ESCOAMENTO DE FLUIDO VISCOELÁSTICO EM UMA GEOMETRIA COM CONTRAÇÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ESCOAMENTO DE FLUIDO VISCOELÁSTICO EM UMA GEOMETRIA COM CONTRAÇÃO"

Transcrição

1 Depatamento de Engenhaia Mecânica ESCOAMETO DE FLUIDO VISCOELÁSTICO EM UMA GEOMETRIA COM COTRAÇÃO Alno: Leonado Eckhadt Machado Oientado: Mônica Feijó accache Intodção Motiação ete tabalho é analiado o ecoamento de m flido icoelático nma contação abpta aiimética Ea geometia é mito tilizada em poceo de etão Aqi, o etdo é feito em ma geometia de azão de diâmeto 4:1 qe é mito analiada no meio científico Eitem dieo tabalho pblicado de difeente flido ecoando nea geometia O flido icoelático ão mateiai compleo Ele poem caacteítica elática e icoa, o qe tona a eqaçõe qe deceem e compotamento mito complicada Objetio O objetio dete tabalho foi analia nmeicamente o ecoamento de m flido icoelático nma contação abpta aiimética com azão de diâmeto 4:1, obeando a inflencia do paameto da icoidade Paa io, eão eolida a eqaçõe de coneação de maa e qantidade de moimento linea Liteata Dieo tabalho na liteata analiaam o poblema do ecoamento de mateiai icoelático em contaçõe abpta planae e ai-imética Eta geometia é batante inteeante poi, emboa eja ma geometia imple, a cinemática do ecoamento é batante complea, com egiõe de ecoamento pamente de cialhamento, egiõe de ecoamento etenional e egiõe com cialhamento e etenão Mito tabalho obeaam epeimentalmente a mdança no tamanho do ótice qe gem no canto da contação Boge et al, 1986; Ean e Walte, 1986; igen e Walte, 2002 Oto tabalho eoleam o poblema nmeicamente, tilizando difeente eqaçõe contittia paa modela o compotamento icoelático do mateial Cochet e Pilate, 1976; Debbat e Cochet, 1986, Yeh et al, 1984; Olieia e Pinho, 1999; Ale et al, 2003 Modelagem Matemática A geometia analiada nete tabalho etá motada na Figa 1 O flido enta na eqeda po m tbo de diâmeto D e compimento L, e paa po ma contação abpta, e ai po m oto tbo de diameto d e compimento l A geometia e a geação da malha

2 Depatamento de Engenhaia Mecânica comptacional foam deenolida no oftwae comecial GAMBIT O ecoamento é bidimenional, lamina e em egime pemanente A pefície infeio é o eio aial de imetia Figa 1: Geometia analiada Paa calcla o campo de elocidade e peão, foam eolida a eqaçõe de coneação de maa e de momento paa flido incompeíel e egime pemanente A eqação de coneação de maa é dada po: 0 1 = onde é a coodenada aial, a coodenada adial, e ão o componente da elocidade na dieção aial e adial epectiamente A eqação de coneação de momento é dada po: p 1 g p 1 onde é a denidade, p é a peão e g é a gaidade O compotamento mecânico do flido não newtoniano eá modelado pela eqação contittia de m flido newtoniano genealizado τ = eta eqação a fnção é obtida a pati de ma média ente a icoidade cialhante e etenional Cabe ealta qe paa o mateiai icoelático a icoidade etenional é batante eleada e pode te inflência ignificatia em ecoamento com caacteítica etenionai, como o da contação A fnção icoidade é dada po: 1, R R R = onde, = K = g K E R é m paâmeto cinemático denominado claificado do tipo de ecoamento R=0 paa ecoamento etenional e R=1 paa ecoamento cialhante

3 Depatamento de Engenhaia Mecânica Solção méica A eqaçõe apeentada até agoa não poem olção analítica Paa eolê-la, ela foam dicetizada tilizando o método do olme finito e aim foi calclado o campo de elocidade e peão O eltado nméico foam obtido tilizando o oftwae comecial FLUET Foi tilizada ma malha com 210 diiõe na dieção aial e 96 diiõe na dieção adial A malha foi mai efinada ao edo da egião da contação, a egião do inteee do etdo Deido a poblema de conegencia, paa e obte ma olção do ecoamento de m flido icoelático, pimeiamente dee-e pati de ma olção de m ecoamento de m flido ewtoniano qalqe Com a olção de flido newtoniano, ão tilizada UDF Ue Defined Fnction qe ão compilada no FLUET paa o cálclo do claificado R e da fnção icoidade Reltado A inflencia do paâmeto eológico analizada Paa m alo de = fiando o alo de =2,00, foi aiado o alo de e 1,00, foi aiado o alo de de 1,00 paa 0,9 no padão de ecoamento foi de 1,75 até 2,00 Depoi =1,00 / =1,75: =1,00 / =2,00: =0,90 / =2,00:

