UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski"

Transcrição

1 UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO

2 Definiçõe O gráfico do Lugar geométrico da raíze, conite no deenho de todo o valore que o pólo de malha fechada de uma função de tranferência aumirão num plano de coordenada complea, quando variarmo o ganho k.

3 Definiçõe Conidere o itema abaio:

4 Definiçõe Diagrama do pólo Lugar da Raíze K 0 K 5 K 5 K 5 ' 0 '' 0 ' 9, 47 '' 0, 5 ' 86, '' 83, ' 5 '' 5-0 K 50 K jω j5 j4 j3 j j - j - j - j3 - j4 - j5

5 A caracterítica báica da repota tranitória de um itema de malha fechada depende eencialmente da localização do pólo de malha fechada do itema. É importante então, que o projetita aiba como o pólo de malha fechada e movem no plano compleo a medida que o ganho de malha varia

6 Como deenhar o Lugar Geométrico da Raíze???

7 Solucionando a Equação Caracterítica. Limitaçõe e dificuldade da análie do pólo atravé da olução da equação caracterítica:. Equaçõe caracterítica de grau uperior a 3, ão muito trabalhoa requerendo o uo de método computacionai pra a olução.. É uma análie etática, poi, e o ganho variar, o cálculo deverão er refeito. O método do Lugar da raíze permite que a raíze da equação caracterítica ejam repreentada graficamente para todo o valore do ganho k.

8 Propriedade Importante Conidere o eguinte itema báico como eemplo:

9 Propriedade Importante. Condiçõe de ângulo e módulo KG( ) H( ) 0 KG( ) H( ) KG ( ) H( ) KG( ) H( ) j0 () KG( ) H( ) Condição de Módulo o KG ( ) H( ) (k )80, onde k 0, ±, ±, ±3,... Condição de ângulo

10 Propriedade Importante Por eemplo e KG( ) H( ), for dado por: k( z) KG( ) H( ) ( p )( p )( p )( p O ângulo do vetore no plano compleo e originam no pólo e zero e vão até um ponto medido no entido anti-horário. 3 4 ) Portanto o ângulo de KG ( ) H( ), erá: KG( ) H( ) φ θ θ θ3 θ 4 e o Módulo de KG( ) H( ), erá: KB KG ( ) H( ) A A A A 3 4

11 Propriedade Importante. Definição de ramo: Ramo é o caminho percorrido pelo pólo quando variamo o ganho k. (obervar na figura do quadro o doi ramo criado pela variação do valor de k). O número de Ramo erá empre igual ao número de pólo do itema.

12 Propriedade Importante 3. Análie do pólo e zero no infinito de uma função de tranferência. Toda função de pouirá um número igual de pólo e de zero, e for levado em conta o pólo e zero infinito. K Por eemplo, a Função de Tranferência KG( ) H( ) tem 3 pólo finito e ( )( ) nenhum zero finito, ma e analiarmo o comportamento deta função no infinito veremo que: Se a função tender ao infinito, quando tender ao infinito, então a função terá um ou mai pólo no infinito. Se a função tender a zero quando tender ao infinito, então a função terá um ou mai zero no infinito. No cao acima, Fazendo tender ao infinito, a função e tornará K KG( ) H( ) K Cada do denominador faz com que a função e torne nula quando tende ao infinito, portanto eta função poui 3 zero no infinito, como era de e eperar.

13 Propriedade Importante 4. Simetria O lugar geométrico da Raíze é imétrico em relação ao eio real.

14 Repreentação do Gráfico do Lugar da Raíze Vamo etipular 6 pao para traçarmo completamente o gráfico que repreenta o Lugar geométrico da raíze de uma dada equação caracterítica. Pao : Determinar o número de ramo. O número de ramo do lugar geométrico da raíze é igual ao número de pólo de malha fechada.

15 Repreentação do Gráfico do Lugar da Raíze Pao : Determinar o egmento obre o eio real que fazem parte do LGR. Nete cao utiliza-e a propriedade de ângulo. auma que: Como regra geral, No eio real, o lugar geométrico da raíze eite à equerda de um número ímpar de pólo e/ou zero finito obre o eio real.

16 Repreentação do Gráfico do Lugar da Raíze Informação Importante O lugar geométrico da raíze e inicia no pólo finito e infinito de G()H() e termina no zero finito e infinito de G()H().

17 Repreentação do Gráfico do Lugar da Raíze Pao 3: Determinar onde etão o pólo ou zero no infinito. O Lugar geométrico da raíze tende a reta aintótica quando o lugar da raíze tende ao infinito. Além dio, a equação da aíntota é dada pelo ponto de intereção obre o eio real a, e o ângulo θ a, da eguinte forma: θ a # pólo o (k )80 finito # zero finito a pólo finito zero # pólo finito # zero finito finito onde k 0, ±, ±, ±3,...

18 Repreentação do Gráfico do Lugar da Raíze Eercício de Fiação Para cada lugar da raíze motrado na figura abaio, diga e o eboço pode ou não caracterizar o lugar geométrico da raíze. Cao o eboço não poa repreentar o lugar geométrico da raíze, eplique o porquê. Forneça toda a jutificativa.

19 Repreentação do Gráfico do Lugar da Raíze Eercício de Fiação Eboce(em detalhamento) a forma geral do lugar geométrico da raíze para cada diagrama de pólo e zero em malha aberta motrado na figura abaio:

20 Repreentação do Gráfico do Lugar da Raíze Eercício de Fiação Eboce o Lugar geométrico da raíze para o itema com realimentação unitária motrado abaio, cheque o ângulo de partida do pólo compleo.

21 Repreentação do Gráfico do Lugar da Raíze Eercício de Fiação Para o diagrama de pólo e zero em malha aberta motrado na figura abaio, eboce o lugar geométrico da raíze e determine o ponto de chegada.

22 Repreentação do Gráfico do Lugar da Raíze Com ee 3 Pao conegue-e um racunho do Lugar Geométrico da Raíze. Em muita ituaçõe, apena ee Racunho já no traz informaçõe uficiente para o projeto de um itema de controle. Entretanto, o LGR pode no fornecer mai informaçõe. a) Qual o ponto e o ângulo com que o LGR ai ou entra no eio real? b) Se houveem pólo e zero compleo, quai eriam o ângulo de Partida (no cao de pólo) e o ângulo de chegada (no cao de zero)? c) Em que ponto o LGR cruza o eio imaginário? Para reponder ee quetionamento, faz-e neceário fazer um gráfico detalhado do LGR. Nete Cao preciaremo aplicar mai 3 pao, informado a eguir.

23 Repreentação do Gráfico do Lugar da Raíze Pao 4: Determinar o ângulo e o ponto de chegada e partida no eio real. O ponto onde o lugar da raíze deia o eio real é chamado de ponto de partida. O ponto onde o lugar da raíze retorna ao eio real é chamado de ponto de chegada Nee ponto o ramo do lugar da raíze formam um ângulo de 80 o /n com o eio real, onde n é o número de pólo de malha fechada chegando ou aindo de um ponto de chegada ou de partida no eio real.

24 Repreentação do Gráfico do Lugar da Raíze Pao 4: Determinar o ângulo e o ponto de chegada e partida no eio real. Eemplo: Nee cao o ângulo de partida e chegada, erão de 90 º. O ponto de partida e de chegada ão encontrado reolvendo-e a equação: m n p zi i O valore de a, encontrado erão o ponto de partida e/ou chegada no eio real.

25 Repreentação do Gráfico do Lugar da Raíze Pao 4: Determinar o ângulo e o ponto de chegada e partida no eio real. m n zi p i O itema tem pólo, - e -. E poui zero, 3 e 5. ubtituindo na epreão fica: ,45, e 3,8

26 Repreentação do Gráfico do Lugar da Raíze Pao 5: Determinar o ângulo de partida e chegada no pólo e zero compleo.

27 Repreentação do Gráfico do Lugar da Raíze Pao 6: imaginário Determinar o ponto de intereção com o eio do Para e determinar o ponto de intereção no eio imaginário pode-e utilizar o critério de Routh-Hurwitz da eguinte forma: a) ecreve-e a matriz de Routh normalmente. b) Encontra-e o valor do Ganho K, fazendo a linha igual a zero. c) O ponto de cruzamento com o eio imaginário é então determinado com a reolução da equação auiliar obtida a partir da linha.

