, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

Tamanho: px
Começar a partir da página:

Download ", ou seja, 8, e 0 são os valores de x tais que x e, Página 120"

Transcrição

1 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar: 0 Como a função inquação. y é quadrática o su gráfico tm a concavidad voltada para baio, ntão as soluçõs da 0 são os valors d tais qu,. Rsposta: A 0 f. Logo, o ponto rprsntado na opção A prtnc ao gráfico d f. 0 0 f. Logo, o ponto rprsntado na opção B prtnc ao gráfico d f. ln ln4 ln4 f ln 4 4. Logo, o ponto rprsntado na opção C prtnc ao gráfico d f. O ponto rprsntado na opção D não prtnc ao gráfico d f. Rsposta: D log log log 4. log log0 log 0 0 log 0 0 Rsposta: A Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página

2 Prparar o Eam 0 07 Matmática A 5. f g 5 9. O ponto d intrsção das funçõs f g é o ponto d coordnadas 0,. Pod obsrvar-s graficamnt qu para todos os valors d maiors qu zro a função f, assum valors infriors à função g. Logo o conjunto solução da inquação é. Para 0, tm-s 5 9 para 0, tm-s 5 9. Outra rsolução: f g Logo o conjunto solução da inquação é. Rsposta: C 6. A quação 6 6 é impossívl pois 6 0, 6 0. Rsposta: A 7. f g ln 4 0 ln 0 ln 0 ln Assim, a abcissa do ponto A é ln ln ln ln. Rsposta: C Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página

3 Prparar o Eam 0 07 Matmática A Página 8. Sab-s qu s a, ntão d a para os quais, a 4a a. Assim: y a é uma função stritamnt crscnt. Portanto, tmos d ncontrar os valors a a a a a ,, Cálculo Auiliar: Rcorrndo à fórmula rsolvnt, vm a a a a 4 0 Como a função da inquação a y a a 9. Considrando 4 é quadrática o su gráfico tm a concavidad voltada para cima, ntão as soluçõs 4a 0 são os valors d a tais qu a,,. RQ a bas do triângulo PQR, a sua altura é dada por f 9a f a f 9a f a log 9a log a log 9 log a. Assim: log a log Rsposta: B Como RQ 9a, a ára pdida é RQ f 9a f a 9a 9a. Rsposta: B 0. Rlativamnt ao triângulo ABC, sab-s qu: A abcissa do ponto A é o valor d, para o qual 0 g. Assim, g( ) 0 ln 0 A abcissa do ponto B é a. Logo, AB a A ordnada d C é g a ln a. Logo, BC ln a A ára do triângulo ABC é dada por AB BC a ln a Rlativamnt ao rtângulo PQRS, sab-s qu: SP f a a A ordnada do ponto Q é dada por Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página

4 Prparar o Eam 0 07 Matmática A A ordnada do ponto S é dada por 0 f 0 a QP a A ára do rtângulo PQRS é dada por SP QP ( a ) a O valor d a para o qual a ára d rtângulo PQRS é igual à ára do triângulo ABC é o valor d a qu satisfaz a quação: a ln a a a ( a ) ( a )ln a ln aln a a a i) i) a a 0 a 0 Rsposta: C Página. Tm-s, 5 5 log a 5log a y log a log a y log a a log a log 5 a a a ay. 5 y y y0. Tm-s, 7log ( ) 7 log ( ) a b a b a 8 a a 8 a b 8 a a. b b0 b Rsposta: A Rsposta: D b b ab b ab b ab b a a b. b b0b 0. Tm-s, log ab ( ) Outra rsolução: log log log ab b ab b ab b b ab b b a b b a b0b 0 Rsposta: C 4. Sja B o acontcimnto «plo mnos um lmnto d A sr solução da inquação». Comcmos por rsolvr a inquação: 7 7 D :7 0 :, Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 4

5 Prparar o Eam 0 07 Matmática A Nst domínio tm-s, log 7 log 7 log Logo, o conjunto solução da inquação é, portanto há dois lmntos d A qu são solução da inquação, 0 quatro qu não são. Portanto o númro d casos possívis é 6 C 5 o númro d casos favorávis é 4 C C C 9. Assim, 9 P B. 5 5 Rsposta: D log log 8 log log 6 8 log 6 8 log 6 log log 4 log log log log ( ) 0 log ln log0 log ln log0 log ln log0 log log0 0 0 log log log Conjunto Solução:, (dividindo por. Pod-s fazê-lo, pois 0, log log 4 log 4 log 4. Assim, Conjunto Solução: log 4 Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 5

6 Prparar o Eam 0 07 Matmática A Fazndo y, vm y 7y 8 0 y y y 9 9 y Eq. impossívl Conjunto Solução: 6.4. D : 0 :, Nst domínio tm-s, log 4 4 log 4 log 4 4 log 4 log 4 4 Conjunto Solução: D : : 7 0,7 Nst domínio tm-s, log log 7 log log log log log 7 log log Como D 7 D, a única solução da quação é 7. Conjunto Solução: 7. Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 6

7 Prparar o Eam 0 07 Matmática A Conjunto Solução:, , Fazndo y, vm y y 5 0 Cálculo Auiliar: Rcorrndo à fórmula rsolvnt, vm y y y y Como a função soluçõs da inquação f y y y 5 é quadrática o su gráfico tm a concavidad voltada para cima, ntão as y y 5 0 são os valors d y tais qu y, 7 5,. Assim, y y y y ln5 y Inq. impossívl Conjunto Solução: ln5, ln D : : 0,0, Cálculo Auiliar: Como a função y 4 da inquação 4 0 é quadrática o su gráfico tm a concavidad voltada para cima, ntão as soluçõs são os valors d tais qu,0,. 0 Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 7

8 Prparar o Eam 0 07 Matmática A Nst domínio tm-s, log 4 log log 4 log log 8 log 4 ) log Cálculo Auiliar: Rcorrndo à fórmula rsolvnt, vm Como a função y é quadrática o su gráfico tm a concavidad voltada para cima, ntão as soluçõs da inquação são os valors d tais qu,6. Tndo m conta o domínio D calculado, os valors d qu satisfazm a inquação dada são os valors d qu satisfazm a condição 6 0 : Conjunto Solução:,0, Página A ára do rtângulo ABCD é dada por A ABCD AB BC A abcissa d B, igual à abcissa d C, é o valor d para o qual s tm f 4 : 4 5 Então, 5 AB. Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 8

9 Prparar o Eam 0 07 Matmática A A ordnada d B, igual à ordnada d A, é dada por f, pois o ponto A prtnc ao gráfico d f : f Então, 7 BC 4. 7 A ára do rtângulo ABCD é igual a A AB BC. ABCD O prímtro do rtângulo ABCD é igual a P AB BC 0 ABCD Cálculo Auiliar: Como a função y 6 é quadrática o su gráfico tm a concavidad voltada para cima, ntão as soluçõs da inquação 6 0 são os valors d tais qu,,. Conjunto Solução:,, f. Outra rsolução: f 4. Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 9

10 Prparar o Eam 0 07 Matmática A D D D,,, f h Nst domínio tm-s, log log log log log f h 7 log log Tndo m conta o domínio D calculado, o conjunto solução da inquação é dado por: D 7,, 7, 7, Para ncontrar a abcissa do ponto A, faz-s h 0, pois A é o ponto d intrsção do gráfico d h com o io O ( y 0 ). Assim: h( ) 0 log 0 log log. Logo, as coordnadas do ponto A são,0. Analogamnt, fazndo f 0, dtrmina-s a abcissa do ponto B: f ( ) 0 log 0 log log. Logo, as coordnadas do ponto B são,0. Rsolvndo a quação h f, calcula-s a abcissa do ponto C: h( ) f ( ) log log Assim, a ordnada d C é dada por h log log loglog log Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 0

11 Prparar o Eam 0 07 Matmática A Portanto, as coordnadas do ponto C são, log. Considrando AB a bas do triângulo ABC, a sua altura é igual a log log. Portanto, a sua ára é AB altura dada por 9. A ABC log log log log. 9.. Dg : a 0 :, a a a 0 Como Dg,, ntão a. a S o ponto d coordnadas,0 prtnc ao gráfico d gráfico d g portanto g 0. Assim: g, ntão o ponto d coordnadas 0, prtnc ao S a 4 8 g 0 log ab logb log b b b b 4 a 0 b, vm g log 8 log log log log Calculmos a prssão analítica da função quação m ordm a, vm: g. Fazndo log 4 g y y rsolvndo sta Assim, g 4 log log 4 y 4 y 4 y. O domínio d g é qu é igual ao contradomínio d g. 9.. Tm-s g 4 log 4 log 4 log D : : 4,4 y 4 Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página

12 Prparar o Eam 0 07 Matmática A Nst domínio tm-s, log 4 log 4 log log 4 log 4 log Cálculo Auiliar: Rsolvndo a quação Como a função da inquação y 7 log 7 4 log é quadrática o su gráfico tm a concavidad voltada para baio, ntão as soluçõs 7 0 são os valors d tais qu 7,0,. Dtrminando a intrsção dst conjunto com o domínio, obtém-s o conjunto solução pdido. D,4, da inquação g 4 log 4, 4 Conjunto Solução: 7,0,4 Página 4 0. g ln, logo as coordnadas do ponto Q são, ln. g 0 ln 0 ln, logo as coordnadas do ponto P são,0. y ln Q O P ln A ára do triângulo OPQ é dada por, ln A 0,9. OPQ Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página

13 Prparar o Eam 0 07 Matmática A. O modlo corrto é o aprsntado na opção II. O modlo aprsntação na opção I não é corrto porqu, no início d 990 ( t 0 ), istiam 400 lobos no parqu natural sgundo st modlo istiam no parqu 500 lobos: P 0,50 0 O modlo aprsntação na opção III não é corrto porqu, por mplo, ao fim d três anos o númro d lobos é d aproimadamnt 09 ( P Outra manira d liminar a opção III: 00 09) o qu ultrapassa o milhar d indivíduos Como lim Pt lim 00, ntão, sgundo st modlo, com o passar do tmpo t t t 0 o númro d lobos tndrá para os 00, portanto ultrapassará o milhar d indivíduos.... O final d 96 corrspond a 4 t. Portanto tm-s I 4,5 (500 pssoas). Como p, vm: 4k 4k 4k 4k 4k 4k 4k I 4,5,5,5 4,5,5 0,5,5 5 k.. Tm-s qu I ln5 4k ln5 k 0,4 4, logo: k k k k k k k I p p p k p p Assim, A B... It k ln k lnln p k ln p p 0 kt kt p kt kt kt kt p p p p kt kt. Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página

14 Prparar o Eam 0 07 Matmática A... Tm-s qu f O carro dsvaloriza % ao ano, isto é, a cada ano qu passa o valor do carro srá igual ao valor qu tinha no ano antrior mnos % (0,) dss valor. Assim: o valor do automóvl um ano após a compra é dado por f 50 0, , 50 0,88 o valor do automóvl dois anos após a compra é dado por: f 50 0,88 0, 50 0, ,88 0, 50 0,88 o valor do automóvl três anos após a compra é dado por:. f 50 0,88 0, 50 0,88 500,88 0, 50 0,88 Logo, t anos após a sua compra o valor do automóvl é dado por f t 50 0,88 t... a) S 0,8 ln0,88, vm 0,8 ln 0,88 0,8 0,8 ln 0,88 0,88. Assim: t t f t 50 0, ,8 0,8 t b) Ao fim d anos corrspond a t. Como qurmos sabr o valor do carro ao fim d anos 8 mss, qurmos calcular 8 f f (oito mss corrspond a 8 f 0,8 50, 709 do ano). Assim: Ao fim d anos oito mss o carro valrá, aproimadamnt, 7 uros. ln 0 5 f t ,8t ln t, ,8 0,8t 0,8t c) Tm-s O automóvl ating o valor d uros, passados, aproimadamnt,,6 anos após a compra. Portanto o João dvrá vndr o carro m 04. Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 4

15 Prparar o Eam 0 07 Matmática A d) Tm-s: 0,8 t 0,8 t f t f t 50 0,8t 50 0,8t ln 0,8 ln 5, 4 0,8 0,8 0,8 0,8t 0,8t Como 0,4 5, conclui-s qu a cada cinco anos cinco mss o automóvl dsvaloriza 50%... A dsvalorização trimstral é dada plo quocint f t 4 f t 0,5. f t f t 0,8 t 0,5 f t 0, 5 50 t 0,8t 0,8t f t 50 0,8 0,80,5 0,8 t 0,0 0,0 0,8t 0,9685 Como 0, ,85% 00% 96,85%,5%, conclui-s qu a dsvalorização trimstral do automóvl é d aproimadamnt,5%. Página Tm-s,4 0,5 A p,4 0,5 0,55 ln p,4 ln p p. 0,55 O pso do Ricardo srá, aproimadamnt, Kg.,9 0, Tm-s: A p A p 0, 6 0,5 0,55 ln p 0,5 0,55 ln p 0, 6 0,6 0,55ln p 0,55ln p 0, 6 ln p ln p 0,55 ln ln p ln p ln Obsrva qu 0,6 0, ,55 0, Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 5

16 Prparar o Eam 0 07 Matmática A S a difrnça ntr a altura d duas crianças do so masculino é, d acordo com o modlo, d 60 cntímtros ntão uma das crianças tm o triplo do pso da outra. 4.. Tm-s: 0,55 0,55 0,5 0,55 0,55 0,5 A p 0,5 0,55 ln p 0,5 ln p ln ln p ln p ln ln p 0,5 5. Pla informação dada no nunciado, sab-s qu Q Q 0 0. Tm-s: Q 0 log Q0 log 8 k 0 log 8 400k Assim: log log Q Q k k k Logo, k 0, k 7 k 0, Tm-s qu C0 a. O custo d produção d cada pilha aumnta 8% a cada sis mss, isto é, a cada mio ano o valor d produção d cada pilha igual ao valor qu tinha no sis mss ants mais 8% dss valor. Portanto para sabr quando srá o custo sis mss após um dado instant basta multiplicar por,08 ( 00% 8% 08%,08 ) o valor do custo d produção nss instant. Por mplo, o valor do custo d produção sis mss após o início da produção é: Assim: C 0,5 a 0,08a a 0,08 a,08 0,5 o custo d produção sis mss após o início da produção é C0,5 a,08 a,08. o custo d produção um ano após o início da produção é C a,08,08 a,08 a,08. o custo d produção 8 mss após o início da produção é C,5 a,08,08 a,08 a,08,5. Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 6

17 Prparar o Eam 0 07 Matmática A o custo d produção dois anos após o início da produção é C a,08,08 a,08 4 a,08. Logo, t anos após ao início da produção, o custo d produção d cada pilha é dado por: t. C t a,08 a,08 t Prtnd-s calcular o valor d para o qual C( t ) C t : Ct C t a (,08) C t C t t, 08 t a (, 08) t t, 08 ln ln log,08 log,08 4,5 ln,08 ln,08 O custo d produção dsta pilha duplica ao fim d, aproimadamnt, cinco anos sis mss. 6.. Para Ct,08 t. a tm-s Sja L a função qu dá o lucro d vnda dstas pilhas m função d t. Assim, Utilizando o ditor d funçõs da calculadora, dfin-s y L t p t C t N t. Lt na janla d visualização 0,0 00,800. y c O b a t y L t Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 7

18 Prparar o Eam 0 07 Matmática A a) Lt 0 t a, com a 8,468. A produção vnda das pilhas diam d dar lucro passados, aproimadamnt, oito anos sis mss ( 0,468 6 ). b) A função L ating o máimo m ss máimo é dado por Lb c, com b 7,4 c 70,6956. O lucro máimo d vnda das pilhas é 7069,56 uros passados st anos cinco mss ( 0,4 5 ). Proposta d Rsolução dos Ercícios do Subcapítulo Função Eponncial. Função Logarítmica Página 8

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Resolução. Admitindo x = x. I) Ax = b

Resolução. Admitindo x = x. I) Ax = b Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Aplicação da rgra

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela ICMS-RJ 007: prova d Estatística comntada Rsolução comntada d Estatística - ICMS/RJ - 007 - Prova Amarla 9. Uma amostra d 00 srvidors d uma rpartição aprsntou média salarial d R$.700,00 com uma disprsão

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013 ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL MATEMÁTICA Exrcícios d Exams Tsts Intrmédios 11º Ano Ano Ltivo d 2012/2013 Trigonomtria 1 Na figura stá rprsntado o quadrado é a amplitud m radianos do ângulo Mostr

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

Proposta de Exame Final de Matemática A

Proposta de Exame Final de Matemática A Proposta d Eam Fial d Matmática. N DE ESCLRIDDE Duração da prova: 50 miutos. Tolrâcia: 30 miutos Data: Grupo I Na rsposta aos its dst grupo, slcio a opção corrta. Escrva, a olha d rspostas, o úmro do itm

Leia mais

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M. Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

TESTE DE DIAGNÓSTICO

TESTE DE DIAGNÓSTICO TESTE DE DIAGNÓSTICO 9.º 10.º ANO NOME: N.º: TURMA: ANO LETIVO: / DURAÇÃO DO TESTE: 90 MINUTOS DATA: / / O teste é constituído por dois grupos. No Grupo I, são indicadas quatro opções de resposta para

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

ATIVIDADES RECUPERAÇÃO PARALELA

ATIVIDADES RECUPERAÇÃO PARALELA ATIVIDADES RECUPERAÇÃO PARALELA Nom: Nº Ano: 6ºD Data: / /0 Bimstr: Profssor: Dnis Rocha Disciplina: Matmática Orintaçõs para studo:. Rvisar os contúdos trabalhados no bimstr.. Rfazr os xrcícios do cadrno

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

ANO LECTIVO 2001/2002

ANO LECTIVO 2001/2002 ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

Matemática Aplicada Geoprocessamento/Professor: Lourenço Gonçalves LISTA-1 (03/04/2009)

Matemática Aplicada Geoprocessamento/Professor: Lourenço Gonçalves LISTA-1 (03/04/2009) Matmática Aplicada Goprocssamnto/Profssor: Lournço Gonçalvs LISTA-1 (3/4/29) Exrcício-1 Considr as figuras abaixo rsponda o qu s pd. a) Qual a razão ntr as dimnsõs dos sus comprimntos? b) S o carro grand

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V

AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V AGRUPAMENTO DE ESCOLAS D. JOÃO V 172431 ESCOLA SECUNDÁRIA c/ 2º 3º CICLOS D. JOÃO V Ensino Rgular Ára Disciplinar d Matmática Planificaçõs 2014/15 Ciclo 5.º ano Manual scolar adotado: Matmática 5.º ano,

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL

EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL PLANO ALTERNATIVO DE SERVIÇO N o 001 - EMBRATEL 1. APLICAÇÃO Est Plano d Srviço ofrc ao usuário do Srviço d Tlfonia Fixa Comutada, a possibilidad d

