV) O preço de venda de um artigo foi diminuído em 20%. Em que porcentagem devemos aumentar o preço diminuído para que com o aumento o novo preço coincida com o original?

Leia mais

UNIDADE Capitalização composta

UNIDADE Capitalização composta UNIDADE 2 Capitalização composta Capitalização composta Curso de Graduação em Administração a Distância Objetivo Nesta Unidade, você vai ser levado a: calcular o montante, taxas equivalentes, nominal e

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

( C ou VP ) Capital ou Valor Presente é o valor aplicado através de alguma operação financeira.

( C ou VP ) Capital ou Valor Presente é o valor aplicado através de alguma operação financeira. Prof.: Luiz Gonzaga Damasceno 1 3. Capital. Montante. 3.1 Capital ou Valor Presente. Taxa. Prazo. Montante. ( C ou VP ) Capital ou Valor Presente é o valor aplicado através de alguma operação financeira.

Leia mais

MATEMÁTICA FINANCEIRA BÁSICA

MATEMÁTICA FINANCEIRA BÁSICA UNIVERSIDADE ESTADUAL DE CAMPINAS - UNICAMP INSTITUTO DE FILOSOFIA E CIÊNCIAS HUMANAS - IFCH DEPARTAMENTO DE ECONOMIA E PLANEJAMENTO ECONÔMICO - DEPE CENTRO TÉCNICO ECONÔMICO DE ASSESSORIA EMPRESARIAL

Leia mais

GABARITO DOS EXERCÍCIOS

GABARITO DOS EXERCÍCIOS Bertolo 18/2/2006 MATEMÁTICA FINANCEIRA Gab_fin1 PAG.1 GABARITO DOS EXERCÍCIOS EXERCÍCIOS PROPOSTOS (Juros Simples) 1.Calcule o montante de uma aplicação de R$ 50.000,00, à taxa de 2,5% ao mês, durante

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Hansard OnLine. Guia Unit Fund Centre

Hansard OnLine. Guia Unit Fund Centre Hansard OnLne Gua Unt Fund Centre Índce Págna Introdução ao Unt Fund Centre (UFC) 3 Usando fltros do fundo 4-5 Trabalhando com os resultados do fltro 6 Trabalhando com os resultados do fltro Preços 7 Trabalhando

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA Roberto César Faria e Silva MATEMÁTICA FINANCEIRA Aluno: SUMÁRIO 1. CONCEITOS 2 2. JUROS SIMPLES 3 Taxa Efetiva e Proporcional 10 Desconto Simples 12 Desconto Comercial, Bancário ou Por Fora 13 Desconto

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA FINANCEIRA MAT 191 PROFESSORES: ENALDO VERGASTA, GLÓRIA MÁRCIA, JODÁLIA ARLEGO LISTA 2 1) Um título, com valor de face igual a $1.000,00,

Leia mais

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS.

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS. I 1. Demonstre que o crcuto da Fg. 1 é um half-adder (semsomador), em que A e B são os bts que se pretendem somar, S é o bt soma e C out é o bt de transporte (carry out). Fg. 1 2. (Taub_5.4-1) O full-adder

Leia mais

Comentário Geral: Prova dentro dos padrões da banca examinadora. Questões fáceis: 6 Questões medianas: 2 Questões difíceis: 0

Comentário Geral: Prova dentro dos padrões da banca examinadora. Questões fáceis: 6 Questões medianas: 2 Questões difíceis: 0 Comentário Geral: Prova dentro dos padrões da banca examinadora. Questão passível de anulação: 27 Porém, não acredito que a banca anulará, veja o comentário Questões fáceis: 6 Questões medianas: 2 Questões

Leia mais

X Encontro Nacional de Educação Matemática Educação Matemática, Cultura e Diversidade Salvador BA, 7 a 9 de Julho de 2010

X Encontro Nacional de Educação Matemática Educação Matemática, Cultura e Diversidade Salvador BA, 7 a 9 de Julho de 2010 Salvador BA, 7 a 9 de Julho de 00 ODELOS ATEÁTICOS E CONSUO DE ENERGIA ELÉTRICA Clece de Cássa Franco Cdade Centro Unverstáro Francscano klleyce@hotmal.com Leandra Anversa Foreze Centro Unverstáro Francscano

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

Componente Curricular: Matemática Financeira Professor: Jarbas Thaunahy

Componente Curricular: Matemática Financeira Professor: Jarbas Thaunahy Componente Curricular: Matemática Financeira Professor: Jarbas Thaunahy 1. (MDIC 2002 ESAF) Um contrato prevê que aplicações iguais sejam feitas mensalmente em uma conta durante doze meses com o objetivo

Leia mais

Custo de Capital. O enfoque principal refere-se ao capital de longo prazo, pois este dá suporte aos investimentos nos ativos permanentes da empresa.

Custo de Capital. O enfoque principal refere-se ao capital de longo prazo, pois este dá suporte aos investimentos nos ativos permanentes da empresa. Custo e Captal 1 Custo e Captal Seguno Gtman (2010, p. 432) o custo e Captal é a taxa e retorno que uma empresa precsa obter sobre seus nvestmentos para manter o valor a ação nalterao. Ele também poe ser

Leia mais