Considere as seguintes expressões que foram mostradas anteriormente:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Considere as seguintes expressões que foram mostradas anteriormente:"

Transcrição

1 Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa pelo centro de gravidade da eção tranveral. gora io vai er demontrado. Para tanto, bata coniderar a expreão para ditribuição da tenõe normai e a condição para flexão imple (eforço normal nulo): y σ x = E e N = σ xd = 0. Combinando ea dua expreõe chega-e a: = = = σ y E 0 x d E d yd yd = 0 equação yd = 0 ó é atifeita e a origem do eixo y etiver no centro de gravidade da eção tranveral. to quer dizer que, para flexão imple, a linha neutra paa pelo centro de gravidade da eção, enquanto a tenõe normai permanecerem em regime elático. Relação entre o momento fletor e a curvatura da viga Pode-e obter uma relação entre a curvatura 1 / do eixo da viga (que etá aociada à ua concavidade) e o momento fletor em uma eção tranveral. Conidere a eguinte expreõe que foram motrada anteriormente: x σ d Relação entre momento fletor e tenão normal: = ( y ) Relação entre tenão normal e curvatura: σ x y = E Se a egunda expreão for introduzida na primeira, reulta em: = ( y) y E d Neta integral, o parâmetro E (módulo de elaticidade) e 1 / (curvatura) não variam para uma dada eção tranveral. Portanto, ete parâmetro podem entrar multiplicando a integral externamente: E = y d Oberve que o doi inai negativo de y e cancelaram. integral que aparece na expreão acima é uma propriedade geométrica aociada à eção tranveral que é denominada momento de inércia: = y d ntrodução à nálie de Etrutura Luiz Fernando artha 39

2 Finalmente, chega-e a uma relação entre o momento fletor e a curvatura: 1 = E análie deta relação reulta em importante concluõe obre o comportamento de viga ubmetida a carga tranverai. Conforme mencionado anteriormente, quando o momento fletor é poitivo ( > 0), a fibra uperiore da eção tranveral ão comprimida e a fibra inferiore ão tracionada. to etá aociado a uma deformação da viga com a concavidade para cima. Para momento fletore negativo ( < 0), o invero ocorre: a viga tem uma deformação com concavidade para baixo, a fibra uperiore da eção tranveral ão tracionada e a fibra inferiore ão comprimida. Pode-e concluir que na eçõe tranverai onde o momento fletor tiver um valor nulo ( = 0), a curvatura (concavidade) é nula. to é, para = 0, ( 1 / ) = 0. De fato, quando uma barra não tem momento fletor (e por coneguinte também não tem eforço cortante), ela e deforma em curvatura, ito é, mantendo-e reta. Ee é jutamente o cao de barra de treliça, que ó têm eforço normal. figura abaixo motra a configuração deformada e o digrama de momento fletore de uma viga contínua ubmetida a uma carga tranveral uniformemente ditribuída. q Configuração deformada (deenhada de forma exagerada): Ponto de inflexão (mudança de concavidade) Repare que no trecho onde o momento fletor é negativo a concavidade é para baixo e no trecho onde o momento fletor é poitivo a concavidade é para cima. No ponto onde o momento fletor e anula há uma mudança de concavidade. Ete ponto ão chamado de ponto de inflexão. ntrodução à nálie de Etrutura Luiz Fernando artha 40

3 Relação entre tenão normal e momento fletor Utilizando a relação entre a tenão normal e a curvatura e a relação entre o momento fletor e a curvatura, chega-e a uma relação direta entre a tenão normal e o momento fletor: y σ x = E e 1 = E σ x = Com bae neta expreão pode-e determinar a tenão no bordo inferior e a tenão no bordo uperior de uma eção tranveral ubmetida a um momento fletor: i = e σ = Sendo y i e y a máxima ditância do bordo inferior e uperior à linha neutra, repectivamente. O inai dea expreõe etão conitente com a convenção de inai para momento fletore. to é, momento fletore poitivo etão aociado à tração (tenão normal poitiva) da fibra inferiore (y < 0) da viga e à compreão (tenão normal negativa) da fibra uperiore (y > 0): > 0 σ i > 0 σ < 0 para para y < 0 y > 0 E momento fletore negativo etão aociado à compreão da fibra inferiore e à tração da fibra uperiore. < 0 σ i < 0 σ > 0 para para y < 0 y > 0 Vê-e na expreõe motrada acima para e σ que a tenõe no bordo inferior e inferior ó dependem do valor momento fletor da relaçõe geométrica y i / e y /. Eta relaçõe ó dependem da geometria da eção tranveral e ão chamada de módulo de reitência à flexão da eção tranveral: i y W = (módulo de reitência inferior) i y W = (módulo de reitência uperior) ntrodução à nálie de Etrutura Luiz Fernando artha 41

4 Dea forma, a tenõe no bordo inferior e uperior da eção tranveral ficam determinada pela expreõe: = e W i σ = W No cao geral, o valore dea tenõe ão diferente poi a ditância do centro do centro de gravidade da eção tranveral ao doi bordo é diferente, como na eçõe do tipo T motrada abaixo: No cao de eçõe tranverai imétrica em relação à linha neutra, ito é, na quai o centro de gravidade e itua na metade da altura da eção, tem-e que y i = y e, portanto, W i = W. o ocorre, por exemplo, em eçõe tranverai retangulare ou em perfi ou H: Para ea eçõe, a tenõe no bordo inferior e uperior ão iguai em módulo, ito é: W = W i = W. σ = σ i = W nfluência do momento de inércia da eção tranveral O momento de inércia da eção tranveral é uma propriedade geométrica que depende de ua orientação com repeito ao plano onde ocorre a flexão da barra. Tome, por exemplo, a eção retangular motrada abaixo. ntrodução à nálie de Etrutura Luiz Fernando artha 4