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

SAIS SOLÚVEIS E SAIS INSOLÚVEIS EM ÁGUA. São muito solúveis em água, praticamente: Todos os sais de metais alcalinos. Todos os sais de amónio ) (NH 4

SAIS SOLÚVEIS E SAIS INSOLÚVEIS EM ÁGUA. São muito solúveis em água, praticamente: Todos os sais de metais alcalinos. Todos os sais de amónio ) (NH 4 MNERALZAÇÃO E DESMNERALZAÇÃO DA ÁGUA A água do mar as águas salobras contêm divrsos sais minrais dissolvidos. A rmoção d sais dstas águas é um procsso d obtr água potávl. Os procssos mais usados são a

Leia mais

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1 5 MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 5 Introdução: Considrmos os sguints nunciados: Quais são as dimnsõs d uma caia rtangular sm tampa com volum v com a mnor ára d supríci possívl? A tmpratura

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS No capítulo qu irmos iniciar, studarmos as quaçõs difrnciais, sus aspctos, caractrísticas suas rspctivas soluçõs. Obviamnt sugrm a rsolução d algum tipo d quação nvolvndo drivadas.

Leia mais

Modelos de Estrutura Temporal de Taxas de Juro Mestrado em Matemática Financeira 07/08 IBS e FCUL

Modelos de Estrutura Temporal de Taxas de Juro Mestrado em Matemática Financeira 07/08 IBS e FCUL Modlos d Estrutura Tmporal d Taxas d Juro Mstrado m Matmática Financira 07/08 IBS FCUL /Dz/08 Exam a Época - Rsolução Duração: 3h. (a) A ODE dψ (t t 0 ) σ ψ (t t 0 ) kψ (t t 0 )+μ = dt, pod sr rscrita

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

Arcos e ângulos Adote π=3,14 quando necessário.

Arcos e ângulos Adote π=3,14 quando necessário. Prof. Liana Turmas: 1C17/27/37 Sgundo trimstr Ângulos Complmntars Suplmntars 1. Qual é o ângulo qu xcd o su suplmnto m 66? 2. Dtrmin um ângulo sabndo qu o su suplmnto xcd o próprio ângulo m 70. 3. Qual

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

Programa de Matemática - II Ciclo CONTEÚDOS

Programa de Matemática - II Ciclo CONTEÚDOS 3 a CLASSE 305 306 PROGRAMA DE MA DA 3ª CLASSE I Os Númros Naturais até 1000 Lr scrvr os númros naturais até 100; Dcompor os númros naturais até 100 m unidads, dznas cntnas; Escrvr os númros naturais até

Leia mais

Capítulo 3 - Flexão de Peças Curvas

Capítulo 3 - Flexão de Peças Curvas Capítulo - Flxão d Pças Cuvas.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os ntos d gavdad das sçõs tansvsas da aa, amada lna dos ntos, sja uma uva plana qu as sçõs tansvsas tnam um xo d smta

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

ABNT NBA NORMA BRASILEIRA. Informação e documentação - Sumário - Apresentação T~CNICAS. lnformation and documentatíon - Contents físt - Presentatíon

ABNT NBA NORMA BRASILEIRA. Informação e documentação - Sumário - Apresentação T~CNICAS. lnformation and documentatíon - Contents físt - Presentatíon NORMA BRASILEIRA ABNT NBA 6027 Sgunda dição 11.12.2012 Válida a partir d 11.01.201 3 Informação documntação - Sumário - Aprsntação lnformation and documntatíon - Contnts físt - Prsntatíon ICS 01.140.20

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Sucessões e Frações Contínuas

Sucessões e Frações Contínuas Sucssõs Fraçõs Contínuas JOÃO CARREIRA PAIXÃO Escola ES/3 d Maria Lamas jcpaixao@gmail.com 04 38 GAZETA DE MATEMÁTICA 166 Atualmnt a rprsntação d númros rais na notação dcimal parc sr a mais óbvia, mas

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais