2. Deformação. vector que liga a posição inicial com a posição final, de cada ponto do MC

Tamanho: px
Começar a partir da página:

Download "2. Deformação. vector que liga a posição inicial com a posição final, de cada ponto do MC"

Transcrição

1 . Deformação Otra da repota do MC ao carregamento O MC depoi da aplicação da carga mda a a poição e a a forma e olme. Delocamento (,,) T ector qe liga a poição inicial com a poição final, de cada ponto do MC Delocamento é iíel, pode-e medir, pelo meno na perfície, ao contrário de tenão, qe é a noa ficção Q P P,Q Q P Q P Ecolhe-e m ponto P, e o Q na iinhança do P (,, ) T Q P Não há deformação, comportamento do corpo rígido i i j j

2 Para definir a deformação neceitamo apena a ariação de forma (e de olme) Por io temo qe eliminar de Δ a tranlação e a rotação do corpo rígido... M 0 antiim 0 0 im M epanão de Talor ( ) I... M Tranlação Rotação Deformação im Eqaçõe deformaçõe - delocamento Poição Forma e olme Tenor da peqena deformaçõe

3 Pode-e proar o carácter tenorial do [ε] Mai ainda, [ε] é m tenor imétrico, como e i da definição Pode-e ar toda a teoria deenolida para o tenore imétrico: Deformaçõe principai, direcçõe principai, circnferência de Mohr... A rotação [ω] é m tenor de ª ordem, anti-imétrico Teoria da peqena deformaçõe A teoria da peqena deformaçõe não impede delocamento grande Teoria do peqeno delocamento peqena deformaçõe Não e ditinge a poição inicial e a final do MC, perfície do MC ame-e igal ante a depoi da aplicação da carga, a eqaçõe de eqilíbrio ecreem-e para a forma não-deformada. Chama-e. Teoria geometricamente linear Permite obrepoição do efeito A componente de deformação não têm nidade, à ee a-e μ0-6

4 3. Interpretação fíica da peqena deformaçõe Etenão Componente normal L L Tem ignificado de ariação relatia do comprimento Poitio qando o comprimento amenta Ditorção Componente tangencial, anglar tg tg Ditorção de engenharia Componente tenorial Na figra é importante introdir toda a ariaçõe no entido poitio tem ignificado de ariação anglar do ânglo originalmente recto Poitio qando dimini o ânglo originalmente recto A repreentação da deformação anglar pra tem qe er de modo qe o doi ânglo ão igai

5 Rectânglo elementar Repreentação geométrica em da dimenõe Retirando a tranlação e a rotação [0,] [,] C A [0,0] [,0] inicial B C A deformação tranlação Qadrado com a dimenõe nitária elementare (infiniteimai) cao : B 0, rotação 0, Ajtar o ânglo 0

6 Campo de delocamento linear Campo de deformaçõe niforme 4. Deformação olúmica Volme depoi da deformação: V o plano tranformam-e em plano, a recta em recta o plano e a recta paralelo mantém-e paralelo apó a deformação ( )( )( 3) ( ) 3 Referencial principal Paralelepípedo elementar: olme inicial: Ânglo recto tranformam-e em ânglo recto (ditorçõe ão nla) Variação do olme: 3 V 3 ( ) I V V V V Deformação olúmica: V I 3 V V V Separação em parte olúmica e deiadora, a parte deiadora tem o. inariante0, o eja a parte deiadora não caa ma alteração de olme A ditorçõe não caam alteraçõe de olme, ma im, de forma 3

7 5. Medição da deformaçõe: etenómetro, roeta A mediçõe têm qe correponder a ponto o a ditribição da deformaçõe têm qe er niforme Comprimento noo: LΔL Bae de medição: L c b a Podem-e medir apena a etenõe Sabemo: a b,, c incógnita:,, Deido ao itema de coordenada introdido: c b co co ( ) in ( ) in( ) co( ) ( ) in ( ) in( ) co( ) a

8 6. Eqaçõe de compatibilidade Eqaçõe de integrabilidade meio contíno é contíno depoi da deformação 6 componente da deformação er 3 componente do delocamento delocamento delocamento??? deformaçõe deformaçõe Mai da eqaçõe pela btitição cíclica do índice Mai da eqaçõe pela btitição cíclica do índice Para o etado plano Adhémar Jean Clade Barré de Saint-Venant,

9 7. Forma compacta matricial da eqaçõe introdida introdindo / / / 0 / 0 / 0 / 0 0 / / / 0 Eqaçõe deformaçõe - delocamento introdindo T Componente na forma ectorial Eqaçõe de eqilíbrio f Eqaçõe de compatibilidade ~ ~ T 0 T,,,,,,,,, T, 0

10 8. Etado de deformação Uniforme: a componente do tenor da deformaçõe não ariam com a poição ão contante, por io o campo do delocamento é linear etenão pra ditorção pra 9. Vector da deformaçõe n Componente intríneca n T T ( n ) n n n ditorção pra ma com a rotação Componente carteiana não e am mito deformação olúmica pra Etenão da fibra na direcção definida por {n} Variação do ânglo originalmente recto entre a fibra definida pela {n} A e {n} B nitária Proa imple, {n} A A e {n} B definem noo referencial, n n B fa e a rotação da componente do tenor da deformaçõe e retira-e apena a componente (,)

2. Deformação. Outra das repostas do sólido ao carregamento O MC depois da aplicação da carga muda a sua posição e a sua forma

2. Deformação. Outra das repostas do sólido ao carregamento O MC depois da aplicação da carga muda a sua posição e a sua forma . Deformação Otra da repota do ólido ao carregamento O MC depoi da aplicação da carga mda a a poição e a a forma. Delocamento { } ( ) T ector qe liga a poição inicial com a poição final de cada ponto do

Leia mais

Cap. 4. Deformação 1. Deslocamento 2. Gradiente de deslocamento 2.1 Translação, rotação e deformação da vizinhança elementar

Cap. 4. Deformação 1. Deslocamento 2. Gradiente de deslocamento 2.1 Translação, rotação e deformação da vizinhança elementar Cap. 4. Deformação. Delocamento. Gradiente de delocamento. ranlação, rotação e deformação da iinhança elementar. Significado fíico da rotação pra 3. enor de deformação de Lagrange 4. enor da peqena deformaçõe

Leia mais

Capítulo 3 Comportamento mecânico dos materiais = = = =

Capítulo 3 Comportamento mecânico dos materiais = = = = apítlo omportamento mecânico dos materiais Problema Uma peça prismática de comprimento L e secção transversal rectanglar de altra 0cm e largra 0cm foi sjeita ao ensaio de tracção. variação de comprimento

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão) Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial

Leia mais

Conceitos Fundamentais 1.1

Conceitos Fundamentais 1.1 Conceitos Fndamentais. Capítlo Conceitos Fndamentais. Introdção Um sólido deformável sob a acção de forças eternas, deformar-se-á e no sólido desenvolver-se-ão esforços internos. Estes esforços serão em

Leia mais

Curso de Análise Matricial de Estruturas 1

Curso de Análise Matricial de Estruturas 1 Crso de Análise Matricial de Estrtras IV MÉODO DA IIDEZ IV. Solção eral A modelagem de m sistema estrtral para sa resolção através do método da rigidez deve preferencialmente apretar m número de coordenadas

Leia mais

MATEMÁTICA 10º A T 2

MATEMÁTICA 10º A T 2 Escola Secndária lfredo Reis Silveira no lectivo 008/009 MTEMÁTIC 0º T Ficha de Trabalho Eqação Vectorial e redzida de ma recta Eqação Vectorial da Recta Dado m ponto e m vector não nlo, podemos definir

Leia mais

2 a Prova de Mecânica dos Fluidos II PME /05/2012 Nome: No. USP

2 a Prova de Mecânica dos Fluidos II PME /05/2012 Nome: No. USP a Prova de Mecânica dos Flidos II PME 8/5/ Nome: No. USP ª. Qestão (. pontos). Vamos admitir m escoamento trblento de ar (ρ=,kg/m ; ν=,6-5 m /s) sobre m aerofólio esbelto em regime permanente. Medidas

Leia mais

Física I. Oscilações - Resolução

Física I. Oscilações - Resolução Quetõe: Fíica I Ocilaçõe - Reolução Q1 - Será que a amplitude eacontantenafae de um ocilador, podem er determinada, e apena for epecificada a poição no intante =0? Explique. Q2 - Uma maa ligada a uma mola

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar. 4.3 Significado físico das pequenas deformações

2.1 Translação, rotação e deformação da vizinhança elementar. 4.3 Significado físico das pequenas deformações Sebenta da Disciplina MMC, Zuzana Dimitrovová, DEC/FC/UNL, 016 Cap. 4. Deformação 1. Deslocamento. Gradiente de deslocamento.1 ranslação, rotação e deformação da vizinhança elementar. Significado físico

Leia mais

Capítulo 6 INTRODUÇÃO À CONVECÇÃO

Capítulo 6 INTRODUÇÃO À CONVECÇÃO Caítlo 6 INRODÇÃO À CONVECÇÃO A tranferência de calor or conecção ocorre qando eite o contato entre m ólido e m flido em moimento: conite na combinação da condção com a adecção (tranferência de calor deido

Leia mais

Cap. 7. Princípio dos trabalhos virtuais

Cap. 7. Princípio dos trabalhos virtuais Ca. 7. Princíio dos trabalhos virtais 1. Energia de deformação interna 1.1 Definição e ressostos adotados 1.2 Densidade de energia de deformação interna 1.3 Caso articlar: Lei constittiva é reresentada

Leia mais

Capítulo 2 Deformação. dum componente mecânico, mediram-se as seguintes deformações:

Capítulo 2 Deformação. dum componente mecânico, mediram-se as seguintes deformações: Capítulo Deformação Problema Numa roseta de etensómetros (ver figura) colocada na superfície dum componente mecânico, mediram-se as seguintes deformações: ε etensómetro (a): εa 900μ c etensómetro (b):

Leia mais

Aula 20. Efeito Doppler

Aula 20. Efeito Doppler Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento

Leia mais

Computação Gráfica. Ponto, Linha, Vetor e Matriz

Computação Gráfica. Ponto, Linha, Vetor e Matriz Computação Gráfica Ponto, Linha, Vetor e Matriz Prof. Rodrigo Rocha rodrigor@antanna.g.br Onde Etamo... Introdução a Computação Gráfica; Repreentação de Imagen: vetorial e matricial; Dipoitivo de entrada

Leia mais

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática Cálclo Vetorial Estdaremos neste tópico as grandezas etoriais, sas operações, propriedades e aplicações. Este estdo se jstifica pelo fato de, na natreza, se apresentarem 2 tipo de grandezas, as escalares

Leia mais

Composição de movimentos. P(x,y) y(t) x(t) descoberta de Galileu

Composição de movimentos. P(x,y) y(t) x(t) descoberta de Galileu Composição de movimentos P(,) (t) O (t) X descoberta de Galile Uma grande parte da discssão qe sege visa o caso particlar em qe temos m movimento nma direção X e otro na direção Y, e no qal o qe acontece

Leia mais

Teórica 4 Problema 1 Um componente estrutural está sujeito ao carregamento de tal

Teórica 4 Problema 1 Um componente estrutural está sujeito ao carregamento de tal Teórica 4 Problema Um componente estrutural está sujeito ao carregamento de tal C maneira que o campo de deslocamentos é linear (u, v lineares, w ). Sabendo que o vértice B[6cm,cm] desloca-se para cima

Leia mais

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas.

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas. Etabilidade Uma araterítia importte para o itema de ontrole é qe ele eja etável. Sem ela qalqer otra araterítia, omo a de m bom deempenho, não faz entido. Para itema lineare, a araterítia de etabilidade

Leia mais

Antenas de Tanguá (RJ)

Antenas de Tanguá (RJ) Antenas de Tangá (RJ) Composição de movimentos y P(x,y) y(t) O x(t) X descoberta de Galile Uma grande parte da discssão qe sege visa o caso particlar em qe temos m movimento nma direção X e otro na direção

Leia mais

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo ensores cartesianos Quantidades (grandeas) físicas: Classificação: Escalares Vectores ensores de segunda ordem... ensores de ordem ero ensores de primeira ordem ensores de segunda ordem... Relacionadas

Leia mais

Cap. 0. Cálculo tensorial

Cap. 0. Cálculo tensorial Cap. 0. Cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos em D simétricos

Leia mais

Módulo III Movimento Uniforme (MU)

Módulo III Movimento Uniforme (MU) Módulo III Moimento Uniforme (MU) Em moimento retilíneo ou curilíneo em que a elocidade ecalar é mantida contante, diz-e que o móel etá em moimento uniforme. Nete cao, a elocidade ecalar intantânea erá

Leia mais

Teórica 3_complementar

Teórica 3_complementar Teórica _complementar Problema 1 Considere o estado bidimensional de tensões indicado na figura. Detere: a) As tensões e as direcções principais (define a base do referencial principal em que a primeiro

Leia mais

Campo de deslocamentos; Componentes de deformação; Relações deformação-deslocamento; Deformação linear

Campo de deslocamentos; Componentes de deformação; Relações deformação-deslocamento; Deformação linear SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pó-gradação em Egeharia de Traporte Elaticidade id d aplicada à Ifraetrtra t de Traporte MAJ MONIZ DE ARAGÃO DEFORMAÇÕES: Campo de delocameto;

Leia mais

6. Esforço normal, tensão normal e extensão

6. Esforço normal, tensão normal e extensão 6. Esforço normal, tensão normal e etensão 1. Mecânica dos materiais Restrição dos conceitos da Mecânica dos sólidos para peças lineares Peça linear (ou elemento unidimensional): elemento estrutural que

Leia mais

SIMULAÇÃO NUMÉRICA DE UM TUBO DE CALOR AXIALMENTE ROTATIVO COM ESTRUTURA POROSA PARA BOMBEAMENTO CAPILAR DO CONDENSADO

SIMULAÇÃO NUMÉRICA DE UM TUBO DE CALOR AXIALMENTE ROTATIVO COM ESTRUTURA POROSA PARA BOMBEAMENTO CAPILAR DO CONDENSADO SIMULAÇÃO NUMÉRICA DE UM TUBO DE CALOR AXIALMENTE ROTATIVO COM ESTRUTURA POROSA PARA BOMBEAMENTO CAPILAR DO CONDENSADO Lís E. Saraia saraia@pf.tche.br Uniersidade de Passo Fndo, Facldade de Engenharia

Leia mais

Agrupamento de Escolas Luís António Verney - Escola EB 2,3 Luís António Verney. Ano lectivo de 2012/13

Agrupamento de Escolas Luís António Verney - Escola EB 2,3 Luís António Verney. Ano lectivo de 2012/13 Agrupamento de Ecola Luí António Verney - Ecola EB, Luí António Verney Ano lectivo de 01/1 CIÊNCIAS FÍSICO-QUÍMICAS - 9º Ano de Ecolaridade Em trânito Tranporte e egurança rodoviária aula previta Tema

Leia mais

MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional

MECÂNICA DO CONTÍNUO. Tópico 2. Cont. Elasticidade Linear Cálculo Variacional MECÂNICA DO CONTÍNUO Tópico 2 Cont. Elaticidade Linear Cálculo Variacional PROF. ISAAC NL SILVA Lei de Hooke Até o limite elático, a tenão é diretamente proporcional à deformação: x E. e x e e y z n E

Leia mais

Vibrações mecânicas. Este movimento chama-se vibração mecânica, em princípio representa sempre efeitos indesejáveis

Vibrações mecânicas. Este movimento chama-se vibração mecânica, em princípio representa sempre efeitos indesejáveis Vibrações mecânicas Jstiicação da ocorrência Sistema mecânico em eqilíbrio estável Introdz-se ma pertrbação por exemplo na orma do deslocamento Liberta-se Depois disso o sistema tende voltar à sa posição

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

Cascas. Placas e Cascas Mestrado Integrado em Engenharia Aeronáutica. Placas e Cascas

Cascas. Placas e Cascas Mestrado Integrado em Engenharia Aeronáutica. Placas e Cascas Caca 377 Metrado Integrado em Engenharia Aeronáutica . Tenõe de Membrana em Caca Uma caca é um corpo tridimenional com: uma da ua dimenõe muito menor do que a outra dua; a curvatura da ua uperfície média

Leia mais

Aula 2: Vetores tratamento algébrico

Aula 2: Vetores tratamento algébrico Ala : Vetores tratamento algébrico Vetores no R e no R Decomposição de etores no plano ( R ) Dados dois etores e não colineares então qalqer etor pode ser decomposto nas direções de e. O problema é determinar

Leia mais

Física B Extensivo V. 8

Física B Extensivo V. 8 Aula 9 9) C = l ( n ) = l ( ) = l 3 9) D rata-e do o harmônico: = l n n = n o de nó = l = l Nea onda etacionária exite um comprimento de onda Fíica B Extenio V 8 3) A Reola Aula 3 3) D real = 7 Hz = 3

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a

Leia mais

( AB ) é o segmento orientado com origem em A e extremidade em B.

( AB ) é o segmento orientado com origem em A e extremidade em B. FUNDÇÃO EDUIONL UNIFID MPOGRNDENSE (FEU) FULDDES INTEGRDS MPO-GRNDENSES (FI) OORDENÇÃO DE MTEMÁTI Estrada da aroba, 685, ampo-grande/rj - Tel: 3408-8450 Sites: www.fec.br, www.sites.google.com/site/feumat

Leia mais

Osciladores lineares contínuos

Osciladores lineares contínuos Osciladores lineares contínos Apontamentos da Disciplina de Dinâmica e Engenharia Sísmica Mestrado em Engenharia de Estrtras Institto Sperior Técnico ís Gerreiro Março de 1999 Osciladores ineares Contínos

Leia mais

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga PRODUTOS DE VETORES Álgebra Linear e Geometria Analítica Prof. Aline Paliga 3.1 PRODUTO ESCALAR Chama-se prodto escalar (o prodto interno sal) de dois vetores =x 1 i + y 1 j+z 1 k e v= x 2 i + y 2 j+z

Leia mais

Elasticidade aplicada à Infraestrutura de Transportes

Elasticidade aplicada à Infraestrutura de Transportes SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pó-gradação em Engenhara de Tranporte Eatcdade apcada à Infraetrtra de Tranporte CAP MONIZ DE ARAGÃO DEFORMAÇÕES: Campo de deocamento; Componente

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006 Sumário e Objectivos Sumário: Deformações. Sólido Uniaxial. Descrição Lagrangeana e Euleriana. Gradiente de Deformação. Decomposição Polar. Tensores das Deformações de Green e Lagrange. Deformação de Corte.