5 De uma maneira geral, o momento de inércia para eta eção é do retângulo. b h 1 3 =, endo b a bae e h a altura O momento de inércia para a poição 1 (viga em pé) é maior do que o momento de inércia para a poição (viga deitada), poi no primeiro cao a altura h tem o maior valor. Portanto, a orientação da viga é importante para a ua reitência à flexão. Uma viga biapoiada com a eção em pé vai apreentar flexõe menore (menore curvatura) do que a mema viga com a eção deitada. orientaçõe da eçõe da primeira linha abaixo ão mai reitente do que a orientaçõe da egunda linha: ntrodução à nálie de Etrutura Luiz Fernando artha 43

6 Exemplo de determinação de tenõe máxima para uma viga biapoiada Conidere uma viga biapoiada de madeira de metro de vão, com uma eção tranveral retangular de 10 x 30 cm, ujeita a uma carga uniformemente ditribuída de 30 kn/m. C l = m = 00 cm q = 30 kn/m B C = +ql /8 = 15 knm = 1500 kncm O momento fletor máximo na viga ocorre na eção central C e o valor é C = kncm (tracionando a fibra inferiore). tenõe normai máxima ocorrem na eção central, poi correpondem ao valor máximo do momento fletor. Como a eção é retangular, a tenão no bordo inferior (de tração) é igual em módulo à tenão no bordo uperior (de compreão). O valore da tenõe máxima dependem do poicionamento da eção tranveral. Dua ituaçõe erão etudada: viga em pé e viga deitada. Poição 1: viga em pé y i = y = 15 cm = C i = = + 1 kn/cm = + 10 Pa 500 σ = C = = 1 kn/cm = 10 Pa kn/cm 15 cm F c = F t = (1 kn/cm 15 cm 10 cm) / F c = 75 kn = 75 kn 15 cm 0 cm 15 cm F t = 75 kn = 1500 kncm 1 kn/cm É intereante obervar que a reultante F t da tenõe de tração e a reultante F c da tenõe de compreão ao longo da eção tranveral ão iguai em valor e têm entido contrário. to etá aociado ao fato do eforço normal er nulo na eção tranveral: N = σ xd = 0. Outro fato intereante é que o momento formado pela reultante F t e F c, com um braço de alavanca de 0 cm, é igual ao valor do momento fletor C na eção tranveral. ntrodução à nálie de Etrutura Luiz Fernando artha 44

7 Poição : viga deitada y i = y = 5 cm = C i = = + 3 kn/cm = + 30 Pa 500 σ = C = = 3 kn/cm = 30 Pa kn/cm 5 cm F c = F t = (3 kn/cm 5 cm 30 cm) / F c = 5 kn = 5 kn 0/3 cm 0/3 cm 5 cm F t = 5 kn = 1500 kncm 3 kn/cm eguinte concluõe podem er obtida da comparação entre a análie da viga de madeira em pé e deitada: O poicionamento da viga deitada apreenta uma curvatura maior do que para o cao da viga em pé. O poicionamento da viga deitada apreenta tenõe normai maiore do que para o cao da viga em pé. reultante de tenõe de tração e de compreão ão maiore para a viga deitada. O momento reultante da tenõe de tração e de compreão é igual para a viga em pé e para viga deitada, e é igual ao momento fletor na eção tranveral. No cao da viga deitada, o braço de alavanca entre a reultante de tração e compreão é menor do que para a viga em pé. Ete é o motivo pelo qual na viga deitada e deenvolvem maiore tenõe normai, poi o momento reultante tem que er empre igual ao momento fletor na eção. ntrodução à nálie de Etrutura Luiz Fernando artha 45

8 Exemplo de determinação de tenõe máxima para uma viga biapoiada com balanço e eção tranveral do tipo T Conidere a viga motrada abaixo. eção tranveral também etá indicada. O parâmetro que definem a dimenõe da eção tranveral ão: d = 50 cm (altura da eção) t w = 1 cm (largura da alma) b = 40 cm (largura da mea) t f = 10 cm (epeura da mea) O momento de inércia e a ditância do bordo ao centro de gravidade ão: = cm 4 y i = 31.4 cm y = 18.6 cm O diagrama de momento fletore da viga etá motrado abaixo, endo que o momento fletor máximo poitivo é C = knm = kncm e o momento fletor máximo negativo é B = 7 knm = 700 kncm: [knm] B C E F Tenõe normai na eção C: σ = C = = 0.50 kn/cm = 5.0 Pa Pa 18.6 cm C = 5475 kncm = C i = = kn/cm = Pa Pa 31.4 cm Tenõe normai na eção B: σ = B = = kn/cm = Pa Pa 18.6 cm B = 700 kncm = B i = = 1.11 kn/cm = 11.1 Pa Pa 31.4 cm Um poível critério de dimenionamento eria comparar a máxima tenão normal obtida (11.1 Pa) com o valor da tenão admiível do material utilizado. Se ultrapaae, eria neceário redimenionar a eção tranveral, provavelmente aumentando a ua altura, de forma a aumentar o momento de inércia da eção e o braço de alavanca entre a reultante de tração e de compreão na eção. ntrodução à nálie de Etrutura Luiz Fernando artha 46