4 Depatamento de Engenhaia Mecânica O campo do paâmteo R pemite aalia o tipo de ecoamento em cada egião otae qe na egiõe longe da contação, R=1 co ede Um poco ante da contação pode-e obea egiõe pamente etenionai, onde R=0 co azl, e egiõe onde 0<R<1 tonalidade azi e ede mai clao a egião de eciclação, onde ocoe ma otação de copo ígido, R>1 Obea-e qe fiando o alo de =1,00, ao amenta o alo de, o tamanho da eciclação medido longitdinalmente dimini, o qe indica qe o amento da icoidade etenional tende a edzi a eciclação Fiando o alo de =2,00, e diminindo o alo de, o tamanho da eciclação também dimini Foi feita ma adimenionalizacao diidindo a medida da eciclacao L pelo diameto D do tbo onde ela eta itada Paa ma melho analie ege doi gáfico dea medida m em fnção do paâmeto e oto em fnção do paâmeto L/D X L/D

5 Depatamento de Engenhaia Mecânica L/D X L/D Conclõe ete tabalho foi feita ma imlação nméica do ecoamento de m flido icoelático nma contação abpta 4:1, tilizando o pogama comecial Flent, de olme finito A imlação do ecoamento dee modelo de flido no FLUET é de difícil conegência ee tabalho foi obtida a inflencia do paâmeto eológico e no padão do ecoamento e no tamanho da eciclação, e obeo-e qe a eciclação dimini com o amento de ambo o paâmeto

6 Depatamento de Engenhaia Mecânica Refeência 1 - Soa Mende, P R; Padmanabha, M; Macoko, CW Inelatic Contittie Eqation fo Comple Flow, 34, p , Bid, R; Amtong, R; Haage, O; John Willy & Son Dynamic of Polymetic Liqid, 1, Boge, DV, H, DU; Binnington, RJ, Fthe obeation of elatic effect in tbla enty flow, Jonal of on-ewtonian Flid Mechanic, ol 20, pp 31-49, Cochet, M J; Pilate, G, Plane flow of a flid of econd gade thogh a contaction, Jonal of on-ewtonian Flid Mechanic, ol 1, pp , Debbat, B; Cochet, M J, Fthe elt on the flow of a icoelatic flid thogh an abpt contaction, Jonal of on-ewtonian Flid Mechanic, ol 20, pp , Ean, RE; Walte, K, Flow chaacteitic aociated with abpt change in geomety in the cae of highly elatic liqid, Jonal of on-ewtonian Flid Mechanic, ol 20, pp 11-29, Flent e Gide, igen, S; Walte, K, Vicoelatic contaction flow: compaion of aiymmetic and plana configation, Jonal of on-ewtonian Flid Mechanic, ol 102, pp , Olieia, P J e Pinho, F T Plane contaction flow of ppe conected Mawell and Phan-Thien-Tanne flid a pedicted by a finite-olme method, J on-ewt F Mech, 88, p 63-88, Ale, M A, Olieia, P J e Pinho, F T Benchmak oltion fo the flow of Oldoyd-B and PTT flid in plana contaction, J on-ewt F Mech, 110, p 45-75, Yeh, P W; Kim-E, M E; Amtong, R C; Bown, R A, Mltiple oltion in the calclation of aiymmetic contaction flow of an ppe conected mawell flid, Jonal of on-ewtonian Flid Mechanic, ol 16, pp , 1984

SIMULAÇÃO NUMÉRICA DE PROCESSOS DE EXTRUSÃO

SIMULAÇÃO NUMÉRICA DE PROCESSOS DE EXTRUSÃO RELATÓRIO FIAL SIMULAÇÃO UMÉRICA DE PROCESSOS DE EXTRUSÃO Alno: Alexandre Sampaio da Crz e Leonardo Eckhardt Machado Orientadora: Mônica Feijó accache Introdção Inicialmente, o projeto foi deenvolvido

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

Swing-By Propulsado aplicado ao sistema de Haumea

Swing-By Propulsado aplicado ao sistema de Haumea Tabalho apesentado no DINCON, Natal - RN, 015. 1 Poceeding Seies of the Bazilian Society of Computational and Applied Mathematics Swing-By Populsado aplicado ao sistema de Haumea Alessanda Feaz da Silva

Leia mais

Introdução às Equações Diferencias Parciais. Problemas com Valor de Fronteira e com Valores Iniciais

Introdução às Equações Diferencias Parciais. Problemas com Valor de Fronteira e com Valores Iniciais Intodção às Eqações Dieencias Paciais Poblemas com Valo de Fonteia e com Valoes Iniciais Conteúdo 1. Opeadoes Dieenciais. Condições iniciais e de onteia 3. Eqações Dieenciais Paciais 4. Sistemas de coodenadas.

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

ESTABILIDADE Método critério de Routh-Hurwitz Casos Especiais

ESTABILIDADE Método critério de Routh-Hurwitz Casos Especiais Departamento de Engenharia Qímica e de Petróleo UFF Diciplina: TEQ- CONTROLE DE PROCESSOS cto ESTABILIDADE Método critério de Roth-Hrwitz Cao Epeciai Prof a Ninoka Bojorge ESTABILIDADE MALHA FECHADA Regiõe

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

SIMULAÇÃO NUMÉRICA DE UM TUBO DE CALOR AXIALMENTE ROTATIVO COM ESTRUTURA POROSA PARA BOMBEAMENTO CAPILAR DO CONDENSADO

SIMULAÇÃO NUMÉRICA DE UM TUBO DE CALOR AXIALMENTE ROTATIVO COM ESTRUTURA POROSA PARA BOMBEAMENTO CAPILAR DO CONDENSADO SIMULAÇÃO NUMÉRICA DE UM TUBO DE CALOR AXIALMENTE ROTATIVO COM ESTRUTURA POROSA PARA BOMBEAMENTO CAPILAR DO CONDENSADO Lís E. Saraia saraia@pf.tche.br Uniersidade de Passo Fndo, Facldade de Engenharia

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Escoamento em torno de um cilindro infinito

Escoamento em torno de um cilindro infinito nivesidade de Basília Facldade de Tecnologia epatamento de Engenhaia Mecânica Laboatóio de Mecânica dos Flidos ofesso: Fancisco Ricado da nha e Rafael Gable Gontijo Monito: Macos Fillype Escoamento em

Leia mais

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez Fenômenos de Tanspote I Aula Pof. D. Gilbeto Gacia Cotez 8. Escoamento inteno iscoso e incompessíel 8. Intodução Os escoamentos completamente limitados po supefícies sólidas são denominados intenos. Ex:

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Condução Unidimensional em Regime Permanente

Condução Unidimensional em Regime Permanente Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Estudo da colocação de aletas na transferência de calor em tubos curvos: número, tamanho e rotação.

Estudo da colocação de aletas na transferência de calor em tubos curvos: número, tamanho e rotação. Anais do XII ENCITA 006, ITA, Otbro, 6-9, 006 Estdo da colocação de aletas na transferência de calor em tbos cros: número, tamanho e rotação. Palo Edardo Malais Santos Institto Tecnológico de Aeronática

Leia mais

Introdução ao Método de Elementos Finitos

Introdução ao Método de Elementos Finitos Intodução ao Método de Elementos Finitos Jaime Atuo Ramíe Unidade 1 1 Método de Elementos Finitos Apesentação do cuso O que se estuda aqui? O que é peciso sabe? O que amos fae? 2 Apesentação do cuso O

Leia mais

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas.

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas. Etabilidade Uma araterítia importte para o itema de ontrole é qe ele eja etável. Sem ela qalqer otra araterítia, omo a de m bom deempenho, não faz entido. Para itema lineare, a araterítia de etabilidade

Leia mais

30/08/2016. Transferência de calor. Condução de calor. 2 º. semestre, Geometrias mais usuais. Parede plana. Esfera.

30/08/2016. Transferência de calor. Condução de calor. 2 º. semestre, Geometrias mais usuais. Parede plana. Esfera. 30/08/06 Tanfeência de calo Condução de calo º. emete, 06 Geometia mai uuai Paede plana Efea Cilindo longo 30/08/06 Condução de calo em paede plana: ditibuição de tempeatua Balanço de enegia Taxa decondução

Leia mais

Aula 20. Efeito Doppler

Aula 20. Efeito Doppler Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL MOVIMENOS CURVILÍNEOS LANÇAMENO HORIZONAL COM RESISÊNCIA DO AR DESPREZÁVEL ata-se de um moimento composto po dois moimentos. Um deles obsea-se no plano hoizontal (componente hoizontal) e o outo no plano

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte 5 Capítulo Capítulo Execícios e outas páticas sobe as aplicações da emodinâmica Química 1 a pate Só queo sabe do que pode da ceto Não tenho tempo a pede. (leta da música Go Back, cantada pelo gupo itãs.

Leia mais

Física Geral 2010/2011

Física Geral 2010/2011 Física Geal / 3 - Moimento a duas dimensões: Consideemos agoa o moimento em duas dimensões de um ponto mateial, ataés do estudo das quantidades ectoiais posição, elocidade e aceleação. Vectoes posição,

Leia mais

ESCOAMENTOS EM REGIME PERMANENTE

ESCOAMENTOS EM REGIME PERMANENTE ESOAMENTOS EM EGIME EMANENTE eime emaete: são escoametos qe ão aesetam aiação com o temo t Escoametos i-dimesioais: só aesetam m comoete de elocidade qe só aia em ma dieção Escoametos simles hidodiamicamete

Leia mais

1ªAula do cap. 10 Rotação

1ªAula do cap. 10 Rotação 1ªAula do cap. 10 Rotação Conteúdo: Copos ígidos em otação; Vaiáveis angulaes; Equações Cinemáticas paa aceleação angula constante; Relação ente Vaiáveis Lineaes e Angulaes; Enegia Cinética de Rotação

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

MALHAS COMPUTACIONAIS PARA SIMULAÇÃO NUMÉRICA DE ESCOAMENTOS DE FLUIDOS ENTRE CILINDROS COM EXCENTRICIDADE

MALHAS COMPUTACIONAIS PARA SIMULAÇÃO NUMÉRICA DE ESCOAMENTOS DE FLUIDOS ENTRE CILINDROS COM EXCENTRICIDADE 0 a 05 de jnho de 009, Ijí/RS MALHAS COMPUACIONAIS PARA SIMULAÇÃO NUMÉRICA DE ESCOAMENOS DE FLUIDOS ENRE CILINDROS COM EXCENRICIDADE G 04 Modelagem Matemática Ricardo Vargas Del Frari URI/Erechim ricardodf@hotmail.com

Leia mais

LOBER HERMANY ESCOAMENTO DE FLUIDOS PSEUDOPLÁSTICOS E VISCOPLÁSTICOS: AVALIAÇÃO ANALÍTICA E APROXIMAÇÃO POR ELEMENTOS FINITOS

LOBER HERMANY ESCOAMENTO DE FLUIDOS PSEUDOPLÁSTICOS E VISCOPLÁSTICOS: AVALIAÇÃO ANALÍTICA E APROXIMAÇÃO POR ELEMENTOS FINITOS LOBER HERMANY ESCOAMENTO DE FLUIDOS PSEUDOPLÁSTICOS E VISCOPLÁSTICOS: AVALIAÇÃO ANALÍTICA E APROXIMAÇÃO POR ELEMENTOS FINITOS Monogafia apesentada ao Depatamento de Engenhaia Mecânica da Escola de Engenhaia

Leia mais

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL INSTITUTO DE FISICA- UFBa Maço, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) Roteio elaboado po Newton Oliveia EFEITO ALL OBJETIO DO EXPERIMENTO: A finalidade do expeimento

Leia mais

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A Pova de Física 1 o Séie 1 a Mensal 1 o Timeste TIPO - A 01) A fómula matemática a segui mosta a elação que existe ente volume,, em m, de uma pessoa e sua massa, m, em kg. m a) Utilizando a fómula, calcule

Leia mais

Rolamentos rígidos de esferas

Rolamentos rígidos de esferas Rolamentos ígidos de esfeas Os olamentos ígidos de esfeas estão disponíveis em váios tamanhos e são os mais populaes ente todos os olamentos. Esse tipo de olamento supota cagas adiais e um deteminado gau

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

MCE0855 ESTUDO DO ESCOAMENTO DE UM FLUIDO NEWTONIANO LAMINAR NO INTERIOR DE UMA TUBULAÇÃO COM FLUXO DE CALOR CONSTANTE NA PAREDE

MCE0855 ESTUDO DO ESCOAMENTO DE UM FLUIDO NEWTONIANO LAMINAR NO INTERIOR DE UMA TUBULAÇÃO COM FLUXO DE CALOR CONSTANTE NA PAREDE III Congresso Internacional de Ciência, Tecnologia e Desenolimento 0 a de otbro de 014 CIÊNCIA E TECNOLOGIA PARA O DESENVOLVIMENTO SOCIAL MCE0855 ESTUDO DO ESCOAMENTO DE UM FLUIDO NEWTONIANO LAMINAR NO

Leia mais

Máquina de Corrente Contínua

Máquina de Corrente Contínua Máqna de Coente Contína Objectvos: - estdo do pncípo de nconamento da máq. CC; - Modelo dnâmco. Máqna CC exct. ndependente e sée; - nconamento em egme estaconáo: moto e geado: caacteístcas electomecâncas;

Leia mais

2 O Motor de Indução Equações do Motor de Indução Trifásico

2 O Motor de Indução Equações do Motor de Indução Trifásico 2 O Moto de Indução Paa aplicação de nova tecnologia no moto de indução é neceáio conhece-e o eu modelo matemático, paa pode incopoa quae toda a técnica de contole, etimação, deteção, etc. Potanto, nete

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

Cálculo Vetorial e Geometria Analítica

Cálculo Vetorial e Geometria Analítica Cálclo Vetoial e Geometia Analítica Pof. Ségio de Albqeqe Soza Cso de Licenciata em Matemática UFPBVIRTUAL Coeio eletônico: segio@mat.fpb.b Sítio:.mat.fpb.b/segio Ambiente Vital de Apendizagem: Moodle.ead.fpb.b

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 8 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

Problemas de Valor de Contorno para Equações Diferenciais Ordinárias

Problemas de Valor de Contorno para Equações Diferenciais Ordinárias EQE-358 MÉTODOS NUMÉICOS EM ENGENHI QUÍMIC OFS. EVISTO E GIMIO Caítlo 9 oblema de Valo de Cotoo aa Eqaçõe Dfeea Odáa Codee o eemlo ltatvo da dfão-eação em ma atíla atalíta eféa e ooa: Balaço de maa: etado

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

ANÁLISE NÃO-LINEAR DE PAVIMENTOS DE CONCRETO ARMADO PELO MÉTODO DOS ELEMENTOS DE CONTORNO

ANÁLISE NÃO-LINEAR DE PAVIMENTOS DE CONCRETO ARMADO PELO MÉTODO DOS ELEMENTOS DE CONTORNO Salvado Homce de Cesce ANÁLISE NÃO-LINEAR DE PAVIMENTOS DE CONCRETO ARMADO PELO MÉTODO DOS ELEMENTOS DE CONTORNO Tese apesentada à Escola de Engenhaia de São Calos da Univesidade de São Palo como pate

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO 1. Leis Físicas Fundamentais 3 leis escoamentos independentes da natueza do fluido Leis Básicas Equações Fundamentais Lei da Consevação de Massa Equação

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Experiência 2 - Filtro de Wien - 7 aulas

Experiência 2 - Filtro de Wien - 7 aulas Instituto de Física - USP FGE0213 - Laboatóio de Física III - LabFlex Estudo de uma patícula em um campo eletomagnético Aula 5 - (Exp 2.1) Filto de Wien Mapeamento de Campo Elético Manfedo H. Tabacniks

Leia mais

FLUXO ELÉTRICO E LEI DE GAUSS

FLUXO ELÉTRICO E LEI DE GAUSS 11 FLUXO ELÉTRICO E LEI E GAUSS.1 - A LEI E GAUSS Eta lei é egida po pincípio muito imple e de fácil entendimento. O conceito geal de fluxo como endo o ecoamento de um campo vetoial que atavea uma ecção

Leia mais

2 Múltipla calibração de câmeras

2 Múltipla calibração de câmeras Múltipla calibação de câmeas Neste capítlo desceeemos algns conceitos elacionados ao pocesso de múltipla calibação de câmeas. Paa oganiza esses conceitos, popomos m amewok conceital qe ajdaá a esqematiza

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Métodos Numéricos para Mecânica dos Fluidos

Métodos Numéricos para Mecânica dos Fluidos Métodos Nméricos para Mecânica dos Flidos Professores: Antônio Castelo Filho Fernando Marqes Federson Leandro Franco de Soza Lis Gstavo Nonato Michael George Mansell Métodos Nméricos para Mecânica dos

Leia mais

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO NÁLIE D IBILIDDE D REDE DE TRNPORTE E DITRIBUIÇÃO. Maciel Babosa Janeio 03 nálise da iabilidade da Rede de Tanspote e Distibuição. Maciel Babosa nálise da iabilidade da Rede de Tanspote e Distibuição ÍNDICE

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecícios de povas nacionais e testes intemédios. Considea, num efeencial catesiano, a eta definida pela equação = +. Seja s a eta que é paalela

Leia mais

Escoamento em Regime Turbulento Perfil de velocidade média, U

Escoamento em Regime Turbulento Perfil de velocidade média, U Escoamento em Regime Trblento Camada da parede: - Zona de eqilíbrio local. Prodção de k Dissipação de k (ε) - Na parede, 0, a eqação de balanço de qantidade de movimento na direcção x redz-se a T dp dx

Leia mais

ANÁLISE DA EFICIÊNCIA DE TUBOS DE CALOR ROTATIVOS

ANÁLISE DA EFICIÊNCIA DE TUBOS DE CALOR ROTATIVOS ANÁLISE DA EFICIÊNCIA DE TBOS DE CALOR ROTATIOS Humbeto Aaujo Machado nivesidade do ale do Paaíba, NIAP - IP&D, Av Shishima Hifume, 911, 144-000 São José dos Campos, SP, E-mail: machado@univap.b Ricado

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

RAZÃO CRUZADA: ASPECTOS ALGÉBRICOS E TOPOLÓGICOS

RAZÃO CRUZADA: ASPECTOS ALGÉBRICOS E TOPOLÓGICOS RAZÃO CRUZADA: ASPECTOS ALGÉBRICOS E TOPOLÓGICOS Angela Maia SITTA Hemes Antônio PEDROSO Wilson Mauício TADINI RESUMO: Neste tabalho apesentamos alguns esultados sobe a topologia da azão cuzada. Paa um

Leia mais

FURTHER DEVELOPMENT IN THE RADIAL INTEGRATION METHOD

FURTHER DEVELOPMENT IN THE RADIAL INTEGRATION METHOD Mecánica Computacional Vol XXIX, págs. 5567-5575 (atículo completo) Eduado Dvokin, Macela Goldschmit, Maio toti (Eds.) Buenos ies, gentina, 15-18 Noviembe 21 FURTHER DEVELOPMENT IN THE RDIL INTEGRTION

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da ea 1. Condiçõe de medição eodéica O intumento com que ão efectuada a mediçõe eodéica, obe a upefície da ea, etão ujeito à foça da avidade. Paa pode intepeta coectamente o eultado da mediçõe,

Leia mais

MCE0852. ESTUDO DO ESCOAMENTO TURBULENTO DO TIPO K- ε

MCE0852. ESTUDO DO ESCOAMENTO TURBULENTO DO TIPO K- ε III Congresso Internacional de Ciência, Tecnologia e Desenolimento 0 a de otbro de 014 CIÊNCIA E TECNOLOGIA PARA O DESENVOLVIMENTO SOCIAL MCE085 ESTUDO DO ESCOAMENTO TURBULENTO DO TIPO K- ε ANGELO LUIZ

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Rolamentos de rolos cilíndricos

Rolamentos de rolos cilíndricos Rolamentos de olos cilíndicos Rolamentos de olos cilíndicos Os olamentos de olos cilíndicos possuem alta capacidade de caga adial poque os olos e a pista estão em contato linea. Esses olamentos são adequados

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Ondas e Óptica. No espelho côncavo, se o objeto está colocado entre o foco e o vértice ( s < f ) do espelho a imagem é virtual e direita.

Ondas e Óptica. No espelho côncavo, se o objeto está colocado entre o foco e o vértice ( s < f ) do espelho a imagem é virtual e direita. Onda e Óptica Epelho eférico V = Vértice do epelho = entro de curatura do epelho F = Foco do epelho = Ditância do objeto ao értice de epelho = Ditância da imagem ao értice do epelho f = Foco do epelho

Leia mais

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS. Moivaçõe Como vio o Regulado de Eado maném o iema em uma deeminada condição de egime pemanene, ou eja, ena mane o eado em uma dada condição eacionáia.

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Projeto Final de Graduação

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Projeto Final de Graduação Pontifícia Uniesidade Católica do Rio de Janeio Depatamento de Engenhaia Mecânica Pojeto Final de Gaduação ANÁLISE DO PROCESSO DE DESLOCAMENTO DE LÍQUIDOS EM POÇOS COM EXCENTRICIDADE VARIÁVEL Aluno: Benado

Leia mais

Um modelo linear quadrático gaussiano com restrições de capacidade para planejamento agregado da produção

Um modelo linear quadrático gaussiano com restrições de capacidade para planejamento agregado da produção XXVI ENEGEP - Fotaleza, CE, Basil, 9 a de Otbo de 6 Um modelo linea qadático gassiano com estições de capacidade paa planejamento agegado da podção Osca Salviano Silva Filho (CenPRA) osca.salviano@cenpa.gov.b

Leia mais

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema:

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema: Colisões.F.B, 004 Física 004/ tua IFA AULA 3 Objetio: discuti a obseação de colisões no efeencial do cento de assa Assuntos:a passage da descição no efeencial do laboatóio paa o efeencial do cento de assa;

Leia mais

Eletrotécnica. Módulo III Parte II - Máquina de Indução. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr.

Eletrotécnica. Módulo III Parte II - Máquina de Indução. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr. 1 Eletotécnica Módulo III Pate II - Máquina de Indução Pof. Máquina de Indução ou Máquina Aíncona Tipo de máquina elética otativa mai utilizado Tipo de máquina com contução mai obuta (oto em gaiola quiel

Leia mais

Capítulo 4. Convecção Natural

Capítulo 4. Convecção Natural Capítlo 4 Convecção Natral eitra e Exercícios (Incropera & DeWitt) 6ª Edição Seções: 9. a 9.9 Exercícios: Cap. 9 6, 9, 3, 8, 5, 7, 30, 36, 45, 58, 75, 88, 9, 94, 05, 0 5ª Edição Seções: 9. a 9.9 Exercícios:

Leia mais

Análise e Projeto de Antenas de Microfita Multicamadas

Análise e Projeto de Antenas de Microfita Multicamadas Análise e Pojeto de Antenas de Micofita Multicamadas Pojeto ITA/IEAv (Pocess FAPESP 02/14164-0) Coodenado: Pof. José Calos da Silva Lacava (ITA) Equipe do IEAv : Valdi Augusto Seão, Fancisco Sicilli e

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

Estudo da dinâmica de captura em discos proto-planetários THIERRY GREGORY GIL CHANUT

Estudo da dinâmica de captura em discos proto-planetários THIERRY GREGORY GIL CHANUT Etudo da dinâmica de captua em dico poto-planetáio THIERRY GREGORY GIL CHANUT ESTUDO DA DINÂMICA DE CAPTURA EM DISCOS PROTO-PLANETÁRIOS THIERRY GREGORY GIL CHANUT Tee apeentada à Faculdade de Engenhaia

Leia mais

Método da difusão de nêutrons a quatro grupos de energia para reatores nucleares térmicos

Método da difusão de nêutrons a quatro grupos de energia para reatores nucleares térmicos PEQUIA Método da difusão de nêutons a quato gupos de enegia paa eatoes nucleaes témicos Fenando da ilva Melo* Ronaldo Glicéio Cabal** Paulo Conti Filho*** REUMO O método da Difusão de Nêutons, a quato

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente Mateial Teóico - Módulo Elemento áico de Geometia Plana - Pate 1 Conceito Geomético áico itavo no Pof. Ulie Lima Paente 1 Conceito pimitivo ideia de ponto, eta e plano apaecem natualmente quando obevamo

Leia mais

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS Um númeo compleo Z é um númeo da foma j, onde e são eais e j. (A ai quadada de um númeo eal negativo é chamada um númeo imagináio puo). No númeo

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais Antenas e Popagação Folha de execícios nº1 Conceitos Fundamentais 1. Uma onda electomagnética plana com fequência de oscilação de 9.4GHz popaga-se no polipopileno ( 2. 25 e 1). Se a amplitude do campo

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang LABORATÓRIO DE ÓPTICA E MECÂNICA EXPERIMENTAL Relatóio Inteno Método de Calibação de Câmaas Poposto po Zhang Maia Cândida F. S. P. Coelho João Manuel R. S. Tavaes Setembo de 23 Resumo O pesente elatóio

Leia mais