Leia mais

6 Análise dos Resultados

6 Análise dos Resultados 6 Análise dos Resltados 6.. Introdção Neste capítlo são apresentados e analisados os resltados obtidos nos ensaios das sete vigas e a determinação dos ses índices de dctilidade. As resistências das vigas

Leia mais

2.3 Simetrias cinemáticas e geradores infinitesimais

2.3 Simetrias cinemáticas e geradores infinitesimais .3 Simetria cinemática e geradore infiniteimai O método de contruir uma repreentação de um itema diretamente a partir da freqüência relativa medida, como exemplificado no pin, eria completamente inviável

Leia mais

Sistemas de Coordenadas

Sistemas de Coordenadas INF 366 Computação Gráfica Interativa Tranformaçõe Alberto B. Rapoo abrapoo@tecgraf.puc-rio.br http://www.tecgraf.puc-rio.br/~abrapoo/inf366 Sitema de Coordenada Objeto em Computação Gráfica pouem decriçõe

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

ESTABILIDADE Método critério de Routh-Hurwitz Casos Especiais

ESTABILIDADE Método critério de Routh-Hurwitz Casos Especiais Departamento de Engenharia Qímica e de Petróleo UFF Diciplina: TEQ- CONTROLE DE PROCESSOS cto ESTABILIDADE Método critério de Roth-Hrwitz Cao Epeciai Prof a Ninoka Bojorge ESTABILIDADE MALHA FECHADA Regiõe

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Sensores do Movimento

Sensores do Movimento Senore do Movimento poição linear proximidade poição angular velocidade linear e angular aceleração Senore do Movimento acelerómetro Princípio fíico: a aceleração aplicada obre uma maa provoca uma força

Leia mais

2 - ELEMENTOS FINITOS DE BARRA ARTICULADA. CONCEITOS BÁSICOS

2 - ELEMENTOS FINITOS DE BARRA ARTICULADA. CONCEITOS BÁSICOS Método dos elementos finitos aplicado a estrtras reticladas Capítlo - EEMETOS FIITOS DE BARRA ARTICUADA. COCEITOS BÁSICOS. - Introdção este capítlo o método dos elementos finitos (MEF vai ser aplicado

Leia mais

Colégio Santa Dorotéia Área de Ciências da Natureza Disciplina: Física Ano: 1º - Ensino Médio Professor: Newton Barroso

Colégio Santa Dorotéia Área de Ciências da Natureza Disciplina: Física Ano: 1º - Ensino Médio Professor: Newton Barroso Área de Ciência da Natureza Diciplina: Ano: º - Enino Médio Profeor: Newton Barroo Atividade para Etudo Autônomo Data: 5 / 6 / 09 ASSUNTO: MCU (CAP. 9) Aluno(a): N o : Turma: ) (UFU 08) Auma que a dimenõe

Leia mais

Departamento de Ciências Aeroespaciais - Universidade da Beira Interior. Cascas. Cascas

Departamento de Ciências Aeroespaciais - Universidade da Beira Interior. Cascas. Cascas Placa e Placa e 764 3º Ano da Licenciatura em Engenharia Aeronáutica Placa e. Tenõe de Membrana em Uma caca é um corpo tridimenional com: uma da ua dimenõe muito menor do que a outra dua; a curvatura da

Leia mais

Aula 08 Equações de Estado (parte I)

Aula 08 Equações de Estado (parte I) Aula 8 Equaçõe de Etado (parte I) Equaçõe de Etado input S output Já vimo no capítulo 4 ( Repreentação de Sitema ) uma forma de repreentar itema lineare e invariante no tempo (SLIT) atravé de uma função

Leia mais

Álgebra Linear e Geometria Analítica. Rectas no plano, no espaço e em IR n Planos no espaço e em IR n

Álgebra Linear e Geometria Analítica. Rectas no plano, no espaço e em IR n Planos no espaço e em IR n Álgebra Linear e Geometria Analítica Rectas no plano, no espaço e em IR n Planos no espaço e em IR n Em geometria eclidiana: pontos definem ma recta o ponto e a direcção da recta o seja: ponto vector (

Leia mais

Capítulo 5 Carga Axial

Capítulo 5 Carga Axial Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Determinar a tensão normal e as deformações em elementos

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão Departamento de Engenharia Mecânica Parte 3 Estado Plano de Tensão Prof. Arthur M. B. Braga 15.1 Mecânica dos Sólidos Problema F 1 Corpo sujeito a ação de esforços eternos (forças, momentos, etc.) F 7

Leia mais

2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO ABERTA E PAREDES DELGADAS.

