Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Tamanho: px
Começar a partir da página:

Download "Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas"

Transcrição

1 Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema de coordenadas planas que, para certas curvas e problemas de lugar geométrco, apresenta algumas vantagens em relação às coordenadas retangulares, além de facltar, em alguns casos, o cálculo de ntegras. No sstema de coordenadas retangulares a localzação de um ponto P do plano é dada através da dstânca de P a duas retas perpendculares fxas denomnadas de exos coordenados. No sstema de coordenadas polares, as coordenadas de um ponto consstem de uma dstânca e da medda de um ângulo, em relação a um ponto fxo e a uma sem-reta fxa. Fxados um ponto O, denomnado pólo ou orgem e uma sem-reta de orgem nesse ponto, denomnada de sem-exo polar podemos localzar qualquer ponto P do plano se conhecermos a sua dstânca ao pólo e o ângulo que o segmento OP faz com o sem-exo polar. P r pólo O sem-exo polar As coordenadas de um ponto P são representadas pelo par P( r, ) no qual r é denomnado rao vetor ou rao polar e corresponde à dstânca de P ao pólo é denomnado ângulo vetoral ou ângulo polar e corresponde ao ângulo de rotação do sem-exo polar até o segmento OP > se a rotação for no sentdo ant-horáro < se a rotação for no sentdo horáro pode ser meddo em graus ou radanos Denomnamos exo polar - a reta orentada que contém o sem-exo polar exo a 9 ou exo ortogonal a reta que passa pelo pólo e é ortogonal ao exo polar.

2 Exemplo: Marcar no sstema polar os seguntes pontos: P(3, /4); Q(, /3); (4, 9) e S(, ) P /4 S Q /3 Podemos consderar o rao vetor como dstânca orentada de um ponto P ao pólo O da segunte manera: Se r < gramos o sem-exo polar de ângulo e na sem-reta oposta marcamos r undades, a partr do pólo Exemplo: Marcar os pontos P(, 45); Q (, 3 ); (, 8) /4 Q 3 O P Exemplo: epresentar P (, /6); P (, 7/6); P 3 (, 5/6); P 4 (, /6) P 3 P /6 7/6 P 5/6 /6 P 4 Observamos pelo exemplo anteror que um mesmo ponto P pode ser obtdo por város pares de coordenadas polares. De um modo geral, conhecdas as coordenadas de um ponto P(r, ), r e em radanos, P também pode ser representado por ( r, + n ) ou ( r, + n + ) que resulta na únca expressão ( () n r, + n ), n Z. A menos que P seja o pólo, esta expressão representa todas as possíves coordenadas polares de P.

3 3 Observações:. No caso de coordenadas polares não exste uma correspondênca bunívoca entre pares e pontos, como no caso das cartesanas. É justamente este fato que leva a resultados que, em alguns casos, dferem dos obtdos no sstema retangular.. Dados P (r, ) e P (r, ) então P = P r = r = ou n Z tal que r = ( ) n r e = + n. 3. Se P é o pólo, então (, ) representa P qualquer que seja 4. Entre os nfntos pares de coordenadas polares de um ponto P dferente do pólo, exste um únco par com rao vetor r postvo e [, [. A este par (r o, o ) tal que r o > e o < denomnamos par ou conjunto prncpal de coordenadas polares do ponto P. 5. Convenconamos que o par prncpal do pólo é P(,) Equação Polar x Equação Cartesana Dado um ponto P do plano tendo como coordenadas polares P(r, ) e coordenadas cartesanas P(x, temos as seguntes relações entre x, y, r e. P(x, r x r cos y r sen x y r e tg r y x x y Exemplos: ) Encontre o conjunto prncpal de coordenadas polares para o ponto P( 3,) Solução: r ( 3) e 5 de coordenadas é portanto (, ) 6 tg 3 3. O conjunto prncpal 3

4 4 3 ) Encontre as coordenadas cartesanas do ponto P(, ) 4 x r cos cos( 3 / 4) ( ) Solução: Temos que y r sen sen( 3 / 4) ( ) O ponto P tem portanto coordenadas cartesanas P(, ) 3) Encontre uma equação polar para as curvas cujas equações cartesanas são a) x + y = Solução: x = r cos e y = r sen (r cos ) + (r sen ) = r = r = e r = são equações polares equvalentes da crcunferênca de centro na orgem e rao. A equação da crcunferênca com centro no pólo e rao a é r = a ou r = a O b) Crcunferênca de centro no ponto (, a) e rao a Solução: O A equação cartesana da crcunferênca é x + ( y a) = a x = r cos e y = r sen (r cos) + (r sen a ) = a r (cos + sen ) arsen + a = a r = arsen r = ( pólo ) ou r = asen. Uma vez que o pólo pode ser obtdo na a equação podemos conclur que a equação da crcunferênca é r = asen. Analogamente, pode-se mostrar que a equação polar da crcunferênca de centro em (a,) e rao a é r = acos. c) y = 3x Solução: r sen = 3r cos tg = 3 = arctg3 A equação = k representa uma reta que passa pelo pólo O

5 5 A Integral Dupla em Coordenadas Polares. As ntegras duplas em coordenadas polares são as ntegras nas quas o ntegrando e a regão de ntegração são expressos em coordenadas polares. Em mutas aplcações, se mudamos as coordenadas retangulares para polares, o cálculo da ntegral é bastante facltado. Isto ocorre se a regão for lmtada por curvas cuja equação é mas smples em coordenadas polares, e, em especal, quando o ntegrando envolve a expressão x + y, que, em polares, pode ser substtuída por r. Consderemos a regão delmtada pelas retas = e = e as curvas polares r = r () e r = r () = r () r () = Se as funções r = r () e r = r () forem contínuas e seus gráfcos não se nterceptarem, então a regão é chamada de uma regão polar smples As déas báscas na dedução da ntegral dupla em retangulares e a nterpretação geométrca como volume são análogas no caso polar. No caso retangular a regão fo dvdda em retângulos elementares. No caso polar usaremos arcos e raos para subdvdr a regão nos chamados retângulos polares. r () = = r () Suponhamos que f(r, ) é não negatva para que possamos nterpretar a ntegral dupla como um volume, ou seja, o volume do sóldo lmtado por e por f(r, ) é dado por

6 6 V = f (r, ) da Consderemos um retângulo polar arbtráro de ângulo central e espessura radal r. Escolhendo um ponto arbtráro ( r, ) dentro do retângulo, como sendo o centro desse retângulo, o rao nterno desse retângulo polar é r r / e o rao externo é r + r /. (r, ) r A área desse retângulo polar A é a dferença de área entre dos setores: A r r r r r r r r 4 r r r r 4 = r r Assm, como no caso de retangulares, fazendo o número de partções da regão tender para nfnto temos que n V = f (r, ) da = lm f (r, )r r. O lmte sugere que a ntegral pode ser n r ( ) escrta como a ntegral terada f (r, ) da = f (r, )rdrd. Os lmtes são escolhdos r( ) para cobrr a regão, sto é, fxo entre e e r varando de r a r. Observação: apesar de termos admtdo f(r, ) não negatva, pode-se mostrar que o resultado vale no caso mas geral. / sen Exemplo: Calcule a ntegral terada r cos drd Solução: / r [ cos ] sen d / sen cos sen d [ ] 6 3 / 6 Observemos que a regão é lmtada pelas curvas.

7 7 r = ( pólo); r = sen ( crcunferênca de centro no exo a 9 e rao a = ½ ) e as retas = e = /. Conversão de Integras Duplas de Coordenadas etangulares para Polares O cálculo da ntegral dupla em coordenadas retangulares pode ser facltado transferndo o cálculo para polares, bastando fazer a substtução x = r cos e y = r sen e expressando a regão de ntegração em forma polar f (x, da f (r cos, r sen )da lmtes f (r cos, r sen )rdrd aproprados Exemplos: (x y ) ) Use coordenadas polares para calcular e da, sendo a regão contda no círculo x + y = Solução: O círculo x + y = em polares tem equação r = e vara de a. Temos assm que os lmtes de ntegração são r = e r = e = a =. A ntegral fca r r e e ( e e rdrd [ ] d d [ ) ] x ( e ) Calcule a ntegral terada convertendo para polares ( x y Solução: Vamos, ncalmente, dentfcar a regão de ntegração em polares. A regão é corresponde a ¼ da crcunferênca de rao, ou seja r = com varando de a /. ) )dydx

8 8 / 3 r r drd = d / [ ] d [ ] / 4 / 3) Use a ntegral dupla em coordenadas polares para calcular o volume de clndro de rao a e altura h Solução: O volume do sóldo pode ser nterpretado como o volume lmtado pela regão que é uma crcunferênca de equação x + y = a e superormente pelo plano z = h a a x. Usando a smetra teríamos V = 4 hdydx. Usando as coordenadas polares temos / a / hr / a ha ha / V = 4 hrdrd 4 [ ] d 4 d 4[ ] a h Mudança de Varáves em Integras Duplas Lembremos que no caso de uma função de uma varável podemos fazer uma mudança de varável ou substtução para transformar uma ntegral dada em outra mas smples. Por b exemplo, dada a ntegral f (x)dx, podemos fazer a mudança de varável a x = g(t) dx = g (t)dt; a = g(c) e b = g(d) e a ntegral fca gual a b d f (x)dx f (g(t))g (t)dt. a c No caso da ntegral dupla podemos ter o mesmo procedmento efetuando mudanças de varáves, por exemplo x g(u, v) ( I ) y h(u, v) Isto corresponde a uma ntegral dupla numa regão do plano xy poder ser transformada numa ntegral dupla sobre uma regão do plano uv A nterpretação geométrca é que as mudanças de varáves ( I ) defnem uma transformação que faz corresponder pontos (u, v) do plano uv em pontos (x, do plano xy, levando a regão do plano uv na regão do plano xy.

9 9 v y u x Se a correspondênca for bjetora podemos retornar de para pela nversa dada pelas equações u g(x, y h(x, Supondo que as funções sejam contínuas com dervadas parcas contínuas em e temos que ( * ) f (x, dxdy f (g(u, v),h(u, v)) (x, dudv (u, v) (x, O símbolo (u, v) (x, dado por (u, v) é chamado de determnante jacobano de x e y em relação a u e v e é x x u y v y u v A expressão da ntegral acma ( * ) é válda se são satsfetas as seguntes condções f é contínua as regões são formadas por um número fnto de sub-regões dos tpos I e II (x, ou se anula num número fnto de pontos em (u, v) Vejamos no caso de polares que já deduzmos:

10 Sejam e as regões dos planos xy e r que se relaconam pelas equações x r cos y r sen (x, cos r sen O determnante jacobano nesse caso é dado por r (r, ) sen r cos que f (x, dxdy f (r cos,rsen ) rdrd, como já havíamos deduzdo. e assm temos Observações:.O jacobano pode ser nterpretado como uma medda de quanto a transformação modfca a área da regão.. A expressão ( * ) é geral, se aplcando em outras transformações e não apenas no caso de mudança de coordenadas de cartesanas para polares. eferêncas Bblográfcas:. Cálculo um Novo Horzonte Howard Anton vol. Cálculo com Geometra Analítca Swokowsk vol 3. Cálculo B Dva Flemng 4. Cálculo James Stewart vol

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC) PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20 1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos Capítulo 10 da físca 3 xercícos propostos Undade Capítulo 10 eceptores elétrcos eceptores elétrcos esoluções dos exercícos propostos 1 P.50 a) U r 100 5 90 V b) Pot d r Pot d 5 Pot d 50 W c) Impedndo-se

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS TE0 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS Números Complexos Introdução hstórca. Os números naturas, nteros, raconas, rraconas e reas. A necessdade dos números complexos. Sua relação com o mundo

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20 1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto Números Complexos Conceto, formas algébrca e trgonométrca e operações. Autor: Glmar Bornatto Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos:

Leia mais

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 6123. Forças devidas ao vento em edificações JUN 1988

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 6123. Forças devidas ao vento em edificações JUN 1988 ABNT-Assocação Braslera de Normas Técncas Sede: Ro de Janero Av. Treze de Mao, 13-28º andar CEP 20003 - Caxa Postal 1680 Ro de Janero - RJ Tel.: PABX (021) 210-3122 Telex: (021) 34333 ABNT - BR Endereço

Leia mais

AS COMPONENTES SIMÉTRICAS INSTANTÂNEAS E A MÁQUINA SIMÉTRICA

AS COMPONENTES SIMÉTRICAS INSTANTÂNEAS E A MÁQUINA SIMÉTRICA CAPÍTULO 5 A COMPONENTE IMÉTICA INTANTÂNEA E A MÁQUINA IMÉTICA 5. INTODUÇÃO O emprego das componentes smétrcas nstantâneas permte a obtenção de modelos mas smples que aqueles obtdos com a transformação

Leia mais

Exemplos. representado a seguir, temos que: são positivas. são negativas. i

Exemplos. representado a seguir, temos que: são positivas. são negativas. i 6 Prodto Vetoral Para defnrmos o prodto etoral entre dos etores é ndspensáel dstngrmos o qe são bases postas e bases negatas Para sso consderemos ma base do espaço { } e m obserador Este obserador dee

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2 LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE Rcardo Slva Tavares 1 ; Roberto Scalco 1 Aluno de Incação Centífca da Escola de Engenhara Mauá (EEM/CEUN-IMT); Professor da Escola de Engenhara

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na Cálculo Multivariado Lista numero integração múltipla tarcisio.praciano@gmail.com T. Praciano-Pereira Dep. de Computação alun@: de março de 13 Univ. Estadual Vale do Aca Documento escrito com L A TEX -

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Planejamento e Controle de Estoques PUC. Prof. Dr. Marcos Georges. Adm. Produção II Prof. Dr. Marcos Georges 1

Planejamento e Controle de Estoques PUC. Prof. Dr. Marcos Georges. Adm. Produção II Prof. Dr. Marcos Georges 1 e Controle de Estoques PUC CAMPINAS Prof. Dr. Marcos Georges Adm. Produção II Prof. Dr. Marcos Georges 1 Fornecmento de produtos e servços Recursos da operação Planejamento e Controle de Estoque Compensação

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

ALGORITMO E PROGRAMAÇÃO

ALGORITMO E PROGRAMAÇÃO ALGORITMO E PROGRAMAÇÃO 1 ALGORITMO É a descrção de um conjunto de ações que, obedecdas, resultam numa sucessão fnta de passos, atngndo um objetvo. 1.1 AÇÃO É um acontecmento que a partr de um estado ncal,

Leia mais

Capítulo. Associação de resistores. Resoluções dos exercícios propostos. P.135 a) R s R 1 R 2 R s 4 6 R s 10 Ω. b) U R s i U 10 2 U 20 V

Capítulo. Associação de resistores. Resoluções dos exercícios propostos. P.135 a) R s R 1 R 2 R s 4 6 R s 10 Ω. b) U R s i U 10 2 U 20 V apítulo 7 da físca Exercícos propostos Undade apítulo 7 ssocação de resstores ssocação de resstores esoluções dos exercícos propostos 1 P.15 a) s 1 s 6 s b) U s U 10 U 0 V c) U 1 1 U 1 U 1 8 V U U 6 U

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Magnetismo e. eletromagnetismo. Introdução ao magnetismo. Ímãs

Magnetismo e. eletromagnetismo. Introdução ao magnetismo. Ímãs Magnetsmo e eletromagnetsmo Este tópco apresenta o aspecto hstórco e os conhecmentos atuas dos ímãs e do campo gravtaconal terrestre. Introdução ao magnetsmo é mas pronuncado: são os polos do ímã (convenconalmente

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

CAPITULO 02 LEIS EXPERIMENTAIS E CIRCUITOS SIMPLES. Prof. SILVIO LOBO RODRIGUES

CAPITULO 02 LEIS EXPERIMENTAIS E CIRCUITOS SIMPLES. Prof. SILVIO LOBO RODRIGUES CAPITULO 0 LEIS EXPEIMENTAIS E CICUITOS SIMPLES Prof SILVIO LOBO ODIGUES INTODUÇÃO PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL Destnase o segundo capítulo ao estudo das les de Krchnoff e suas aplcações

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA André Luz Souza Slva IFRJ Andrelsslva@globo.com Vlmar Gomes da Fonseca IFRJ vlmar.onseca@rj.edu.br Wallace Vallory Nunes IFRJ wallace.nunes@rj.edu.br

Leia mais

RESOLUÇÃO Nº 32/2014/CONEPE. O CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO da Universidade Federal de Sergipe, no uso de suas atribuições legais,

RESOLUÇÃO Nº 32/2014/CONEPE. O CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO da Universidade Federal de Sergipe, no uso de suas atribuições legais, SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE SERGIPE CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO RESOLUÇÃO Nº 32/2014/CONEPE Aprova as Normas Geras do Processo Seletvo para

Leia mais

REFLEXÕES SOBRE O CONCEITO DE CENTRO DE GRAVIDADE NOS LIVROS DIDÁTICOS

REFLEXÕES SOBRE O CONCEITO DE CENTRO DE GRAVIDADE NOS LIVROS DIDÁTICOS Cênca & Ensno, vol. 2, n. 2, junho de 2008 ARTIGOS REFLEXÕES SOBRE O CONCEITO DE CENTRO DE GRAVIDADE NOS LIVROS DIDÁTICOS André K. T. Asss e Fábo. M. d. M. Ravanell O Centro de Gravdade O centro de gravdade

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

O USO DA INTEGRAL DEFINIDA NO CÁLCULO DA ÁREA ALAGADA DA BARRAGEM DO RIO BONITO

O USO DA INTEGRAL DEFINIDA NO CÁLCULO DA ÁREA ALAGADA DA BARRAGEM DO RIO BONITO O USO DA INTEGRAL DEFINIDA NO CÁLCULO DA ÁREA ALAGADA DA BARRAGEM DO RIO BONITO Crstna Martns Paraol crstna@hotmal.com Insttuto Federal Catarnense Rua Prefeto Francsco Lummertz Júnor, 88 88960000 Sombro

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Aula 16 Mudança de Variável em Integrais Múltiplas

Aula 16 Mudança de Variável em Integrais Múltiplas Aula 16 Mudança de Variável em Integrais Múltiplas MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Figura 1: Nomenclatura e configuração geométrica do problema em estudo.

Figura 1: Nomenclatura e configuração geométrica do problema em estudo. XIV CONGRESSO NACIONAL DE ESTUDANTES DE ENGENHARIA MECÂNICA Unversdade Federal de Uberlânda Faculdade de Engenhara Mecânca SIMULAÇÃO NUMÉRICA EM UM CANAL BIDIMENSIONAL COM PROTUBERÂNCIAS PARIETAIS Débora

Leia mais

Departamento de Engenharia Civil e Arquitectura MECÂNICA I

Departamento de Engenharia Civil e Arquitectura MECÂNICA I Departamento de Engenhara Cvl e rqutectura Secção de Mecânca Estrutural e Estruturas Mestrado em Engenhara Cvl MECÂNIC I pontamentos sobre equlíbro de estruturas Eduardo Perera Luís Guerrero 2009/2010

Leia mais

Otimização de Custos de Transporte e Tributários em um Problema de Distribuição Nacional de Gás

Otimização de Custos de Transporte e Tributários em um Problema de Distribuição Nacional de Gás A pesqusa Operaconal e os Recursos Renováves 4 a 7 de novembro de 2003, Natal-RN Otmzação de ustos de Transporte e Trbutáros em um Problema de Dstrbução Naconal de Gás Fernanda Hamacher 1, Fernanda Menezes

Leia mais

Material de apoio para as aulas de Física do terceiro ano

Material de apoio para as aulas de Física do terceiro ano COLÉGIO LUTERANO CONCÓRDIA Concórda, desenvolvendo conhecmento com sabedora Mantenedora: Comundade Evangélca Luterana Crsto- Nteró Materal de apoo para as aulas de Físca do tercero ano Professor Rafael

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

DISCUSSÃO DOS RETORNOS À ESCALA NOS CONTEXTOS DAS FUNÇÕES DE PRODUÇÃO E DE CUSTO 1

DISCUSSÃO DOS RETORNOS À ESCALA NOS CONTEXTOS DAS FUNÇÕES DE PRODUÇÃO E DE CUSTO 1 Elseu Alves ISSN 1679-1614 DISCUSSÃO DOS RETORNOS À ESCALA NOS CONTEXTOS DAS FUNÇÕES DE PRODUÇÃO E DE CUSTO 1 Elseu Alves 2 Resumo O objetvo deste artgo fo expor a teora de custo de produção de forma rgorosa,

Leia mais

UMA PROPOSTA DE ENSINO DE TÓPICOS DE ELETROMAGNETISMO VIA INSTRUÇÃO PELOS COLEGAS E ENSINO SOB MEDIDA PARA O ENSINO MÉDIO

UMA PROPOSTA DE ENSINO DE TÓPICOS DE ELETROMAGNETISMO VIA INSTRUÇÃO PELOS COLEGAS E ENSINO SOB MEDIDA PARA O ENSINO MÉDIO UMA PROPOTA DE EIO DE TÓPICO DE ELETROMAGETIMO VIA ITRUÇÃO PELO COLEGA E EIO OB MEDIDA PARA O EIO MÉDIO TETE COCEITUAI Autores: Vagner Olvera Elane Angela Vet Ives olano Araujo TETE COCEITUAI (CAPÍTULO

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

2. BACIA HIDROGRÁFICA

2. BACIA HIDROGRÁFICA . BACIA HIDROGRÁFICA.1. GENERALIDADES Embora a quantdade de água exstente no planeta seja constante e o cclo em nível global possa ser consderado fechado, os balanços hídrcos quase sempre se aplcam a undades

Leia mais

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída INTRODUÇÃO O que é sstema? O que é um sstema de controle? SISTEMAS O aspecto mportante de um sstema é a relação entre as entradas e a saída Entrada Usna (a) Saída combustível eletrcdade Sstemas: a) uma

Leia mais

Estabilidade de Lyapunov e Propriedades Globais para Modelo de Dinâmica Viral

Estabilidade de Lyapunov e Propriedades Globais para Modelo de Dinâmica Viral Establdade de Lyapunov e Propredades Globas para Modelo de Dnâmca Vral Nara Bobko Insttuto de Matemátca Pura e Aplcada 22460-320, Estrada Dona Castorna, Ro de Janero - RJ E-mal: narabobko@gmal.com. Resumo:

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais