Curso: Engenharia de Produção PPNL. Min (Max) f(x)

Tamanho: px
Começar a partir da página:

Download "Curso: Engenharia de Produção PPNL. Min (Max) f(x)"

Transcrição

1

2 PPNL Min (Max) f(x) Cuo: Engenhaia de Podução. a. g i (x) (,, ) b i, i 1,,m onde x (x 1,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

3 Conjunto Convexo Cuo: Engenhaia de Podução Definição: Um conjunto S R n é convexo e cada ponto, no egmento de linha conectando doi ponto quaique x, y em S, etá também em S. Fomalmente: z x (1 - λ)y S paa todo λ tal que 0 λ 1. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

4 Exemplo Cuo: Engenhaia de Podução x x y x y y Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

5 Cuo: Engenhaia de Podução Otimização e Conjunto Convexo Seja S { x R n : g i (x) b i, i 1,,m } Se g i (x) é uma função convexa paa cada i 1,, m, então S é um conjunto convexo. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

6 Cuo: Engenhaia de Podução Teoema da Pogamação Convexa: Seja x R n e eja f (x) uma função convexa definida obe um um conjunto convexo S. Se exite uma olução finita paa o poblema Min (Max) { f (x): x S } Então todo o ótimo local é global. Se f(x) é etitamente convexa então a olução ótima é única. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

7 Pogamação Convexa Cuo: Engenhaia de Podução Min (Max) f (x 1,,x n ). a g i (x 1,,x n ) b i paa i 1,,m e x 1 0,, x n 0 é um poblema convexo e f é convexa (côncava) e cada g i é convexa (côncava). Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

8 Exemplo Cuo: Engenhaia de Podução Max f (x) z (x ) (y ) Sujeito a 3x y 6 x y 3 x y 7 x 3y 4 x x 1 Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

9 Poblema Não Convexo Cuo: Engenhaia de Podução Min f (x) -14x -0,9y. a 3x 13/x 0,8y 1,7 x y 30 x 7 x, y 0 Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

10 Cuo: Engenhaia de Podução Condiçõe de Otimalidade de Pimeia Odem Min (Max) {f (x): g i (x) bi, i 1,,m } Lagangiano: L(x, λ) f(x) Condiçõe de Otimalidade λ i g Etationaidade: L(x, λ) f(x) λ i g i (x) 0 Complementaidade: λ i g i (x) 0, i 1,,m Viabilidade: g i (x) bi, i 1,,m ( (x) b) Não negatividade: λ i 0, i 1,,m m i 1 i i m i 1 Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

11 Cuo: Engenhaia de Podução Impotância do Poblema Convexo Softwae de otimização comeciai não podem gaanti que a olução é globalmente ótima e o poblema não é convexo. O algoitmo de PNL tentam enconta um ponto onde o gadiente da função Lagangiana é zeo um ponto etacionáio e exita uma folga completmenta. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

12 Cuo: Engenhaia de Podução Dado L(x, µ) f(x) µ(g(x) b) Queemo L(x, µ) f(x) µ g(x) 0 λ(g(x) b) 0 g(x) b 0, λ 0 Paa um poblema convexo, toda a olução local é um ótimo global. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

13 Exemplo: pacote potal Cuo: Engenhaia de Podução Um pacote potal é uma caixa de dimenõe x, y, z, que deve atende a eguinte etição paa pode e enviado via coeio. A altua e mai o peímeto da bae não pode excede 108 cm. O objetivo é obte um pacote com o maio volume poível cuja dimenõe atendam a epecificaçõe do coeio. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

14 Solução via Lagangiano Cuo: Engenhaia de Podução Max V(x, y, z) xyz. a. x y z 108 x 0, y 0 e z 0 Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

15 Cuo: Engenhaia de Podução L(x, y, z, λ) xyz λ(x y z 108) Deivando e igualando a zeo a deivada paciai em elação a cada vaiável incluive λ. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

16 Cuo: Engenhaia de Podução L x L y yz xz λ λ L z L λ xy λ x y z 108 Igualando ea expeõe a zeo, tem-e: Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