2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO ABERTA E PAREDES DELGADAS. 2. FLEXO-TORÇÃO EM PERFIS DE SEÇÃO BERT E PREDES DELGDS. Nete capítulo ão apreentado, de forma concia, com bae no trabalho de Mori e Munaiar Neto (2009), algun conceito báico neceário ao entendimento do

Leia mais

Revisão de Alguns Conceitos Básicos da Física Experimental

Revisão de Alguns Conceitos Básicos da Física Experimental Revião de Algun Conceito Báico da Fíica Experimental Marcelo Gameiro Munhoz munhoz@if.up.br Lab. Pelletron, ala 245, r. 6940 O que é uma medida? Medir ignifica quantificar uma grandeza com relação a algum

Leia mais

Escoamento em Regime Turbulento Perfil de velocidade média, U

Escoamento em Regime Turbulento Perfil de velocidade média, U Escoamento em Regime Trblento Camada da parede: - Zona de eqilíbrio local. Prodção de k Dissipação de k (ε) - Na parede, 0, a eqação de balanço de qantidade de movimento na direcção x redz-se a T dp dx

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS

ANÁLISE MATRICIAL DE ESTRUTURAS UNIVRIDD DO OT D NT CTRIN UNOC ÁR D CIÊNCI XT D TRR CURO: NGNHRI CIVI DICIPIN: NÁI MTRICI D TRUTUR PROFOR: JCKON NTONIO CRI NÁI MTRICI D TRUTUR Professor: Jackson ntonio Carelli i UMÁRIO IT D FIGUR...

Leia mais

2. CONCEITOS FUNDAMENTAIS DA TEORIA DA ELASTICIDADE

2. CONCEITOS FUNDAMENTAIS DA TEORIA DA ELASTICIDADE strtras I Capítlo - Conceitos básicos da teoria da elasticidade. CONCITOS FUNDAMNTAIS DA TORIA DA LASTICIDAD. - Introdção No presente capítlo são apresentados de m modo scinto os conceitos básicos da teoria

Leia mais

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Solicitações normais Cálculo no estado limite último

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Solicitações normais Cálculo no estado limite último Univeridade Etadal de Campina Faldade de Engenaria Civil Departamento de Etrtra Soliitaçõe normai Cállo no etado limite último Nota de ala da diiplina AU414 - Etrtra IV Conreto armado Prof. M. Liz Carlo

Leia mais

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P Cap. 3. Tensão 1. Existência das forças internas 2. Princípio das tensões de Euler e Cauchy 3. Vector das tensões no ponto P 3.1 Componentes cartesianas 3.2 Componentes intrínsecas 4. Tensor das tensões

Leia mais

COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES

COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES Uniersidade Estadal do Oeste do Paraná - UNIOESTE Centro de Ciências Eatas e Tecnológicas - CCET Crso de Ciência da Comptação COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES CASCAVEL - PR 9 SUMÁRIO PRINCÍPIOS

Leia mais

Lista de exercícios 2 Resposta no Tempo, Erros Estacionários e Lugar Geométrico das Raízes

Lista de exercícios 2 Resposta no Tempo, Erros Estacionários e Lugar Geométrico das Raízes 16003 Controle Dinâmico ENE - UnB Lita de exercício 16003 Controle Dinâmico o emetre de 01 Lita de exercício Repota no Tempo, Erro Etacionário e Lugar Geométrico da Raíze 1. Quando o itema motrado na figura

Leia mais

( ) Aula Teórica nº 35 LEM-2006/2007. Prof. responsável de EO: Mário J. Pinheiro. Forma degenerada das equações de Maxwell

( ) Aula Teórica nº 35 LEM-2006/2007. Prof. responsável de EO: Mário J. Pinheiro. Forma degenerada das equações de Maxwell Aula Teórica nº 35 LEM-006/007 Prof. responsável de EO: Mário J. Pinheiro Forma degenerada das equações de Maxwell Carácter transversal das ondas electromagnéticas Considere-se o campo electromagnético

Leia mais

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços 2 Carga óvei, Linha de Influência e Envoltória de Eforço 21 Introdução Para o dimenionamento de qualquer etrutura é neceário conhecer o eforço máximo e mínimo que ela apreentará ao er ubmetida ao carregamento

Leia mais

Resistência dos Materiais

Resistência dos Materiais - Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão

Leia mais

4 SOLUÇÕES ANALÍTICAS

4 SOLUÇÕES ANALÍTICAS 4 SOLUÇÕES ANALÍTICAS 4 Desenvolvimento Dentre os mais diversos tipos de estruturas que fazem uso de materiais compósitos, os tubos cilindricos laminados são um caso particular em que soluções analíticas,

Leia mais

UENF - COORDENAÇÃO ACADÊMICA - Universidade Estadual do Norte Fluminense Darcy Ribeiro

UENF - COORDENAÇÃO ACADÊMICA - Universidade Estadual do Norte Fluminense Darcy Ribeiro UENF - COORDENAÇÃO ACADÊMICA - Universidade Estadual do Norte Fluminense Darcy Ribeiro PROGRAMA ANALÍTICO DE DISCIPLINA (PÓS-GRADUAÇÃO) CIV 1651 Centro CCT IDENTIFICAÇÃO Laboratório Leciv Pré-requisito

Leia mais

PROF. GILBERTO SANTOS JR VETORES

PROF. GILBERTO SANTOS JR VETORES . Introdção Listas de números Sponha qe os pesos de oito estdantes estão listados abaio: 6,, 4, 4, 78, 4, 6, 9 Podemos denotar todos os alores dessa lista sando apenas m símbolo, por eemplo w, com diferentes

Leia mais

1 Transformada de Laplace de u c (t)

1 Transformada de Laplace de u c (t) Tranformada de Laplace - Função de Heaviide Prof ETGalante Equaçõe diferenciai ob ação de funçõe decontínua aparecem com frequência na análie do uxo de corrente em circuito elétrico ou na vibraçõe de itema

Leia mais

MECÂNICA APLICADA II. Enunciados Exames 2003/2004. Enunciados Exames 2004/2005. Resolução dos exames 2004/2005

MECÂNICA APLICADA II. Enunciados Exames 2003/2004. Enunciados Exames 2004/2005. Resolução dos exames 2004/2005 INSTITUTO POLITÉCNICO DE BRAGANÇA Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO Enunciados Exames 2003/2004 Enunciados Exames 2004/2005 Resolução dos exames 2004/2005

Leia mais

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova (Versão 1 ou Versão 2).

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova (Versão 1 ou Versão 2). EXAME NACIONAL DO ENSINO SECUNDÁRIO DecretoLei n.º 7/00, de 6 de março Prova Escrita de Matemática A.º Ano de Escolaridade Prova 65/.ª Fase 8 Páginas Dração da Prova: 50 mintos. Tolerância: 0 mintos. 0

Leia mais

e-física IFUSP 08 Movimento dos Projéteis Exercícios Resolvidos

e-física IFUSP 08 Movimento dos Projéteis Exercícios Resolvidos e-fíica Enino de Fíica Online Inituto de Fíica da USP 8 Moimento do Projétei Eercício Reolido Eercício Reolido 8.1 A figura ilutra a ituação na ual em um determinado intante um projétil de maa m = kg ai

Leia mais

Resolução do exame de 1 a época

Resolução do exame de 1 a época Reolução do exame de a época Programação Matemática - O itema linear: x + y x y x + y + z x + y + αz β x y x y x y z x + y + αz β é do tipo Ax b onde A = α e b = Por um corolário do lema de Farka, um itema

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

Deformações na Notação Indicial

Deformações na Notação Indicial SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pós-gradação em Engenhara de Transportes Deformações na Notação Indcal MAJ MONIZ DE ARAGÃO Campo de deslocamentos; Componentes de deformação;

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

Tensores Cartesianos

Tensores Cartesianos Tensores Cartesianos Mecânica II Notas de apoio à disciplina de Mecânica II Vitor Leitão Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Lisboa, 2011 vitor@civil.ist.utl.pt -

Leia mais

CONTROLO MEEC. Cap 8 Controlador PID

CONTROLO MEEC. Cap 8 Controlador PID Capítlo 8 Controlador PID CONTROLO MEEC º emetre 7/8 Tranparência de apoio à ala teórica Cap 8 Controlador PID Edardo Morgado Todo o direito reervado Eta nota não podem er ada para fin ditinto daqele para

Leia mais

5 Exemplos de análise determinística 5.1. Introdução

5 Exemplos de análise determinística 5.1. Introdução 5 Exemplos de análise determinística 5.1. Introdção Para validação dos modelos nméricos determinísticos e comparações entre os procedimentos de solção, são efetadas análises de qatro exemplos. O primeiro

Leia mais

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff.

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Sumário e Objectivos Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Objectivos da Aula: Apreensão das diferenças entre as grandes deformações e as pequenas deformações no contexto da análise

Leia mais

[65, 187, 188, 189, 190]

[65, 187, 188, 189, 190] Anexo 12 Estimativa de Incertezas [65, 187, 188, 189, 190] 1. Introdção A estimativa da incerteza associada ao resltado de ma medição envolve vários passos: a especificação da grandeza em casa, a identificação

Leia mais

3. Comportamento mecânico dos materiais

3. Comportamento mecânico dos materiais 3. Comportamento mecânico dos materiais Resumo dos Capítulos 3-4: O MC eibe devido às solicitações:,, u Incógnitas do problema: 6+6+3=5 componentes 6 quações deformações - deslocamento 3 quações de equilíbrio

Leia mais

Mecânica dos Sólidos I Parte 4 Análise de Deformações

Mecânica dos Sólidos I Parte 4 Análise de Deformações Departamento de Engenharia Mecânica Parte 4 Análise de Deformações Prof. Arthr M. B. Braga 009.1 Deslocamento Q P z Deslocamento Q Q P P P Q Translação z Deslocamento P Q Q Q P P Movimento de Corpo Rígido

Leia mais

Peça linear em equilíbrio estático sob a acção de um carregamento genérico e uma secção transversal S:

Peça linear em equilíbrio estático sob a acção de um carregamento genérico e uma secção transversal S: Esforços em peças lineares. Peça linear em equilíbrio estático sob a acção de um carregamento genérico e uma secção transversal S: Orientação do eixo e seccionamento da peça e através da secção de corte

Leia mais

4 Análise dimensional para determinação da frequência e fator de amplificação do pico máximo

4 Análise dimensional para determinação da frequência e fator de amplificação do pico máximo 4 Análise dimensional para determinação da freqência e fator de amplificação do pico máimo A análise cidadosa das eqações qe regem o escoamento pode fornecer informações sobre os parâmetros importantes

Leia mais

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705)

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705) Método dos trabalhos virtuais Jacob ernoulli (também James ou Jacques) (Suiça, 7 December 1654 16 ugust 1705) Trabalho mecânico de uma força num deslocamento infinitesimal (trabalho elementar) x z 0 Trabalho

Leia mais

Representação de vetores

Representação de vetores UL PSSD Representação de vetores Modo Gráfico: Segmento de reta orientado com a mesma direção e sentido qe o vetor considerado e cjo comprimento é proporcional à magnitde do mesmo. Modo escrito: Letras

Leia mais

Coeficientes de dilatação térmica - linear

Coeficientes de dilatação térmica - linear Cálculo da junta Coeficiente de dilatação térmica - linear MATERIAL 10-6 (mm / mm / ºC) Alv. de tijolo e emboço 6 Alv. de tijolo e cerâmica 5 Concreto etrutural 9 Vidro 9 Acrílico 81 PVC 60 Granito 11

Leia mais

4.1 Aproximação por Bode

4.1 Aproximação por Bode 4. Aproximação por Bode é poível atender a epecificaçõe de algun filtro a partir do traçado do diagrama de Bode (termo de ª e ª orden) Exemplo 4.) Aproximar um filtro paa-baixa que atifaça a epecificaçõe

Leia mais

Verifique que a equação característica e os polos do sistema obtidos através da FT são os mesmos encontrados através da matriz A de estados.

Verifique que a equação característica e os polos do sistema obtidos através da FT são os mesmos encontrados através da matriz A de estados. Homework (Eqaçõe de etado) Felippe de Soza ) Conidere o itema decrito pela a eqação diferencial ordinária abaio. Ache a F (Fnção de ranferência). Ecreva na forma de Eqaçõe de Etado & A B, C D. Verifiqe

Leia mais

PROV O ENGENHARIA QUÍMICA. Questão nº 1. h = 0,1 m A. Padrão de Resposta Esperado: a) P AB = P A B. Sendo ρ água. >> ρ ar. Em B : P B. .

PROV O ENGENHARIA QUÍMICA. Questão nº 1. h = 0,1 m A. Padrão de Resposta Esperado: a) P AB = P A B. Sendo ρ água. >> ρ ar. Em B : P B. . PRO O 00 Qestão nº ar A B h = 0, m A B a) P AB = P A B Sendo ρ ága >> ρ ar : Em B : P B = (ρ ága. g) h + P A P A B = P B P A =.000 x 9,8 x 0, = 980 Pa (valor:,5 pontos) b) P ar = P man = 0 4 Pa Em termos

Leia mais

Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sitema Deempenho de Sitema de Controle Renato Dourado Maia Univeridade Etadual de Monte Claro Engenharia de Sitema Repota Tranitória de Sitema de Ordem Superior A repota ao degrau de um itema

Leia mais

η η < η j + η 0 de outro modo η η η η φ φ φ δ = δ φ, η [ η, η ]

η η < η j + η 0 de outro modo η η η η φ φ φ δ = δ φ, η [ η, η ] BASE TEÓRICA Este capítulo apresenta a formulação teórica do elemento finito utilizando funções spline. Com este objetivo descrevem-se primeiro as funções que definem os deslocamentos no elemento. A partir

Leia mais

Capítulo 4 Equilíbrio de Radiação (RE) e Equilíbrio de Partículas Carregadas (CPE)

Capítulo 4 Equilíbrio de Radiação (RE) e Equilíbrio de Partículas Carregadas (CPE) Física das Radiações e Dosimetria Capítlo 4 Eqilíbrio de Radiação (RE) e Eqilíbrio de Partíclas Carregadas (CPE) Dra. Lciana Torinho Campos Programa Nacional de Formação em Radioterapia Introdção Introdção

Leia mais

Critério de Resistência

Critério de Resistência CAPÍTULO 1 INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS I. OBJETIVOS FUNDAMENTAIS Um corpo em equilíbrio, ujeito a carga externa ativa e reativa, poui em eu interior eforço. Ete eforço interno ou olicitaçõe

Leia mais

3 Modelo Transiente Proposto

3 Modelo Transiente Proposto 3 Modelo raniente Propoto No iten a egir ão apreentada a eqaçõe do modelo implementado dada pela eqaçõe de conervação de maa para o ólido e para o líqido e a eqaçõe de conervação de qantidade de movimento

Leia mais