PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A =

Tamanho: px
Começar a partir da página:

Download "PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A ="

Transcrição

1 ALUNO (A) : PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: / 06 / 06 ÁLGEBRA LINEAR: MATRIZES, DETERMINANTES E SISTEMAS. MATRIZES 0-0) Dada a matriz, B, calcul a a a + a. 0) Escrva a matriz A = (a ij ) do tipo 4 sabndo qu a ij = i j. 0. S A T A - rprsntam, rspctivamnt, a transposta a invrsa da matriz A, ntão 4 8 o dtrminant da matriz B = A T A - é igual a: / b) 8/ c) 66 97/ ) Considr a squência d matrizs (A, A, A,...), todas quadradas d ordm 4, rspctivamnt iguais a: ,,, Sabndo qu o lmnto a ij = 74 é da matriz A n dtrmin os valors d n, i j. 08-FGV) A matriz a b c matricial AX M m qu: A M b) 68 c) ) 7 é a solução da quação Então a b c val: 09) São dadas as matrizs A = (aij) B = (bij), quadradas d ordm, com aij = i + 4j bij = 4i j. Considrando C = A + B, calcul a matriz C. 0) Dtrmin a b para qu a igualdad a 4 b a b = sja vrdadira ) Sjam A = 0 B = 7 -, dtrmin 9-8 (A + B) t. ) Dadas as matrizs A = B = 4 - y - y, dtrmin y para qu A = B t. - 0) S a matriz é y z y z ) Rsolva a quação matricial: simétrica, o valor d é 4 0 b) c) 6 4 ) 0 7 = X + 0. y z z ) S A B. O dtrminant da 0 0 4) Dtrmin os valors d, y, z w d modo matriz ( AB) - é: a b 0 - /0. b) /0 c) /0 qu: - = c d /0 ) nda 07) Num jogo, foram sortados 6 númros para compor uma matriz M (m ) d ordm. Após o sortio, notou-s qu sss númros obdcram à rgra m 4i j. Assim, a matriz M é igual a. 6 7 b) ) 7 6 ij ij c) 7 6 ) Eftu: c) b) TESTES. S M 0 T N, ntão M N M N é igual a

2 b) ) 7 c). Ug) Tatiana Tiago comunicam-s ntr si por mio d um código próprio dado pla rsolução do produto ntr as matrizs A B, ambas d ordm, ond cada ltra do alfabto corrspond a um númro, isto é, a =, b =, c =,, z = 6. Por mplo, s a rsolução d A B for igual a, 8 logo a mnsagm rcbida é amor. Dssa forma, s a mnsagm rcbida por Tatiana foi flor a matriz B, ntão a matriz A é b) 7 c) 7 6 ) Considr a sguint opração ntr 6 6 matrizs: K 4 A soma d todos os lmntos da matriz K é:. b). c) Uma rsrva florstal foi dividida m quadrants d m d ára cada um. Com o objtivo d sabr quantas samambaias havia na rsrva, o númro dlas foi contado por quadrant da sguint forma: Númro d samambaias por quadrant Númro d quadrants A7 B O lmnto a ij da matriz A corrspond ao lmnto b ij da matriz B, por mplo, 8 quadrants contêm 0 (zro) samambaia, quadrants contêm samambaia. Assinal a altrnativa qu aprsnta, corrtamnt, a opração ftuada ntr as matrizs A B, qu rsulta no númro total d samambaias istnts na rsrva florstal. t t t A B b) B A c) A B t t A B ) A B. (Pucrs) Dada a matriz A a função f, dfinida no conjunto das matrizs por f(x) X X, ntão f(a) é b) c) ) 6. Sjam A B 6 B' a transposta d B. O produto da matriz A pla matriz B' é b) c) ) Considr as matrizs 9 a 0 A, y 4 6 b 7 6 B y C. y A 4 b 0 c soma dos quadrados das constants, y, a, b c qu satisfazm a quação matricial A 6B C é: 6 b) 4 c) 4 4 ) 6 8. Numa aula d Álgbra Matricial dos cursos d Engnharia, o profssor pdiu qu os alunos rsolvssm a sguint qustão: S A, 4 ntão A é igual a b) 9 6 c) ) 0 9. O valor A 4B quando A 0 0 B 0 é igual a: b) ) c) GABARITO DE MATRIZES : B 04. n i j.. C 06. E 07. C 08. A a = 4 b = ± ou 0. 0 C, 0

3 Gabarito Rsolução dos tsts d matrizs : [C] Calculando, inicialmnt, a invrsa da matriz M. T M dt(m) Dtrminando, agora, a transposta da matriz N, tmos: T N 0 Portanto: 0 T MN M N 0 ' 4 4 : [B] Com os dados do nunciado, pods scrvr: y 6 y 6 6 z w 8 z w 7 : [A] Para qu a multiplicação sja possívl, a matriz K dv sr uma matriz d duas linhas uma coluna, portanto: 6 6 Rsolvndo o sistma: 4 y 6 y 6 8 6y 8 4 y 8 6y ( ) y 6 y 6 y A soma A soma d todos os lmntos da matriz K srá: y 4: [A] O númro total d samambaias istnts na rsrva florstal é dado pla prssão Portanto, a opração ncssária ntr as matrizs A B, a fim d obtr a prssão t antrior, é A B. : [B] Tm-s qu f(a) A A : [D] : [A] Como 6 6b 6 6B, y vm 9 a 0 6 6b y y y b 0 c 9 6 a 6b y y y b 0 c Igualando os trmos corrspondnts, sgu qu b, c 4 a 6b a. Além disso, ( ) 7 ( ) 6 6 y y y y y ( ) 0 y 8 4 y 9 y. Portanto, a soma pdida é y a b c ( ) ( 4) 6. 8: [C] Como A A A, sgu qu A : [B] A B A 4B DETERMINANTES 0) Calcul os sguints dtrminants: b) c) ) S a =, b = 4 dtrmin A = a + b c. 0) Rsolva a quação 7 c = = ) Calcul o valor do dtrminant da matriz A = ,

4 0) Rsolva a quação ) Faça a diagonalização dos dtrminants utilizando o torma d Jacobi, m sguida, dtrmin o su valor: b) c) ) Rduza até a ordm, m sguida dtrmin o valor dos dtrminants abaio: b) c) 0 4 TESTES DE DETERMINANTES. Dadas as matrizs A dtrminant dt A B é igual a 8 b) c) 6 ) 70 4 B, 6. Analis as afirmaçõs abaio, sabndo qu: a b c d f I. a b c III. a b c d f II. a b c o d f 6 a b c IV. d a b f c Assinal a altrnativa corrta. Apnas I, III IV são vrdadiras. b) Apnas a afirmação III é vrdadira. c) Apnas I II são vrdadiras. Todas as afirmaçõs são vrdadiras.. S A B. O dtrminant da 0 0 matriz (AB) é:. b) Sndo 4 a b c). 0 4 a. ) nda , o valor d b 0 c é: 7 0 b c 80 b) 0 c) Uma matriz 4 4 qu admit invrsa é b) c) ) Considr as sguints dsigualdads: I. II. 4 III É corrto afirmar qu: São vrdadiras apnas as dsigualdads I II. b)são vrdadiras apnas as dsigualdads II III. c) São vrdadiras apnas as dsigualdads I III. As três dsigualdads são vrdadiras. ) As três dsigualdads são falsas. 7. Considrando-s log = 0,, o valor do dtrminant abaio é igual a: log4 log6 log400 log log4 log0 0,6 b) 0 c) 0,74 ) 0,4 PROPRIEDADES DOS DETERMINANTES ª propridad Ao obsrvar uma matriz vrificar qu os lmntos d uma linha ou uma coluna são iguais a zro, o valor do su dtrminant também srá zro.

5 ª propridad Caso ocorra igualdad d lmntos ntr duas linhas ou duas colunas, o dtrminant dssa matriz srá nulo. ª propridad Vrificadas m uma matriz duas linhas ou duas colunas com lmntos d valors proporcionais, o dtrminant trá valor igual à zro. Obsrv a propridad ntr a ª a ª linha. 4ª propridad Ao multiplicarmos todos os lmntos d uma linha ou coluna d uma matriz por um númro K, o su dtrminant fica multiplicado por K. 9ª propridad Considrando duas matrizs quadradas d ordm iguais AB matriz produto, tmos qu: dt (AB) = (dt A) * (dt B), conform torma d Bint. A B A B Dt(A) = 4 Dt(B) = Dt(AB) = = 8 Dt(A) Dt(B) = 8 0ª propridad Quando multiplica -s todos os lmntos d uma linha ou d uma coluna d uma matriz A plo msmo númro ral, m sguida, adicionarmos os rsultados aos lmntos corrspondnts d outra linha ou coluna paralla, formamos a matriz B, ond ocorr a sguint igualdad: dt A = dt B. Ess torma é atribuído a Jacobi. Com ss torma pod-s manipular os lmntos do dtrminant fazndo com qu o dtrminant sja igual ao d uma matriz triangular, ss procsso é chamado d diagonalização. Os lmntos da ª linha d P foram multiplicados por, ntão: dt P = dt P ª propridad Caso uma matriz quadrada A sja multiplicada por um númro ral k, su dtrminant passa a sr multiplicado por k n. dt (k*a) = k n * dt A 6ª propridad O valor do dtrminant d uma matriz R é igual ao dtrminant da matriz da transposta d R, dt R = dt (R t ). a b a b A Dt(A) = = ad - bc c d c d T a c T a c A Dt(A ) = = ad - bc b d b d GABARITO DE DETERMINANTES 06-6 b)-8 c) b) -0 c) 4 0 7ª propridad Ao trocarmos duas linhas ou duas colunas d posição d uma matriz, o valor do su dtrminant passa a sr oposto ao dtrminant da antrior. 8ª propridad O dtrminant d uma matriz triangular é igual à multiplicação dos lmntos da diagonal principal. Lmbr-s qu m uma matriz triangular, os lmntos acima ou abaio da diagonal principal são iguais a zro

6 SISTEMAS LINEARES Aplicando qualqur método d rsolução, rsolva os sguints sistmas d quaçõs do º grau com duas variávis: y 7, com, y. y b) y, com y 0. 4 y y c) 7, com y 0. y y, com. Y y ), com, y {0, }. y y f), com y {0, }. y y 8 0.O valor d no sistma é: y b) c) 0) Um caminhão transportou, m duas viagns, 0 tonladas d soja. Sabndo qu, na primira viagm, o caminhão, carrgado, psou 4 tonladas qu, na sgunda, o caminhão a carga psaram tonladas, calcul a quantidad d soja transportada na primira viagm o pso do caminhão vazio. 04) Em uma lanchont, o custo d sanduíchs, 7 rfrigrants uma torta d maçã é R$,0. Com 4 sanduíchs, 0 rfrigrants uma torta d maçã, o custo vai para R$ 0,0. O custo d um sanduích, um rfrigrant uma torta d maçã, m rais, é: 7,00. b) 6,0. c) 6,00.,0. ),00. 0) Um ngociant trabalha com as mrcadorias A, B, C d cada uma das quais tm um pquno stoqu não nulo. S vndr cada unidad d A por R$,00, cada uma d B por R$,00 cada uma d C por R$4,00, obtém uma rcita d R$0,00. Mas s vndr cada unidad rspctivamnt por R$,00, R$6,00 R$,00, a rcita srá d R$60,00. Calcular o númro d unidads qu possui d cada uma das mrcadorias. 06) O par ordnado (, y) é a solução do sistma y. Então, + y é igual a: y b) 0 c) / / 07) Sab-s qu + y = 0 y = 6. O valor d y é: 00 b) 0 c) 0 y 08) A solução do sistma y é o par ordnado: (/,/4) b) (-/,) c) (0,-/4) (/4,/4) 09) O IBGE contratou um crto númro d ntrvistadors para ralizar o rcnsamnto m uma cidad. S cada um dls rcnsass 00 rsidências, 60 dlas não sriam visitadas. Como, no ntanto, todas as rsidências foram visitadas cada rcnsador visitou 0, quantas rsidências tm a cidad? 0. Carlinhos possui crta quantidad d bolinhas d gud algumas latinhas ond guardá-las. Ao colocar 4 bolinhas m cada lata, sobraram bolinhas, mas quando colocou bolinhas m cada lata, a última ficou com apnas bolinhas. Podmos afirmar qu todas as latas ficariam com o msmo númro d bolinhas s l tivss: 6 bolinhas b) 4 bolinhas c) 49 bolinhas bolinhas ) 6 bolinhas ) João diz a Pdro: s você m dr / do dinhiro qu possui u ficari com uma quantia igual ao dobro do qu lh rstará. Por outro lado, s u lh dr R$6.000,00 do mu dinhiro nós ficarmos com quantias iguais. Quanto dinhiro possui cada um? ) Em uma sala d aula ntram n alunos. S sntarm alunos m cada bancada, ficarão d pé. Porém, s m cada bancada sntarm alunos, havrá 4 bancadas vazias.o númro d alunos (n) é: 49. b) 7. c) ) 8. ) Para uma fsta d anivrsário foram rsrvadas 0 msas com sis cadiras m cada uma. No dcorrr da fsta, obsrvou-s qu las stavam assim ocupadas: algumas com apnas dois convidados, outras com quatro o rstant com sis. Sabndo-s qu havia 00 pssoas na fsta, das quais 0% ocupavam msas com atamnt sis pssoas, ntão o númro d convidados qu ocupavam msas com atamnt quatro pssoas ra 0 b) 40 c) ) 0 6

7 4) Um sistma linar tm a sguint matriz d coficints: 4 k 4 - Uma condição ncssária suficint sobr k para qu o sistma tnha uma única solução é k 4 b) k / c) k 0 k -/ ) k -4. Para prvnir a anmia por dficiência d frro, dv havr um consumo quilibrado d alimntos ricos dss lmnto químico. Obsrv a tabla qu aprsnta a quantidad d frro na composição d 00g d alimntos. Alimnto (00 g) Frro (mg) Espinafr cozido,6 Carn bovina assada,8 Em uma rfição, Pdro consumiu 6,0 g d frro ao ingrir apnas spinafr cozido carn bovina assada. Sabndo qu a quantidad d carn bovina ingrida foi o dobro da quantidad d spinafr ingrida, conclui-s qu a quantidad d carn bovina ingrida foi, aproimadamnt, m gramas, 0. b) 40. c) ) 70. 9) Dois garfos iguais, cinco colhrs iguais oito facas iguais psam juntos 99 g. Um dsss garfos, duas dssas colhrs três dssas facas psam juntos 9 g. Portanto, um dsss garfos, uma dssas colhrs uma dssas facas psam juntos: 7 g. b) g. c) 8 g. 0 g. ) 09 g. 0) Rsolva o sistma: /u + /v = 8 /u - /v = - GABARITO 0. S = {(, 4)} b) S = {(0, )} c) S = {(7, )} S = {(, 6)} ) S = {(, )} f) S = {(, )} 0. C 0. O pso do caminhão vazio é tonladas o pso da soja transportada na primira viagm é 0 tonladas. 04. B 0. unidads d A,4 unidads d B unidads d C 06. A 07) B 08) D rsidências 0. D. B. E 4. E. A 6. C 7. B 8. E 9. C 0. V = {(,/)} 6) Um suprmrcado adquiriu dtrgnts nos aromas limão coco. A compra foi ntrgu, mbalada m 0 caias, com 4 frascos m cada caia. Sabndo-s qu cada caia continha frascos d dtrgnts a mais no aroma limão do qu no aroma coco, o númro d frascos ntrgus, no aroma limão, foi 0 b) 0 c) 0 40 ) 0 ( ) (y 4) 6 7. Rsolvndo o sistma, (y 4) 44 obtmos o par ordnado: (6, 4) b) (, 8) c) (6, 4) (, 8) + y - z = 0 8) O sistma linar - - y + z = é: - y + z = Homogêno indtrminado. b) Impossívl indtrminado. c) Possívl dtrminado. Impossívl dtrminado. ) Possívl indtrminado. 7

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matmática A Etnsivo V. 6 Rsolva.) a) Aula. ( )

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc m o c voc RESOLUÇÃO voc A1 A4 (ABCD) = AB.BC AB.2 = 6 AB = 3 cm (BCFE) = BC.BE 2.BE = 10 BE = 5 cm Um dos lados vai tr a mdida 10-2x o outro 8-2x. A altura

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

ROTEIRO DE RECUPERAÇÃO 1 a ETAPA MATEMÁTICA 1 a SÉRIE

ROTEIRO DE RECUPERAÇÃO 1 a ETAPA MATEMÁTICA 1 a SÉRIE ROTEIRO DE RECUPERAÇÃO 1 a ETAPA MATEMÁTICA 1 a SÉRIE ASSUNTO: COJUNTOS DOS NATURAIS, PRODUTOS NOTÁVEIS, FATORAÇÃO, POTENCIAÇÃO, RADICIAÇÃO, MMC, MDC E DIVISIBILIDADE. Lista d Ercícios 1) Simplificando-s

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _.

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _. CONCURSO PÚBLICO MATEMÁTICA GRUPO MAGISTÉRIO Rsrvado ao CEFET-RN 4/MAIO/6 Us apnas canta sfrográfica azul ou prta. Escrva o su nom o númro do su CPF no spaço indicado nsta folha. Confira, com máima atnção,

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia REC2010 MICROECONOMIA II SEGUNDA PROVA (2011) ROBERTO GUENA (1) Considr uma indústria m concorrência prfita formada por mprsas idênticas. Para produzir, cada mprsa dv arcar com um custo quas fixo F = 1.

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES PÁGIN 42 39 LETR C Sjam as staçõs, B C, cujos lmntos são as pssoas qu scutavam, plo mnos, uma das staçõs, B ou C. Considr o diagrama abaixo: B 31500 17000 7500

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180 Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Ficha d rvisão nº 5 ª Part. Para um crto valor d a para um crto valor d b a prssão ( ) gráfico stá parcialmnt rprsntado na

Leia mais

UCP Gestão/Economia Matemática II 9 de Abril de 2010

UCP Gestão/Economia Matemática II 9 de Abril de 2010 UCP Gstão/Economia Matmática II 9 d Abril d 00 ª frquência h30m GRUPO (.5). Sja f ( x, ) x com x u uv, u sn t, v log( t ). Calcul df dt. z4 x (.0). Dtrmin a drivada da função f x no ponto P (,,) na dircção

Leia mais

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013 10 Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 21 a 24 d outubro, 2013 DIFERENCIAÇÃO COMPLEXA E AS CONDIÇÕES DE CAUCHY-RIEMANN Pâmla Catarina d Sousa Brandão1, Frnando Prira Sousa2 1 Aluna do Curso

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Exercícios de equilíbrio geral

Exercícios de equilíbrio geral Exrcícios d quilíbrio gral Robrto Guna d Olivira 7 d abril d 05 Qustõs Qustão Dtrmin a curva d contrato d uma conomia d troca com dois bns, bm bm, dois indivíduos, A B, sabndo qu a dotação inicial total

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I Escola Scundária com 3º ciclo D. Dinis 10º Ano d Matmática A Gomtria no Plano no Espaço I Tarfa Intrmédia 8 Grupo I As três qustõs do Grupo I são d scolha múltipla. Slccion, para cada uma dlas, a ltra

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

Equações não lineares processo iterativo

Equações não lineares processo iterativo Equaçõs não linars procsso itrativo Sja uma função considr-s a quação =0. A solução da quação dsigna-s por rai da quação ou por ro da função () y Sucssão itrativa: 0,,, 3, 0 3 0 3 4 = Prtndmos qu a sucssão