17 Cuo: Engenhaia de Podução yz λ 0 λ yz xz λ 0 λ xz xy λ 0 λ xy x y z x y z 108 Aim, concluí-e que: z y e z x. Logo x y. Subtituindo ee eultado na quata equação, tem-e: Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

18 Cuo: Engenhaia de Podução x y z 108 x x x 108 6x 108 x18. Logo y 18 e z 36. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

19 Exemplo: pojeto de um cilindo Cuo: Engenhaia de Podução Queemo contui um ecipiente na foma de um cilindo fechado em cima e em baixo que tenha o máximo de volume e que a áea da upefície não eja upeio a unidade. Max V(, h) h. a. h 0, h 0 h Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

20 Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica Cuo: Engenhaia de Podução Ea é uma olução global ótima? Solução via Cálculo / 1/ 3 / 1/ 1/ 3 h h V h 0 d dv. h V Volume h

21 Tete de Convexidade Cuo: Engenhaia de Podução V() d d V() dv() d 3 paa todo 0. d d V() 6 Aim V( ) é côncava em R 3 e a olução é um máximo global. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

22 Reolução pelo Lagangiano Cuo: Engenhaia de Podução Dado o poblema: Max V(, h) h. a. h O Lagangiano eá: L(, h) h λ( h ). Deivando ea expeão em elação a, h e λ, tem-e: Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

23 Cuo: Engenhaia de Podução L L h L λ h 4λ λh λ h Igualando ea expeõe a zeo, tem-e: h 4λ λh λ 0 h 0 0 Manipulando a egunda equação: ( λ λ 0 λ) 0 Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

24 Cuo: Engenhaia de Podução Subtituindo ee eulltado na pimeia equação, egue que: h 4λ λh 0 (h 4λ λh) 0 h 4λ h λh 0 0 h h h 0 Subtituindo agoa na teceia equação, vem: Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

25 Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica Cuo: Engenhaia de Podução Como h, egue que: 6 1/ h 0 h 6 1/ h

26 Solução pelo Solve Cuo: Engenhaia de Podução h 1,30,61 3 Max 13,90 Sinal LD R 3 3 Paa utiliza o Solve o valo de deve e fixado. Nee cao: 3. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

27 Execício: áea de decano Cuo: Engenhaia de Podução O depatamento de Etada e Rodagen planeja contui uma áea de decano paa o motoita ao longo de uma longa autoetada. Ela deve e etangula, com uma áea de 5000 meto quadado, e deveá e cecada no tê lado nãoadjacente à etada. Qual é a meno quantidade de ceca que eá neceáia paa completa o tabalho? Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

28 Modelagem Cuo: Engenhaia de Podução Max Min x y. a. xy 5000 x 0, y 0 Reolve po cálculo e via Lagangiano. Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

29 Refeência Cuo: Engenhaia de Podução BERTSEKAS, Dimiti P. Nonlinea Pogamming. Belmont (MA): Athena Scientific, WINSTON, Wayne L. Opeation Reeach: Application and Algoithm. 3 ed. Belmont (CA): Duxbuy Pe, Pof. Loí Viali, D. PUCRS FAMAT: Depatamento de Etatítica

Curso: Engenharia de Produção PPNL. Min (Max) f(x)

Curso: Engenharia de Produção PPNL. Min (Max) f(x) PPNL Min (Max) f(x). a. g i (x) (,, ) b i, i 1,,m onde x (x 1,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.

Leia mais

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos PPNL Min (Max) f(x). a. g i (x) (,, =) b i, i =,,m onde x = (x,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.

Leia mais

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos PPNL Min (Max) f(x) s. a. g i (x) (,, =) b i, i =,,m one x = (x,,x n ) T é o veto n-imensional as vaiáveis e ecisão; f (x) é a função objetivo; g i (x) são as funções e estição e os b i são constantes

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularidade. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularidade. Terceiro Ano - Médio Mateial Teóico - Módulo de Geometia naĺıtica 1 Paalelimo e Pependiculaidade Teceio no - Médio uto: Pof ngelo Papa Neto Revio: Pof ntonio aminha M Neto 1 Reta paalela Na aula obe a equação da eta vimo que,

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções Univesidade Fedeal de Pelotas Disciplina de Micoeconomia Pofesso Rodigo Nobe Fenandez Lista 4 - Soluções ) Resolva o poblema de maximização dos lucos de uma fima com a tecnologia Cobb Douglas f x,x ) x

Leia mais

Professoras: Lisiane e Suziene. Lista de Conteúdos e Exercícios Preparatórios para Exame Final 2018

Professoras: Lisiane e Suziene. Lista de Conteúdos e Exercícios Preparatórios para Exame Final 2018 Componente Cuicula: Matemática Ano: 8º Tuma: 18 A, 18B, 18C e 18D Pofeoa: Liiane e Suziene Lita de Conteúdo e Eecício Pepaatóio paa Eame Final 018 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica

Leia mais

Conteúdos Exame Final e Avaliação Especial 2016

Conteúdos Exame Final e Avaliação Especial 2016 Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe

Leia mais

A primeira lei da Termodinâmica para um Volume de Controle Inercial. Relembrando! A primeira Lei para um sistema: (1)

A primeira lei da Termodinâmica para um Volume de Controle Inercial. Relembrando! A primeira Lei para um sistema: (1) EOLA DE ENGENHARIA DE SÃO CARLOS Núcleo de Engenhaia Témica e Fluido A pimeia lei da Temodinâmica paa um olume de Contole Inecial Relembando! A pimeia Lei paa um itema: Q W onde E é a de dt () E itema

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A Pepaa o Eame 03 07 Matemática A Página 84. A taa de vaiação instantânea da função f em c é igual a f c e é dada po: c f f c f c h f c f lim lim c c ch h0 h Resposta: D... Como g é deivável em tem um máimo

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,

Leia mais

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório Física Expeimental: Mecânica Aula 1 Intodução ao laboatóio 1 Conteúdo desta aula: -Objetivos... slides 3 6 -Divisão de gupos... slides 6 8 -Uso de equipamentos... slides 9 11 -Unidades Intenacionais...

Leia mais

Matemática. 8 o ano. Caderno 1

Matemática. 8 o ano. Caderno 1 Matemática 8 o ano adeno 1 Módulo 1 1 Em elação ao infogáfico apeentado a egui, eponda ao que e pede. Fonte: Folha de S.Paulo, 6, 9 ma. 2014. a) Qual é a fonte da pequia? b) Qual é o aunto cental dee infogáfico?

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya UFSCa Cálculo 2. Quinta lista de eecícios. Pof. João C.V. Sampaio e Yolanda K. S. Fuua Rega da cadeia, difeenciais e aplicações. Calcule (a 4 w (0,, π/6, se w = 4 4 + 2 u (b (c 2 +2 (, 3,, se u =. Resposta.

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

π (II.c) Dualidade em Programação Linear c T Seja o PPL apresentado na forma abaixo: (PRIMAL) Max x (I.a) (I.b) (I.c)

π (II.c) Dualidade em Programação Linear c T Seja o PPL apresentado na forma abaixo: (PRIMAL) Max x (I.a) (I.b) (I.c) 1 Dualidade em Pogamação Linea Sea o PPL apesentado na foma abaio: (PIMAL) Ma (I.a) s.a: A b (I.b) 0 (I.) Então sempe é possível ontui o PPL que se segue: (DUAL) Min b π (II.a) s.a: A π (II.b) π (II.)

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it UFRG INTITUTO DE MATEMÁTICA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma C - 14/1 Pimeia avaliação - Gupo 1 1 3 4 Total Nome: Catão: Regas a obseva: eja sucinto, completo e clao. Justifique

Leia mais

Curso: Engenharia de Produção

Curso: Engenharia de Produção Resolver o seguinte PPNL Ma (min) f( 1,,..., n ) s. a ( 1,,..., n ) R n Admite-se que as derivadas parciais de primeira e segunda ordens eistem e que são contínuas em todos os pontos. Sejam f() i As derivadas

Leia mais

Matemática D Extensivo V. 7

Matemática D Extensivo V. 7 Matemática D Extensivo V. 7 Execícios 0) D V V g Potanto, temos que o volume do tonco do cone é dado pelo volume total do cone menos o volume da pate supeio do cone. π.. 6 π.. 8π 6 π... π 8 π 7 6 8 7 7

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /1 Prova da área I UFRG - INTITUTO DE MATEMÁTIA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma - 19/1 Pova da áea I 1-6 7 8 Total Nome: Ponto exta: Wikipédia Apesentação Nenhum Tópico: atão: Regas Geais: Não é pemitido

Leia mais

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL SALVADOR BA 7 EQUAÇÃO VETORIAL DA RETA EQUAÇÕES DA RETA DEF: Qualque eto não nulo paalelo a uma eta chama-e eto dieto dea

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecício de pova nacionai e tete intemédio. No efeencial otogonal e monomético, de oigem no ponto, da figua ao lado, etão epeentada a eta e. A

Leia mais

Física Experimental: Eletromagnetismo. Aula 1. Introdução ao laboratório

Física Experimental: Eletromagnetismo. Aula 1. Introdução ao laboratório Física Expeimental: Eletomagnetismo Aula 1 Intodução ao laboatóio 1 Conteúdo desta aula: -Objetivos... slides 3 4 -Divisão de gupos... slides 5 7 -Uso de equipamentos... slide 8 9 -Unidades Intenacionais...

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. Cuso: Execícios ESAF paa Receita Fedeal 03 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 04 Matizes, Deteminantes e Sistemas Lineaes Pofesso: Valdenilson Gacia 03 Copyight. Cuso Agoa eu Passo

Leia mais

Fazer: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. y 60º. a) do ângulo de 27º 31 é. Geometria plana PARFOR

Fazer: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. y 60º. a) do ângulo de 27º 31 é. Geometria plana PARFOR Geometia plana PRFOR Faze: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. 1. Calcule o valo de e obevando a figua abaio: a) b) 3 15º 60º 5 15º 4 + 5º 2. Calcule a medida de na eguinte figua: a) b) 3 5º 3 + 20º +

Leia mais

TEOREMA DE TALES PROF. JOÃO BATISTA

TEOREMA DE TALES PROF. JOÃO BATISTA PROF. JOÃO BATISTA TEOREMA DE TALES Se um feie de paalela deemina egmeno conguene obe uma anveal, enão ee feie deemina egmeno conguene obe qualque oua anveal. Aim, um feie de paalela deemina, em dua anveai

Leia mais

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange Modelagem Matemática de Sistemas Mecânicos Intodução às Equações de Lagange PTC 347 Páticas de Pojeto de Sistemas de Contole º semeste de 7 Buno Angélico Laboatóio de Automação e Contole Depatamento de

Leia mais

xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx:

xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx: NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química e Ciência da Computação 21/05/2013. 1 a QUESTÃO : Dada a função

Leia mais

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x?

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x? EOREMA DE TALES Se um feixe de paalela deemina egmeno conguene obe uma anveal, enão ee feixe deemina egmeno conguene obe qualque oua anveal. Aim, um feixe de paalela deemina, em dua anveai quaique, egmeno

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística. Curso: Engenharia de Produção Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

. Os menores -2,0-1,5-1,0-0,5-5 0,0 0,5 1,0 1,5 2, = x 2y.. Os menores

. Os menores -2,0-1,5-1,0-0,5-5 0,0 0,5 1,0 1,5 2, = x 2y.. Os menores 1. Para cada uma das seguintes funções, verifique se ele é côncava, convexa ou nenhuma das duas, justificando em cada caso. (a) f(x, ) = 1x + (b) f(x) = 1x x (c) f(x, ) = x x 1 (a) = 1 = x = e = = = 1

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Física Geal III Aula exploatóia Cap. 23 UNICAMP IFGW 1 Ponto essencial O fluxo de água atavessando uma supefície fechada depende somente das toneias no inteio dela. 2 3 1 4 O fluxo elético atavessando

Leia mais

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório Física Expeimental: Mecânica Aula 1 Intodução ao laboatóio 1 Conteúdo desta aula: -Objetivos... slides 3 6 -Divisão de gupos... slides 6 8 -Uso de equipamentos... slides 9 11 -Unidades Intenacionais...

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Weslei

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Weslei Áea de Diciplina: Ano: 8º - Enino Fundamental Pofeoe: Macu e Welei Atividade paa Etudo Autônomo Data: 0 / 5 / 09 Cao(a) aluno(a), O momento de evião deve e vito como opotunidade de econtui conhecimento

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Wuledson

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Wuledson Cao(a) aluno(a), O momento de evião deve e vito como opotunidade de econtui conhecimento neceáio à continuação do poceo de apendizagem. Natualmente, a ealização dea atividade eigiá de você um envolvimento

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE :10-16H. Duração: 50 minutos

ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE :10-16H. Duração: 50 minutos Departamento de Matemática Secção de Álgebra e Análise Última actualização: 10/Out/2005 ANÁLISE MATEMÁTICA III A TESTE 1 10 DE OUTUBRO DE 2005 15:10-16H RESOLUÇÃO (As soluções aqui propostas não são únicas!)

Leia mais

1ªAula do cap. 10 Rotação

1ªAula do cap. 10 Rotação 1ªAula do cap. 10 Rotação Conteúdo: Copos ígidos em otação; Vaiáveis angulaes; Equações Cinemáticas paa aceleação angula constante; Relação ente Vaiáveis Lineaes e Angulaes; Enegia Cinética de Rotação

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

1o sem profa. daniela m. vieira. (a) f(x, y) = 3x y no conjunto A de todos (x, y) tais que x 0, y 0, y x 3, x + y 4 e

1o sem profa. daniela m. vieira. (a) f(x, y) = 3x y no conjunto A de todos (x, y) tais que x 0, y 0, y x 3, x + y 4 e mat51 - cálculo várias variáveis i - licenciatura 1o sem 011 - profa daniela m vieira SÉTIMA LISTA DE EXERCÍCIOS (1) Estude a função dada com relação a máximo e mínimo no conjunto dado (a) f(x, y) = x

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

Áreas de Figuras Planas: Resultados Básicos - Parte 2. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M.

Áreas de Figuras Planas: Resultados Básicos - Parte 2. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Mateial Teóico - Módulo Áeas de Figuas Planas Áeas de Figuas Planas: Resultados ásicos - Pate Nono no uto: Pof. Ulisses Lima Paente Reviso: Pof. ntonio aminha M. Neto 8 de outubo de 08 xemplos Nesta segunda

Leia mais

Cálculo II Lista 5. com respostas

Cálculo II Lista 5. com respostas Cálculo II Lista 5. com respostas Exercício 1. Determine os pontos críticos das funções dadas e classifique-os, decidindo se são pontos de máximo local, de mínimo local ou de sela: (a) f(x, y) = x 2 +

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

O objetivo deste trabalho consiste na aplicação de métodos de pontos interiores ao problema de regressão

O objetivo deste trabalho consiste na aplicação de métodos de pontos interiores ao problema de regressão A pesquisa Opeacional e os Recusos Renováveis 4 a 7 de novembo de 3, Natal-RN O MÉTODO DE PONTOS INTERIORES PRIMAL-DUAL BARREIRA LOARÍTMICA APLICADO AO PROBLEMA DE RERESSÃO PELA NORMA LP Auelio Ribeio

Leia mais

é a variação no custo total dada a variação na quantidade

é a variação no custo total dada a variação na quantidade TP043 Micoeconomia 21/10/2009 AULA 15 Bibliogafia: PINDYCK - CAPÍTULO 7 Custos fixos e vaiáveis: Custos fixos não dependem do nível de podução, enquanto que custos vaiáveis dependem do nível de podução.

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

(a) Num vórtice irrotacional du i = u i

(a) Num vórtice irrotacional du i = u i Pova II Nome: Infomações: Duação de 2 hoas. Pode come e bebe duante a pova. Pode faze a pova à lápis. Pode usa calculadoa sem texto. A pova tem complexidade pogessiva. A tentativa de violação de qualque

Leia mais

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( )

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( ) 1. VAIAÇÃO DA ENEGIA POTENCIAL É o tabalho blh ealizado paa desloca um copo, com velocidade idd constante, t de um ponto a outo num campo consevativo ( ) du W = F. dl = 0 = FF. d l Obs. sobe o sinal (-):

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Aula 18. Método Multiplicadores Lagrange (continuação)

Aula 18. Método Multiplicadores Lagrange (continuação) Aula 18 Método Multiplicadores Lagrange (continuação) Na aula anterior introduzimos o Método dos Multiplicadores de Lagrange, que serve para maximizar/minimizar uma função restrita a um domínio do tipo

Leia mais

Cinemática Direta. 4 o Engenharia de Controle e Automação FACIT / Prof. Maurílio J. Inácio

Cinemática Direta. 4 o Engenharia de Controle e Automação FACIT / Prof. Maurílio J. Inácio Cnemáta Deta 4 o Engenhaa de Contole e Automação FACI / 9 Pof. Mauílo J. Ináo Cnemáta Deta Cnemáta do manpulado Cnemáta é êna que tata o movmento em ondea a foça que o auam. Na nemáta ão etudado: poçõe,

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias Matemática 8A. b A medida de cada lado do pimeio quadado é igual à medida de cada diagonal do segundo quadado. Sendo x a medida de cada lado do segundo quadado, temos: x x x Potanto, a azão da PG é igual

Leia mais

Aula 16. Nesta aula, iniciaremos o capítulo 6 do livro texto, onde vamos estudar a estabilidade e o equilíbrio do plasma como um fluido.

Aula 16. Nesta aula, iniciaremos o capítulo 6 do livro texto, onde vamos estudar a estabilidade e o equilíbrio do plasma como um fluido. Aula 16 Nesta aula, iniciaemos o capítulo 6 do livo texto, onde vamos estuda a estabilidade e o equilíbio do plasma como um fluido. 6.1 Equilíbio e Estabilidade Do ponto de vista das patículas individuais,

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA ecânica PE 00 Pova de Recupeação /07/014 Duação da Pova: 100 minutos (Não é pemitido o uso de calculadoas, celulaes, tablets e/ou outos equipamentos similaes) 1ª uestão (4,0 pontos) No sistema indicado

Leia mais

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas

Leia mais

Aula 6: Aplicações da Lei de Gauss

Aula 6: Aplicações da Lei de Gauss Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de

Leia mais

Equações diferenciais lineares com coeficientes constantes e derivação da equação característica

Equações diferenciais lineares com coeficientes constantes e derivação da equação característica ISSN 2316-9664 Volume 9, jul. 2017 Ricado da Silva Santos Instituto Fedeal do Espíito Santo - Campus Itapina icado.santos@ifes.edu.b Ole Pete Smith Univesidade Fedeal de Goiás ole@ufg.b Equações difeenciais

Leia mais

Métodos da descida mais rápida para otimizar a atividade catalítica de um polímero

Métodos da descida mais rápida para otimizar a atividade catalítica de um polímero Métodos da descida mais ápida paa otimiza a atividade catalítica de um polímeo Camila Bece Univesidade de Santa Cuz do Sul - UNISC 96815-9, Campus Sede, Santa Cuz do Sul, RS E-mail: camilabece@ibest.com.b

Leia mais

Plano de Aulas. Matemática. Módulo 20 Corpos redondos

Plano de Aulas. Matemática. Módulo 20 Corpos redondos Plano de Aulas Matemática Módulo 0 Copos edondos Resolução dos execícios popostos Retomada dos conceitos 8 CAPÍTULO 1 1 No cilindo equiláteo, temos: ] 6 ] cm A lateal s ] A lateal s 6 ] ] A lateal.704s

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

MECÂNICA DOS FLUIDOS I Engenharia Mecânica e Naval Exame de 2ª Época 10 de Fevereiro de 2010, 17h 00m Duração: 3 horas.

MECÂNICA DOS FLUIDOS I Engenharia Mecânica e Naval Exame de 2ª Época 10 de Fevereiro de 2010, 17h 00m Duração: 3 horas. MECÂNICA DOS FLUIDOS I Engenhaia Mecânica e Naval Exame de ª Época 0 de Feveeio de 00, 7h 00m Duação: hoas Se não consegui esolve alguma das questões passe a outas que lhe paeçam mais fáceis abitando,

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Pof. D. Helde Alves Peeia Maço, 9 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS -. Estágio

Leia mais

Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos

Respostas sem justificativas não serão aceitas Não é permitido o uso de aparelhos eletrônicos UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 018. - TURMA MA 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

apresentar um resultado sem demonstração. Atendendo a que

apresentar um resultado sem demonstração. Atendendo a que Aula Teóica nº 2 LEM-26/27 Equação de ot B Já sabemos que B é um campo não consevativo e, potanto, que existem pontos onde ot B. Queemos agoa calcula este valo: [1] Vamos agoa apesenta um esultado sem

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

1 Otimização com restrições I: Condições de Primeira Ordem

1 Otimização com restrições I: Condições de Primeira Ordem Otimização com restrições I: Condições de Primeira Ordem Teorema 8: Seja f e h funções C de duas variáveis Suponha x = (x, x 2 ) é uma solução do problema: max f (x, x 2 ) sa h(x, x 2 ) = c Suponha também

Leia mais

Introdução ao Método de Elementos Finitos

Introdução ao Método de Elementos Finitos Intodução ao Método de Elementos Finitos Jaime Atuo Ramíe Unidade 1 1 Método de Elementos Finitos Apesentação do cuso O que se estuda aqui? O que é peciso sabe? O que amos fae? 2 Apesentação do cuso O

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

Lorí Viali. Afiliação

Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

f (x) = 10 2x e f (x) = -2. H(x) = [-2] é sempre negativo então a função é côncava.

f (x) = 10 2x e f (x) = -2. H(x) = [-2] é sempre negativo então a função é côncava. 1. Para cada ua das seguintes funções, verifique se ele é côncava, convexa ou nenhua das duas, justificando e cada caso. (a) f(x) = 1x x (b) y = x 3 + x x + 1 (a) y = 1x x f (x) = 1 x e f (x) = -. H(x)

Leia mais

raio do disco: a; carga do disco: Q.

raio do disco: a; carga do disco: Q. Uma casca hemisféica de aio a está caegada unifomemente com uma caga Q. Calcule o veto campo elético num ponto P no cento da base do hemisféio. Dados do poblema aio do disco: a; caga do disco: Q. Esquema

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

T sin θ = F E T cos θ = P

T sin θ = F E T cos θ = P Capítulo Eletostática. Pelas condições de equilíbio T = P + F E, ou seja: T sin θ = F E T cos θ = P Se l é o compimento de cada linha, então a distância d ente as duas patículas é dada po d = l sin θ,

Leia mais

Problema de três corpos. Caso: Circular e Restrito

Problema de três corpos. Caso: Circular e Restrito Poblema de tês copos Caso: Cicula e Restito Tópicos Intodução Aplicações do Poblema de tês copos Equações Geais Fomulação do Poblema Outas vaiantes Equações do Poblema Restito-Plano-Cicula Integal de Jacobi

Leia mais

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução 4 Modelo paa Extação de Regas Fuzzy a pati de Máquinas de Vetoes Supote FREx_SVM 4.1 Intodução Como já mencionado, em máquinas de vetoes supote não se pode explica a maneia como sua saída é obtida. No

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 EXAME FINAL Nome Legível Turma RG CPF Repoa em juificaiva ou com fórmula prona

Leia mais