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços 2 Carga óvei, Linha de Influência e Envoltória de Eforço 21 Introdução Para o dimenionamento de qualquer etrutura é neceário conhecer o eforço máximo e mínimo que ela apreentará ao er ubmetida ao carregamento

Leia mais

No dimensionamento à flexão simples, os efeitos do esforço cortante podem

No dimensionamento à flexão simples, os efeitos do esforço cortante podem FLEXÃO SIMPLES NA RUÍNA: EQUAÇÕES CAPÍTULO 7 Libânio M. Pinheiro, Caiane D. Muzardo, Sandro P. Santo. 12 maio 2003 FLEXÃO SIMPLES NA RUÍNA: EQUAÇÕES 7.1 HIPÓTESES No dimenionamento à flexão imple, o efeito

Leia mais

Critério de Resistência

Critério de Resistência CAPÍTULO 1 INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS I. OBJETIVOS FUNDAMENTAIS Um corpo em equilíbrio, ujeito a carga externa ativa e reativa, poui em eu interior eforço. Ete eforço interno ou olicitaçõe

Leia mais

CÁLCULO DE ARMADURAS LONGITUDINAIS DE VIGAS RECTANGULARES DE BETÃO ARMADO SUJEITAS A FLEXÃO SIMPLES PLANA DE ACORDO COM O EUROCÓDIGO 2

CÁLCULO DE ARMADURAS LONGITUDINAIS DE VIGAS RECTANGULARES DE BETÃO ARMADO SUJEITAS A FLEXÃO SIMPLES PLANA DE ACORDO COM O EUROCÓDIGO 2 Nº 6 NOV. 008 VOL. 6 ISSN 645-5576 CÁLCULO DE ARMADURAS LONGITUDINAIS DE VIGAS RECTANGULARES DE BETÃO ARMADO SUJEITAS A FLEXÃO SIMPLES PLANA DE ACORDO COM O EUROCÓDIGO E. JÚLIO Profeor Auxiliar DEC FCTUC

Leia mais

Física I. Oscilações - Resolução

Física I. Oscilações - Resolução Quetõe: Fíica I Ocilaçõe - Reolução Q1 - Será que a amplitude eacontantenafae de um ocilador, podem er determinada, e apena for epecificada a poição no intante =0? Explique. Q2 - Uma maa ligada a uma mola

Leia mais

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de

Leia mais

DIMENSIONAMENTO PLÁSTICO DE PÓRTICOS METÁLICOS. Vítor José Fernandes Félix Vitorino Paulo de Oliveira Ribeiro Leal SUMÁRIO

DIMENSIONAMENTO PLÁSTICO DE PÓRTICOS METÁLICOS. Vítor José Fernandes Félix Vitorino Paulo de Oliveira Ribeiro Leal SUMÁRIO DIMESIOAMETO PLÁSTICO DE PÓRTICOS METÁLICOS Vítor Joé Fernande Félix Vitorino Paulo de Oliveira Ribeiro Leal SUMÁRIO O preente trabalho foi realizado no âmbito do programa da diciplina de Seminário de

Leia mais

III- FLEXÃO SIMPLES 1- EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO

III- FLEXÃO SIMPLES 1- EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO III- FLEXÃO SIMPLES - EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO A eormaçõe na lexão imple correponem ao omínio, 3 e 4. O valore e x que limitam ete omínio poem er obtio acilmente a equaçõe e compatibiliae

Leia mais

Graduação em Engenharia Civil Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ

Graduação em Engenharia Civil Mestrado Acadêmico Faculdade de Engenharia FEN/UERJ orção Programa de Pó-GraduaP Graduação em Engenharia Civil Metrado Acadêmico Faculdade de Engenharia FEN/UERJ Profeor: Luciano Rodrigue Ornela de Lima 1. Introdução Momento toror () ecundário Combinado

Leia mais

31.1 Treliça de Mörsch

31.1 Treliça de Mörsch Univeridade Católica de Goiá - Departamento de Engenharia Etrutura de Concreto Armado I - Nota de Aula conteúdo 31 cialhamento 31.1 Treliça de Mörch O comportamento de peça fletida (fiurada) de concreto

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE P U C R S PONTIFÍCI UNIERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI CURSO DE ENGENHRI CIIL CONCRETO RMDO II FORÇ CORTNTE Pro. lmir Schäer PORTO LEGRE MRÇO DE 006 1 FORÇ CORTNTE 1- Notaçõe principai

Leia mais

FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido.

FÍSICA 2º ANO DIFERENÇA DE DOIS VETORES Duas grandezas vetoriais são iguais quando apresentam o mesmo módulo, a mesma direção e o mesmo sentido. FÍSICA º ANO I- ETOES - GANDEZA ESCALA E ETOIAL a) G Ecalar: é aquela que fica perfeitamente definida quando conhecemo o eu valor numérico e a ua unidade de medida Ex: maa, tempo, comprimento, energia,

Leia mais

DIMENSIONAMENTO DE VIGAS DE CONCRETO ARMADO À FORÇA CORTANTE

DIMENSIONAMENTO DE VIGAS DE CONCRETO ARMADO À FORÇA CORTANTE UNIERSIDDE ESTDUL PULIST UNESP - Campu de Bauru/SP FCULDDE DE ENGENHRI Departamento de Engenharia Civil Diciplina: 1309 - ESTRUTURS DE CONCRETO II NOTS DE UL DIMENSIONMENTO DE IGS DE CONCRETO RMDO À FORÇ

Leia mais

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos.