Leia mais

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta? Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos

Leia mais

ATIVIDADES RECUPERAÇÃO PARALELA

ATIVIDADES RECUPERAÇÃO PARALELA ATIVIDADES RECUPERAÇÃO PARALELA Nom: Nº Ano: 6ºD Data: / /0 Bimstr: Profssor: Dnis Rocha Disciplina: Matmática Orintaçõs para studo:. Rvisar os contúdos trabalhados no bimstr.. Rfazr os xrcícios do cadrno

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM º CICLO D DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tma II Introdução ao Cálculo Difrncial II Aula nº 4 do plano d trabalho nº 9 Rsolvr os rcícios 87, 88, 89, 90 9 os rcícios 9

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes Polos Olímpicos d Trinamnto Curso d Álgbra - Nívl 3 Prof Cícro Thiago / Prof Marclo Aula 9 Somas d Nwton Chamarmos d somas d Nwton as somas das k - ésimas potências das raízs d um polinômio Iniciarmos

Leia mais

1. Problema Os dados apresentados abaixo relacionam x, o nível umidade de uma mistura de um determinado produto, a Y, a densidade do produto acabado.

1. Problema Os dados apresentados abaixo relacionam x, o nível umidade de uma mistura de um determinado produto, a Y, a densidade do produto acabado. 1. Problma Os dados aprsntados abaixo rlacionam x, o nívl umidad d uma mistura d um dtrminado produto, a Y, a dnsidad do produto acabado. x 7 9 10 13 14 15 16 19 Y 9.07 9.94 10.75 12.45 12.97 13.34 14.25

Leia mais

Equações não lineares processo iterativo

Equações não lineares processo iterativo Equaçõs não linars procsso itrativo Sja f() uma função considr s a quação f()=0. A solução da quação dsigna s por raiz da quação ou por zro da função (z) y f() z Sucssão itrativa: 0,,, 3, 0 f() 3 0 3 z

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio Matrial Tórico - Módulo d Gomtria Anaĺıtica Círculos Trciro Ano - Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 9 d julho d 018 1 Equação rduzida d um círculo Considrmos um ponto

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

a que responda ligado amos 01. (Darlan Moutinho 2018) A pegada ense Fiq AULA F P.1. CONHECIMENTOS ALGÉBRICOS

a que responda ligado amos 01. (Darlan Moutinho 2018) A pegada ense Fiq AULA F P.1. CONHECIMENTOS ALGÉBRICOS AULA 03 CONHECIMENTOS ALGÉBRICOS Fiq u ligado smpr, dtrminou qu, considrando só a produção dos dois ingrdints dss lanch (o pão o quijo), o consumo d água foi d 830 litros. Sabndo qu, m média, a pgada hídrica

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M. Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idntifiqu todas as folhas Folhas não idntificadas NÃO SERÃO COTADAS Faculdad d Economia Univrsidad Nova d Lisboa EXAME DE CÁLCULO I Ano Lctivo 8-9 - º Smstr Eam Final d ª Época m d Janiro 9 Duração: horas

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

Conteúdos Exame Final e Avaliação Especial 2017

Conteúdos Exame Final e Avaliação Especial 2017 Componnt Curricular: Matmática Ano: 7º ANO Turma: 17 D. Profssora: Frnanda Schldr Hamrski Contúdos Exam Final Avaliação Espcial 2017 1. Númros Racionais 2. Ára prímtro d figuras planas 3. Ára do círculo

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES RESOLUÇÃO A1 Primiramnt, dividimos a figura B m dois triângulos B1 B2, um altura d 21 m bas d 3 m outro altura bas mdindo 15 m. Mosaico 1: Tmos qu os dois triângulos

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor.

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor. Aulas Práticas d Matmática II Mstrado m Arquitctura o Smstr Fica 1 Polinómios d Talor d um campo scalar. Rcord qu os polinómios d Talor são uma important frramnta para studar o comportamnto d uma função

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS Sit: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmática A º Ano Fichas d Trabalho Compilação Tma

Leia mais