( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx"

Transcrição

1 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Aplicação da rgra ponncial Intgração d Fnçõs Eponnciais Sja ma fnção difrnciávl d. Intgrais Eponnciais Logarítmicas d + C d d d + C d Rgra Eponncial Simpls Rgra Eponncial Gral Prof.: Rogério Dias Dalla Riva Intgrais Eponnciais Logarítmicas. Aplicação da rgra ponncial.aplicação da rgra ponncial.aplicação da rgra log Emplo : Calcl as intgrais indfinidas a. d d ( + ) b. c. d. Aplicação da rgra ponncial. Aplicação da rgra ponncial Cada ma das rgras d difrnciação d fnçõs ponnciais tm sa rgra d intgração corrspondnt. a. d d Rgra do Múltiplo Constant + C Rgra Eponncial Simpls ( ) b. d d Sja, ntão d d + C Rgra Eponncial Gral

2 . Aplicação da rgra ponncial. Aplicação da rgra ponncial c. ( + ) + d d d + + C Rgra da Soma Rgra Eponncial Simpls da Potência Emplo : Calcl a intgral indfinida d. Aplicação da rgra ponncial. Aplicação da rgra ponncial Emplo : Calcl a intgral indfinida + d Fazndo -, d/d -. Introdzimos o fator (-) no intgrando mltiplicando dividindo por -. d d ( ) d ( ) Mltiplicar dividir por - Pôr a constant -/ m vidência. Aplicação da rgra ponncial. Aplicação da rgra ponncial Fazndo +, ntão d/d. O fator asnt pod sr introdzido no intgrando mdiant mltiplicação divisão por. d d d + C + + C ( ) + + d d Mltiplicar dividir por Introdzir d/d Rgra Eponncial Gral d d d + C + C Introdzir d/d Rgra Eponncial Gral

3 . Aplicação da rgra ponncial. Aplicação da rgra log OBS: Lmbr-s d q não é possívl introdzir ma variávl no intgrando. Assim é q não podmos obtr d mltiplicando dividindo por fatorando /() na intgral; isto é, d ( ) d Intgrais d Fnçõs Logarítmicas Sja ma fnção difrnciávl d. d ln + C d d + C ln Rgra Logarítmica Simpls. Aplicação da rgra log. Aplicação da rgra log Qando introdzimos as Rgras da Potência para intgração nas alas antriors, vimos q las não são válidaspara n -. n+ n d + C, n n + n+ n d d + C, n d n + Rgra Simpls da Potência Rgra Gral da Potência Podmos vrificar ssas rgras por difrnciação. Por mplo, para vrificar q notmos q d ln, d d d [ ln ] ln( ) d d. Aplicação da rgra log. Aplicação da rgra log As Rgras Log prmitm intgrar fnçõs da forma d d OBS: Obsrv os valors absoltos nas Rgras Log. Para os casos spciais m q o não pod sr ngativo, podmos omitir o sinal d valor absolto. Emplo 4: Calcl as intgrais indfinidas a. 4 d b. d c. + d

4 . Aplicação da rgra log. Aplicação da rgra log a. 4 d 4 d 4ln + C b. d ln + C ln + C d Rgra do Múltiplo Constant Rgra Logarítmica Simpls Fazndo, ntão Fazndo, tmos d/d. Podmos introdzir o fator ncssário no intgrando mltiplicando dividindo por. d d d ln + C ln + C Mltiplicar dividir por Introdzir. Aplicação da rgra log. Aplicação da rgra log c. d + ln + C d Fazndo +, ntão Emplo 6: Calcl a intgral indfinida 6 d + ln + + C. Aplicação da rgra log. Aplicação da rgra log Emplo : Calcl a intgral indfinida d Com +, vm d/d. Podmos criar o fator ncssário no intgrando colocando m vidência. 6 d + d + d ln + C ( ) ln + + C Fatorar no intgrando Introdzir 4

5 . Aplicação da rgra log. Aplicação da rgra log OBS: As intgrais às qais s pod aplicar a Rgra Log costmam sr dadas m forma disfarçada. Por mplo, s ma fnção racional tm nmrador d gra não infrior ao do dnominador, dvmos primiro ftar a divisão, obtndo ma part intira ma part fracionária. Obsrv o mplo abaio: d d 6 ln ( ) + d + d C b. Inicialmnt, vamos mltiplicar dividir o intgrandopor. d + + d + ( ) ln + + C d. Aplicação da rgra log. Aplicação da rgra log Emplo 7: Calcl as intgrais indfinidas a. b. c. + d + d + + d c. Dividindo o nmrador plo dnominador: + + d + + d + d + d ( ) + + ln + C. Aplicação da rgra log a. Comcmos scrvndo o intgrando como a soma d três fraçõs + d + d + d + ln + + C

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

Frações Parciais e Crescimento Logístico

Frações Parciais e Crescimento Logístico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Frações Parciais e

Leia mais

Funções Crescentes e Funções Decrescentes. Funções Crescentes e Funções Decrescentes. Função Crescente. Função Decrescente

Funções Crescentes e Funções Decrescentes. Funções Crescentes e Funções Decrescentes. Função Crescente. Função Decrescente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Função

Leia mais

Funções Crescentes e Funções Decrescentes

Funções Crescentes e Funções Decrescentes UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Crescentes

Leia mais

Equações Exponenciais e Logarítmicas. Equações Exponenciais e Logarítmicas. Exemplos: Exemplos: a x = b x= log a b. 1) Resolva as equações: ) 5 = 3

Equações Exponenciais e Logarítmicas. Equações Exponenciais e Logarítmicas. Exemplos: Exemplos: a x = b x= log a b. 1) Resolva as equações: ) 5 = 3 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Eponenciais e Logarítmicas.

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Gráficos de Funções Trigonométricas

Gráficos de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica

Leia mais

PARTE 6 DERIVADAS PARCIAIS

PARTE 6 DERIVADAS PARCIAIS PARTE 6 DERIVADAS PARCIAIS 6.1 Introdução Vamos falar agora das drivadas parciais d uma função ral d várias variávis rais, f : Dom(f) R n R. Para simplificar, vamos comçar com uma função m R, para só dpois

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa

Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

dy dx dt dt Taxas Relacionadas Taxas Relacionadas

dy dx dt dt Taxas Relacionadas Taxas Relacionadas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas Relacionadas

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Integrais Resolução dos Exercícios Propostos

Integrais Resolução dos Exercícios Propostos Intgrais Rsolução dos Ercícios Propostos Ercício : Encontr a intgral indfinida das sguints funçõs: t a) f( ) 7 + ; ) gt () + t t ; c) hu ( ) u( u+ u ); + d) f( ) ) + hv ( ) ( v ) f) gs ( ) s a) ( ) ( 7)

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

ZEROS DE SISTEMAS MIMO

ZEROS DE SISTEMAS MIMO Edardo Lobo Loa abral ZEROS DE SISTEMAS MIMO. Zro d ranmião O cálclo do ro d m ima SISO é rmamn impl d r fado, poi ão a raí do polinômio do nmrador d a fnção d ranfrência. Por mplo, conidr o ima dinâmico

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela ICMS-RJ 007: prova d Estatística comntada Rsolução comntada d Estatística - ICMS/RJ - 007 - Prova Amarla 9. Uma amostra d 00 srvidors d uma rpartição aprsntou média salarial d R$.700,00 com uma disprsão

Leia mais

Integral Indefinido - Continuação

Integral Indefinido - Continuação - Continação Técnicas de Integração (Primitivação) OBJETIVO: Apresentar técnicas para determinar a fnção F() conhecida como primitiva tal qe F () f() o: f() d F() As principais técnicas de primitivação

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA Rvista Cintífica do Dpartamnto d Química Exatas volum 1 númro ano 1 páginas 7-3 Univrsidad Estadual do Sudost da Bahia Jquié - Bahia Corpo dslizando sobr uma suprfíci sférica convxa com atrito A. J. Mania

Leia mais

Sucessões e Frações Contínuas

Sucessões e Frações Contínuas Sucssõs Fraçõs Contínuas JOÃO CARREIRA PAIXÃO Escola ES/3 d Maria Lamas jcpaixao@gmail.com 04 38 GAZETA DE MATEMÁTICA 166 Atualmnt a rprsntação d númros rais na notação dcimal parc sr a mais óbvia, mas

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

Cálculo Cálculo D Cálculo D Cálculo D D Cálculo Cálculo D

Cálculo Cálculo D Cálculo D Cálculo D D Cálculo Cálculo D álculo álculo álculo D D álculo álculo D álculo D Márcia osals ibiro Simch Grmán Márcia amón osals anahualpa ibirosuazo Simch Grmán Silvia amón Pritsch anahualpa Wndt Pinto Suazo Silvia Pritsch Wndt Pinto

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

Resolução Comentada Integral Indefinida

Resolução Comentada Integral Indefinida Universidade do Estado da Bahia - UNEB Departamento de Ciências Exatas e da Terra - DCET Curso: Engenharia de Produção Civil Disciplina: Cálculo II Professor: Armando Peixoto Monitor: Victor Mendes Lopes

Leia mais

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) +

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) + MÓDULO XII EXPRESSÕES ALGÉBRICAS 1. Epressão algébrica Em álgebra, se empregam outros símbolos além dos algarismos. Damos o nome de epressão algébrica ao conjunto de letras e números ligados entre si por

Leia mais

Lista 0: Revisão Números Reais e Funções Elementares

Lista 0: Revisão Números Reais e Funções Elementares GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/ BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO DIFERENCIAL E INTEGRAL I Lista 0: Revisão

Leia mais

CIRCUITOS DIGITAIS I

CIRCUITOS DIGITAIS I Universidade do Estado de Mato Grosso Campus Sinop Faculdade de Ciências Exatas e Tecnológicas CIRCUITOS DIGITAIS I ROGÉRIO LÚCIO LIMA Sinop Outubro de 2016 CURSO: Bacharelado em Engenharia Elétrica PERÍODO

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Cargas móveis: Determinação do Trem-tipo

Cargas móveis: Determinação do Trem-tipo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIENCIAS EXATAS E TECNOLOGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: ESTRUTURAS DE PONTES Cargas móveis: Determinação do

Leia mais

Elaborado por: João Batista F. Sousa Filho (Graduando Engenharia Civil UFRJ )

Elaborado por: João Batista F. Sousa Filho (Graduando Engenharia Civil UFRJ ) www.engenhariafacil.weebly.com Elaborado por: João Batista F. Sousa Filho (Graduando Engenharia Civil UFRJ- 014.1) Bizu: (I) Resumo com exercícios resolvidos do assunto: Métodos de Integração. (I) Métodos

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS

FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS INTRODUÇÃO FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS Uma ganda ísica pod dpnd d divsas outas gandas Po mplo: a vlocidad do som m um gás idal dpnd da dnsidad do gás d sua pssão Muitas unçõs dpndm d mais d uma vaiávl

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº Estatística I - Licnciatura m MAEG º Ano PADEF Junho 5 Part tórica Prova 753519 Nom: Nº 1. Prguntas d rsposta fchada ( valors) Para cada afirmação, assinal s sta é Vrdadira (V) ou Falsa (F). Uma rsposta

Leia mais

PRIMITIVAS 1. INTRODUÇÃO

PRIMITIVAS 1. INTRODUÇÃO Material de apoio referente ao tópico: Integrais Módlo I. Adaptado de: Prof. Dr. José Donizetti Lima por Prof. Dra. Dayse Regina Batists.. INTRODUÇÃO PRIMITIVAS Em mitos problemas, embora a derivada de

Leia mais

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Exemplo : Utilize

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS Notas d aula Profssor: Altmir José Borgs Curitiba Agosto d 006 EQUAÇÕES DIFERENCIAIS Dfinição: Chama-s quação difrncial à quação qu possui as drivadas ou difrnciais d uma ou mais

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM Caítulo II EQUAÇÕES DIFERENCIAIS LINEARES DE ª ORDEM Caítulo II Equaçõs Difrnciais Linars d ª Ordm Caítulo II Até agora já conhcmos uma séri d quaçõs difrnciais linars d rimira ordm Dfinirmos considrarmos

Leia mais

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática Cálclo Vetorial Estdaremos neste tópico as grandezas etoriais, sas operações, propriedades e aplicações. Este estdo se jstifica pelo fato de, na natreza, se apresentarem 2 tipo de grandezas, as escalares

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

Resolução. Admitindo x = x. I) Ax = b

Resolução. Admitindo x = x. I) Ax = b Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Ministério da Educação Univrsidad Tcnológica Fdral do Paraná ampus uritiba Grência d Ensino Psquisa Dpartamnto Acadêmico d Matmática EQUAÇÕES DIFERENIAIS NOTAS DE AULA Equaçõs Difrnciais AULA 0 EQUAÇÕES

Leia mais

Projetos de um forno elétrico de resistência

Projetos de um forno elétrico de resistência Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos. DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo

Leia mais

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.

Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Fvriro/ Nom Nº T: Classificação O Prof. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

ANEXO V SISTEMA DE AVALIAÇÃO DE DESEMPENHO

ANEXO V SISTEMA DE AVALIAÇÃO DE DESEMPENHO AEXO V SISTEMA DE AVALIAÇÃO DE DESEMPEHO 1. ÍDICES DE AVALIAÇÃO O Sistma d Avaliação d Dsmpnho stá struturado para a avaliação das prmissionárias, d acordo com os sguints índics grais spcíficos constants

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

DE EXERCÍCIOS DE VARIÁVEIS COMPLEXAS

DE EXERCÍCIOS DE VARIÁVEIS COMPLEXAS Cálculo Avançado A - Variávis Complas LISTA DE EXERCÍCIOS DE VARIÁVEIS COMPLEXAS ) Encontr todas as singularidads das funçõs abaio, aprsntando-as m forma algébrica: a) f ( ) sc() b) j 5 + j f () 5 + 7

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Algoritmos e Programação

Algoritmos e Programação ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela Gabarito - Colégio Naval 05/06 Profssors: Carlos Eduardo (Cadu) André Flip Bruno Pdra Rafal Sabino Gilbrto Gil QUESTÃO Dada a inquação, podmos rscrvê-la, a partir do Torma d Bolzano, concluímos: 5 0 0

Leia mais

REVISÃO DE ALGUMAS MATÉRIAS

REVISÃO DE ALGUMAS MATÉRIAS Análise Matemática MIEC /4 REVISÃO DE ALGUMAS MATÉRIAS INEQUAÇÕES Uma das propriedades das inequações mais vezes ignorada é a que decorre da multiplicação de ambos os membros por um valor negativo. No

Leia mais