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos. 132 7.6. Acoplamento do Momento Angular. A informação dada atravé da ditribuição electrónica no átomo não é uficiente para decrever completamente o etado do átomo, uma vez que não explica como o momento

Leia mais

Tensões associadas a esforços internos

Tensões associadas a esforços internos Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões

Leia mais

Professora FLORENCE. Resolução:

Professora FLORENCE. Resolução: 1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num

Leia mais

Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor

Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal

Leia mais

ESTRUTURAS DE BETÃO ARMADO I 7 RESISTÊNCIA AO ESFORÇO TRANSVERSO PROGRAMA

ESTRUTURAS DE BETÃO ARMADO I 7 RESISTÊNCIA AO ESFORÇO TRANSVERSO PROGRAMA 7 RESISTÊNCI O ESFORÇO TRNSERSO PROGRM 1.Introdução ao betão armado 2.Bae de Projecto e cçõe 3.Propriedade do materiai: betão e aço 4.Durabilidade 5.Etado limite último de reitência à tracção e à compreão

Leia mais

φ p 400 mm. A carga de cálculo transmitida pela laje ao pilar é igual a Q d 1120 kn

φ p 400 mm. A carga de cálculo transmitida pela laje ao pilar é igual a Q d 1120 kn GBRITO UEL - CTU Departamento de Etrutura a. Prova TRU 04 Contruçõe em Concreto Etrutural C, 08005, 1a. Parte 1 a. Quetão ponto) ): Conidere, no ELU Punção, uma laje lia em viga), apoiada obre um pilar

Leia mais

Várias formas da seção transversal

Várias formas da seção transversal Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com

Leia mais

5 DETERMINAÇÃO DA CAPACIDADE DE ROTAÇÃO PLÁSTICA

5 DETERMINAÇÃO DA CAPACIDADE DE ROTAÇÃO PLÁSTICA 5 DETERMINAÇÃO DA CAPACIDADE DE ROTAÇÃO PLÁSTICA 5. Introdução O preente capítulo trata da determinação da capacidade de rotação plática de elemento unidimenionai de concreto armado que apreentam ecoamento

Leia mais

Revisão de Alguns Conceitos Básicos da Física Experimental

Revisão de Alguns Conceitos Básicos da Física Experimental Revião de Algun Conceito Báico da Fíica Experimental Marcelo Gameiro Munhoz munhoz@if.up.br Lab. Pelletron, ala 245, r. 6940 O que é uma medida? Medir ignifica quantificar uma grandeza com relação a algum

Leia mais

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral, Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

Aula 20. Efeito Doppler

Aula 20. Efeito Doppler Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento

Leia mais

Cinemática Exercícios

Cinemática Exercícios Cinemática Exercício Aceleração e MUV. 1- Um anúncio de um certo tipo de automóvel proclama que o veículo, partindo do repouo, atinge a velocidade de 180 km/h em 8. Qual a aceleração média dee automóvel?

Leia mais

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS

CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS 1 CAPÍTULO VI FLEXÃO ELÁSTICA EM VIGAS I. ASPECTOS GERAIS As vigas empregadas nas edificações devem apresentar adequada rigidez e resistência, isto é, devem resistir aos esforços sem ruptura e ainda não

Leia mais

Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares.

Matemática. Resolução das atividades complementares ( ) M19 Geometria Analítica: Pontos e Retas. ( ) pertence à bissetriz dos quadrantes pares. Reolução da atividade complementare Matemática M9 Geometria nalítica: Ponto e Reta p. 08 (MK-SP) Identifique a entença fala: a) O ponto (0, ) pertence ao eio. b) O ponto (4, 0) pertence ao eio. c) O ponto

Leia mais

Convecção Natural. v (N 1) x T (N 3)

Convecção Natural. v (N 1) x T (N 3) Introdução Convecção Natural Convecção Natural em Placa Vertical O problema de convecção natural em placa verticai pode er analiado a partir da equação de quantidade de movimento na direcção vertical.

Leia mais

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema

Leia mais

4. DIMENSIONAMENTO AO ESFORÇO CORTANTE

4. DIMENSIONAMENTO AO ESFORÇO CORTANTE Etrutura de Conreto rmado I 4. DIMENSIONMENTO O ESFORÇO CORTNTE 4.1 INTRODUÇÃO Como obervado no Capítulo 3, uma viga reite ao eorço oliitante iniialmente atravé do momento interno e ortante reitente araterítio

Leia mais

Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado.

Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado. FLEÃO SIMPLES. Introdução: (Boanerges, 1980-S.D.) Como a força cortante não altera as tensões normais estamos aqui examinando as flexões pura normal e simples normal. Observando a seção transversal em

Leia mais

2 Revisão Bibliográfica

2 Revisão Bibliográfica Revião Bibliográfica.. Introdução Apreentam-e, reumidamente, o trabalho de Breler & Gilbert (96), Papia et al. (988), Mau (990), Queiroga & Giongo (000) e Pantazopoulou (998). Apreentam-e também a precriçõe

Leia mais

EQUILÍBRIO INTERNO DE ESTRUTURAS

EQUILÍBRIO INTERNO DE ESTRUTURAS EQUILÍBRIO INTERNO DE ETRUTURA ORÇA AXIAL, CORTANTE E MOMENTO LETOR: Apesar de na prática uma estrutura possuir três dimensões, podemos reduzir este sistema em planos e semi-planos. ocalizaremos nossa

Leia mais

Calcular os pilares, a viga intermediária e a viga baldrame do muro de arrimo misto indicado na figura 40. Dados:

Calcular os pilares, a viga intermediária e a viga baldrame do muro de arrimo misto indicado na figura 40. Dados: 8.. uro e arrimo mito Calcular o pilare, a viga intermeiária e a viga balrame o muro e arrimo mito inicao na figura 4. Dao: Peo epecífico aparente o olo: 3 γ 18 kn/m ; Angulo e atrito natural o olo: j

Leia mais

Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA. Módulo

Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA. Módulo Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA Módulo 3 Sumário Módulo 3 Dimensionamento das vigas a flexão 3.1 Dimensionamento de vigas de Perfil I isolado página 3 3.2 Dimensionamento

Leia mais

ESTRUTURAS DE BETÃO ARMADO I PROGRAMA

ESTRUTURAS DE BETÃO ARMADO I PROGRAMA PROGRAMA 1.Introdução ao betão armado 2.Bae de Projecto e Acçõe 3.Propriedade do materiai: betão e aço 4.Durabilidade 5.Etado limite último de reitência à tracção e à compreão 6.Etado limite último de

Leia mais

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2 Reitência do Materiai SUMÁRIO 1. TESÕES DE CISLHMETO... 1 1.1 DIMESIOMETO... 1. EXEMPLOS... Cialhamento 0 Prof. Joé Carlo Morilla Reitência do Materiai 1. Tenõe de Cialhamento Quando dua força cortante

Leia mais

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c

Leia mais

Instrumentação e Medidas

Instrumentação e Medidas Intrumentação e Medida Departamento em Engenharia Electrotécnica Ano Lectivo 005-006 º Semetre Exame de ª Época (30/Jun/006) Avio: º - Leia com calma e atenção o enunciado. º - Jutifique toda a repota,

Leia mais

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 7 Repota no domínio do tempo - Sitema de egunda ordem Prof. Marcio Kimpara Univeridade Federal de Mato Groo do Sul Sitema de primeira ordem Prof. Marcio Kimpara

Leia mais

Resolução dos exercícios complementares

Resolução dos exercícios complementares Hiper eolução do exercício complementare Fiica FM09 b O enunciado refere-e à terceira lei de Newton: a lei da ação e reação b Subtituindo (III) em (II), temo: ( F ) 8 F 8 + 8 F m g g m (contante) Como

Leia mais

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção Estruturas de concreto Armado II Aula IV Flexão Simples Equações de Equilíbrio da Seção Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro UFSCAR

Leia mais

Aula 7 - Acionamento de Motores CA AC Electric Motor Drives

Aula 7 - Acionamento de Motores CA AC Electric Motor Drives Fundação Univeridade Federal ACIONAMENTOS de Mato Groo do CA Sul 1 Acionamento Eletrônico de Motore Aula 7 - Acionamento de Motore CA AC Electric Motor Drive Univeridade Federal de Mato Groo do Sul FAENG

Leia mais

Controle de Processos

Controle de Processos CONCURSO PETROBRAS ENGENHEIRO(A) DE PROCESSAMENTO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PROCESSAMENTO Controle de Proceo Quetõe Reolvida QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO Produzido por Exata

Leia mais

Módulo 4 - Princípio dos trabalhos virtuais. Método do esforço unitário. Deslocamentos em vigas com e sem articulações. Exemplos.

Módulo 4 - Princípio dos trabalhos virtuais. Método do esforço unitário. Deslocamentos em vigas com e sem articulações. Exemplos. ódulo 4 - Princípio dos trabalhos virtuais. étodo do esforço unitário. Deslocamentos em vigas com e sem articulações. Eemplos. O Princípio dos Trabalhos Virtuais (P.T.V.), para os corpos sólidos deformáveis

Leia mais

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL Copright 004, Intituto Braileiro de Petróleo e Gá - IBP Ete Trabalho Técnico Científico foi preparado para apreentação no 3 Congreo Braileiro de P&D em Petróleo e Gá, a er realizado no período de a 5 de

Leia mais

DIMENSIONAMENTO DO REFORÇO À TORÇÃO DE VIGAS RETANGULARES E EM CAIXÃO DE CONCRETO ARMADO COM COMPÓSITOS DE FIBRA DE CARBONO 1

DIMENSIONAMENTO DO REFORÇO À TORÇÃO DE VIGAS RETANGULARES E EM CAIXÃO DE CONCRETO ARMADO COM COMPÓSITOS DE FIBRA DE CARBONO 1 DIMENSIONAMENTO DO REFORÇO À TORÇÃO DE VIGAS RETANGULARES E EM CAIXÃO DE CONCRETO ARMADO COM COMPÓSITOS DE FIBRA DE CARBONO Emil De Souza Sánchez Filho, Júlio Jerônimo Holtz Silva Filho 3 e Marta De Souza

Leia mais

ANÁLISE LINEAR COM REDISTRIBUIÇÃO E ANÁLISE PLÁSTICA DE VIGAS DE EDIFÍCIOS

ANÁLISE LINEAR COM REDISTRIBUIÇÃO E ANÁLISE PLÁSTICA DE VIGAS DE EDIFÍCIOS Anai do 47º Congreo Braileiro do Concreto - CBC005 Setembro / 005 ISBN 85-98576-07-7 Volume XII - Projeto de Etrutura de Concreto Trabalho 47CBC06 - p. XII7-85 005 IBRACON. ANÁLISE LINEAR COM REDISTRIBUIÇÃO

Leia mais

Condução de calor numa barra semi-infinita

Condução de calor numa barra semi-infinita Univeridade de São Paulo Ecola de Engenharia de Lorena Departamento de Engenharia de Materiai Condução de calor numa barra emi-infinita Prof. Luiz T. F. Eleno Ecola de Engenharia de Lorena da Univeridade

Leia mais

Flexão Simples Armadura Transversal de viga

Flexão Simples Armadura Transversal de viga 6-1 016 66 Flexão Simple rmadura Tranveral de viga 6.1 Tenõe prinipai Sejam o elemento 1 e, próximo ao apoio de uma viga, do quai e quer determinar a tenõe prinipai (Figura 6.1). Neta Figura, o elemento

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

COMPORTAMENTO ELÁSTICO-LINEAR DE TRELIÇAS ESPACIAIS VIA MÉTODO DOS ELEMENTOS FINITOS

COMPORTAMENTO ELÁSTICO-LINEAR DE TRELIÇAS ESPACIAIS VIA MÉTODO DOS ELEMENTOS FINITOS COMPORTAMENTO ELÁSTICO-LINEAR DE TRELIÇAS ESPACIAIS VIA MÉTODO DOS ELEMENTOS FINITOS Viníciu Iamu Watanabe Hirotomi [Bolita PIBITI/UTFPR], Leandro Waidemam [Orientador], Raul Pinheiro Dia [Colaborador]

Leia mais

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações

Leia mais

Simplified method for calculation of solid slabs supported on flexible beams: validation through the non-linear analysis

Simplified method for calculation of solid slabs supported on flexible beams: validation through the non-linear analysis Teoria e Prática na Engenharia Civil, n.14, p.71-81, Outubro, 2009 Método implificado para cálculo de laje maciça apoiada em viga fleívei: validação por meio da análie não linear Simplified method for

Leia mais

6 - VIGA. Fernando Musso Junior Estruturas de Concreto Armado 23

6 - VIGA. Fernando Musso Junior Estruturas de Concreto Armado 23 6 - VIGA Fernano Muo Junior muo@np.ufe.br Etrutura e Concreto Armao 3 6.1 - VIGA - ANÁLISE Fernano Muo Junior muo@np.ufe.br Etrutura e Concreto Armao 4 VIGA - VÃO EFETIVO DE VIGA [NBR 6118] Fernano Muo

Leia mais

Modelagem Matemática do Atrito Dinâmico na Haste Telescópica de um Equipamento Pneumático para Poda de Árvores

Modelagem Matemática do Atrito Dinâmico na Haste Telescópica de um Equipamento Pneumático para Poda de Árvores Trabalho apreentado no DINCON, Natal - RN, 5. Proceeding Serie of the Brazilian Society of Computational and Applied Mathematic Modelagem Matemática do Atrito Dinâmico na Hate Telecópica de um Equipamento

Leia mais

Flexão Composta PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL 2015

Flexão Composta PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL 2015 PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL 2015 Encontramos diversas situações em Engenharia em que as peças estão solicitadas simultaneamente pela ação de momentos fletores

Leia mais

CAPÍTULO 5: CISALHAMENTO

CAPÍTULO 5: CISALHAMENTO Curo de Engenaria Civil Univeridade Eadual de Maringá Cenro de Tecnologia Deparameno de Engenaria Civil CAPÍTULO 5: CSALHAMENTO 5. Tenõe de Cialameno em iga o Flexão Hipóee Báica: a) A enõe de cialameno

Leia mais

8 Equações de Estado

8 Equações de Estado J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo

Leia mais

Estruturas Especiais de Concreto Armado I. Aula 2 Sapatas - Dimensionamento

Estruturas Especiais de Concreto Armado I. Aula 2 Sapatas - Dimensionamento Estruturas Especiais de Concreto Armado I Aula 2 Sapatas - Dimensionamento Fonte / Material de Apoio: Apostila Sapatas de Fundação Prof. Dr. Paulo Sérgio dos Santos Bastos UNESP - Bauru/SP Livro Exercícios

Leia mais

CAPÍTULO 6 - Testes de significância

CAPÍTULO 6 - Testes de significância INF 16 CAPÍTULO 6 - Tete de ignificância Introdução Tete de ignificância (também conhecido como Tete de Hipótee) correpondem a uma regra deciória que no permite rejeitar ou não rejeitar uma hipótee etatítica

Leia mais

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da

Leia mais

A imagem é real, invertida e reduzida.

A imagem é real, invertida e reduzida. Epelho eférico Um epelho côncavo tem um raio de curvatura de 4 cm. Trace diagrama de raio para localizar a imagem, e exitir, de um objecto perto do eixo para a eguinte ditância do epelho: a) 55 cm; b)

Leia mais

DIMENSIONAMENTO DE VIGAS DE CONCRETO ARMADO AO ESFORÇO CORTANTE

DIMENSIONAMENTO DE VIGAS DE CONCRETO ARMADO AO ESFORÇO CORTANTE 1309 Etrutura de Conreto II Dimenionamento de iga de Conreto rmado ao Eforço Cortante 1 DIMENSIONMENTO DE IGS DE CONCRETO RMDO O ESFORÇO CORTNTE 1. INTRODUÇÃO Uma viga de onreto armado reite a arregamento

Leia mais

ANÁLISE DA INTERAÇÃO ESTACA-SOLO VIA COMBINAÇÃO DO MÉTODO DOS ELEMENTOS FINITOS COM O MÉTODO DOS ELEMENTOS DE CONTORNO

ANÁLISE DA INTERAÇÃO ESTACA-SOLO VIA COMBINAÇÃO DO MÉTODO DOS ELEMENTOS FINITOS COM O MÉTODO DOS ELEMENTOS DE CONTORNO ISSN 809-5860 ANÁLISE DA INTERAÇÃO ESTACA-SOLO VIA COMBINAÇÃO DO MÉTODO DOS ELEMENTOS FINITOS COM O MÉTODO DOS ELEMENTOS DE CONTORNO Ruben Fernande de Mato Filho & João Batita de Paiva Reumo Nete trabalho

Leia mais

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para

Leia mais

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída)

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída) ESTRUTURS DE CONCRETO RMDO Lista para a primeira prova Questão 1) P1 V1 P2 V4 P3 V2 V3 4m 2m 3m V5 P4 h ' s s b d Seção das vigas: b=20cm ; h=40cm ; d=36cm Carga de serviço sobre todas as vigas: 15kN/m

Leia mais

CÁLCULOS DE VIGAS COM SEÇÃO T

CÁLCULOS DE VIGAS COM SEÇÃO T CÁLCULOS DE VIGAS COM SEÇÃO T Introdução Nas estruturas de concreto armado, com o concreto moldado no local, na maioria dos casos as lajes e as vigas que as suportam estão fisicamente interligadas, isto

Leia mais

ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8]

ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8] .. - Medida de Diperão O objetivo da medida de diperão é medir quão próximo un do outro etão o valore de um grupo (e alguma menuram a diperão do dado em torno de uma medida de poição). Intervalo É a medida

Leia mais

4. CONTROLE PID COM O PREDITOR DE SMITH

4. CONTROLE PID COM O PREDITOR DE SMITH 4 CONTROLADOR PID COM O PREDITOR DE SMITH 28 4. CONTROLE PID COM O PREDITOR DE SMITH 4.1 SINTONIA DO CONTROLADOR PID Nete capítulo erá apreentada a metodologia para a intonia do controlador PID. Reultado

Leia mais

Ondas e Óptica. No espelho côncavo, se o objeto está colocado entre o foco e o vértice ( s < f ) do espelho a imagem é virtual e direita.

Ondas e Óptica. No espelho côncavo, se o objeto está colocado entre o foco e o vértice ( s < f ) do espelho a imagem é virtual e direita. Onda e Óptica Epelho eférico V = Vértice do epelho = entro de curatura do epelho F = Foco do epelho = Ditância do objeto ao értice de epelho = Ditância da imagem ao értice do epelho f = Foco do epelho

Leia mais

Tabela Periódica Princípio de Exclusão de Pauli

Tabela Periódica Princípio de Exclusão de Pauli Fíica IV Poi Engenharia Eétrica: 18ª Aua (3/10/014) Prof. Avaro Vannucci Na útima aua vimo: Grandeza fíica reacionada com o número quântico: (i) Número quântico orbita (azimuta) Momento Anguar Orbita L

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES P U C S PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA CUSO DE ENGENHAIA CIVIL CONCETO AADO II FLEXÃO SIPLES Prof. Almir Shäffer POTO ALEGE AÇO DE 006 1 FLEXÃO SIPLES 1- Generaliae

Leia mais

Equações Diferenciais aplicadas à Flexão da Vigas

Equações Diferenciais aplicadas à Flexão da Vigas Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Etatítica Material teórico Medida de Diperão ou Variação Reponável pelo Conteúdo: Profª M. Roangela Maura C. Bonici MEDIDAS DE DISPERSÃO OU VARIAÇÃO Introdução ao Conteúdo Cálculo da

Leia mais

R. IP CA(t=1)= IP CA(t=2)= A inação é: IP CA(t=2) IP CA(t=1) IP CA(t=1)

R. IP CA(t=1)= IP CA(t=2)= A inação é: IP CA(t=2) IP CA(t=1) IP CA(t=1) Gabarito - Lita 1 - Introdução à Economia 2 - FCE/UERJ - 2016.2 1 - Explique por que o PIB real, e não o PIB nominal, deve er uado como medida de renda. 2 - Conidere uma economia com doi ben: carro e computadore.

Leia mais

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA UNIVESIDADE FEDEAL DE CAMPINA GANDE CENTO DE ENGENHAIA ELÉTICA E INFOMÁTICA DEPATAMENTO DE ENGENHAIA ELÉTICA LABOATÓIO DE ELETÔNICA Experimento #4 Filtro analógico ativo EXPEIMENTO #4 Objetivo Gerai Eta

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes ENG 8 Fenômeno de Tranorte I A Profª Fátima Loe Etática do fluido Definição: Um fluido é coniderado etático e todo o elemento do fluido etão arado ou e movem com uma velocidade contante, relativamente

Leia mais

5 Resultados Experimentais

5 Resultados Experimentais 5 Resultados Experimentais 5.1. Introdução Neste capítulo são apresentados os resultados medidos dos dois testes experimentais em escala real realizados para a comparação dos resultados teóricos. 5.2.

Leia mais

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste. Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de

Leia mais

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 013 ªFASE 1. 1.1. Aplicando o método de Hondt, o quociente calculado ão o eguinte: Lita A B C D Número de voto 13 1035

Leia mais

QUESTÕES DE PROVAS QUESTÕES APROFUNDADAS

QUESTÕES DE PROVAS QUESTÕES APROFUNDADAS UNIVERSIDDE FEDERL DO RIO GRNDE DO SUL ESOL DE ENGENHRI DEPRTMENTO DE ENGENHRI IVIL ENG 01201 MEÂNI ESTRUTURL I QUESTÕES DE PROVS QUESTÕES PROFUNDDS ISLHMENTO ONVENIONL TEORI TÉNI DO ISLHMENTO TORÇÃO SIMPLES

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Agregados determinação da absorção e da densidade de agregado graúdo

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Agregados determinação da absorção e da densidade de agregado graúdo Método de Enaio Página 1 de 6 RESUMO Ete documento apreenta o procedimento para a determinação da denidade aparente de agregado graúdo e da aborção d água. Apreenta definiçõe, aparelhagem, amotragem, enaio

Leia mais

Curso de Análise Matricial de Estruturas 1 I - INTRODUÇÃO

Curso de Análise Matricial de Estruturas 1 I - INTRODUÇÃO Curo de Análie Matricial de Etrutura 1 I - INTRODUÇÃO I.1 - Introdução O proceo de um projeto etrutural envolve a determinação de força interna e de ligaçõe e de delocamento de uma etrutura. Eta fae do

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Estruturas Submetidas à Flexão e Cisalhamento

Leia mais

Estruturas de concreto Armado II. Aula III Estádios e domínios

Estruturas de concreto Armado II. Aula III Estádios e domínios Estruturas de concreto Armado II Aula III Estádios e domínios Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro - UFSCAR Estádios Os estádios

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ARQUITETURA E URBANISMO PEF 602 Estruturas na Arquitetura II: Sistemas reticulados EXERCÍCIO 2

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ARQUITETURA E URBANISMO PEF 602 Estruturas na Arquitetura II: Sistemas reticulados EXERCÍCIO 2 UNIVERSIDADE DE SÃO PAULO FACULDADE DE ARQUITETURA E URBANISMO PEF 602 Estruturas na Arquitetura II: Sistemas reticulados EXERCÍCIO 2 Professor Dimas Ribeiro Bettioli Data: 26/11/2013 Grupo 04 Bianca Tiemi

Leia mais

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm² CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação

Leia mais

EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS (adaptado TAGUTI 2002)

EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS (adaptado TAGUTI 2002) EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS (adaptado TAGUTI 2002) ROTEIRO DE CÁLCULO I - DADOS Ponte rodoviária. classe TB 450 (NBR-7188) Planta, corte e vista longitudinal (Anexo)

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 3 Flexão de Peças Curvas

Resistência dos Materiais IV Lista de Exercícios Capítulo 3 Flexão de Peças Curvas Observações: 1 ft 304,8 mm 1 ksi 1000 lb/in 1 in 5,4 mm 1 ksi 1000 psi 1 ft 1 in 1 kip 1000 lb 1 psi 1 lb/in 6.131 O elemento curvo mostrado na figura é simétrico e esta sujeito ao momento fletor M600lb.ft.

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

Universidade Católica de Goiás - Departamento de Engenharia Estruturas de Concreto Armado I - Notas de Aula

Universidade Católica de Goiás - Departamento de Engenharia Estruturas de Concreto Armado I - Notas de Aula conteúdo 2 lajes 2.1 Classificação das lajes Como o cálculo das lajes tem por base a Teoria das Grelhas, para melhor entender sua classificação, vamos analisar primeiro como se realiza a transferência

Leia mais

Cisalhamento transversal

Cisalhamento transversal Capítulo 7: Cisalhamento transversal Adaptado pela prof. Dra. Danielle Bond Cisalhamento em elementos retos Vimos que por conta dos carregamentos aplicados, as vigas desenvolvem uma força de cisalhamento

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

Uma breve história do mundo dos quanta Érica Polycarpo & Marta F. Barroso

Uma breve história do mundo dos quanta Érica Polycarpo & Marta F. Barroso Unidade 5 Propriedade da Função de Onda CEDERJ / EXTENSÃO FÍSIC Uma breve itória do mundo do quanta UNIDDE 5 Uma breve itória do mundo do quanta Érica Polycarpo & Marta F. Barroo Sumário: preentação Interpretação

Leia mais

Exercícios de Resistência dos Materiais A - Área 3

Exercícios de Resistência dos Materiais A - Área 3 1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento

Leia mais