28 Reumindo O 6 pao para deenharmo perfeitamente o gráfico do lugar da raíze ão: Para e obter apena um racunho... o Pao: Determinar o número de ramo o Pao: Determinar o egmento obre o eio real 3 o Pao: Determinar onde etão o pólo ou zero no infinito Para detalhar o Lugar Geométrico da Raíze 4 o Pao: Determinar o ângulo e o ponto de chegada e partida no eio real 5 o Pao: Determinar o ângulo de partida e chegada no pólo e zero compleo 6 o Pao: Determinar o ponto de intereção com o eio do imaginário

29 Eercício de Fiação o Pao: Determinar o número de ramo, poi tem pólo. Seja um itema de controle com pólo em j e -j e com zero reai em - e -3. Contrua o Lugar Geométrico da Raíze. o Pao: Determinar o egmento obre o eio real jω j j

30 Eercício de Fiação 3 o Pao: Determinar onde etão o pólo ou zero no infinito - Não tem pólo no infinito 4 o Pao: Determinar o ângulo e ponto de partida e chegada no eio real. z m n zi p i Quem ão o pólo e o zero? jω p p z 3 j j j j

31 Eercício de Fiação 4 o Pao: Determinar o ângulo e ponto de partida e chegada no eio real. j j 3 Uando ee valore, temo: 3 j j 3 j p j p z z ( )( ) Donde e tira que: 43 9,, O ângulo de chegada e partida no eio real o o n 80 90

32 Eercício de Fiação jω j - 3 -, j

33 Eercício de Fiação 5 o Pao: Determinar o ângulo de partida e chegada no pólo e zero compleo φ arctag 8, 43 3 φ arctag 4, 03 4 o o φ o o φ 90 θ 8, 43 4, θ jω θ, 46 o j θ ϕ ϕ - 3 -, j 90 o

34 Eercício de Fiação Com θ, 46 o jω j,46 o - 3 -, j Por Simetria,46 o

35 Eercício de Fiação 6 o Pao: Determine o ponto de intereção com o eio imaginário G() ( )( 3) ( j)( j) ( )( 3) j jω j

36 Eercício de Fiação ( ) ( )( ) ( ) ( ) K K K K G ( ) ( )( ) 3 G - ( ) ( )( ) ( )( ) 3 3 K K G K Aplicando a regra de Routh na FT de Malha Fechada. ( ) K K K K ( ) ( ) / K K K ( ) ( ) ( ),77 3,4 0 5 / 6 5 / 0 6 j K K ±

37 Eercício de Fiação Reultado final jω j,77 j,46 o - 3 -, j -j,77,46 o

38 Eercício de Fiação Eboce o lugar da raíze do itema com realimentação unitária motrado abaio e determine o ponto de entrada e aída. z jω z p p 5 6 j j

39 o Pao: Determinar o número de ramo, poi tem pólo. o Pao: Determinar o egmento obre o eio real 3 o Pao: Determinar o ponto de chegada. m n zi p 5 6 i Quem ão o pólo e o zero? Uando ee valore, temo: 6 5 ( )( ) ( 5)( 6) z z p p Donde e tira que: 56, 5, 43

40 o Pao: Determinar o número de ramo, poi tem pólo. o Pao: Determinar o egmento obre o eio real jω j - 6-5, , j

41 4 o Pao: Determinar onde etão o pólo ou zero no infinito - Não tem pólo no infinito 5 o Pao: Determinar o ângulo e o ponto de chegada e partida no eio real 6 o e 7 o Pao: Não e aplicam o n o jω j - 6-5, , j

42 Eercício de Fiação Dado o itema com realimentação unitária que poui a função de tranferência do canal direto. K( ) G( ) 4 3 Faça o eguinte: a. Eboce o lugar geométrico da raíze. b. Determine o ponto de intereção com o eio imaginário. Determine o ganho K nee ponto. c. Determine o ponto de entrada. d. Determine o ângulo de partida do pólo compleo.

43 Solução: a. Eboce o lugar geométrico da raíze. Para eboçar o lugar geométrico da raíze bata 3 do 7 pao aprendido. o Pao: Determinar o número de ramo o Pao: Determinar o egmento obre o eio real 3 o Pao: Determinar onde etão o pólo ou zero no infinito

44 Solução: a. Eboce o lugar geométrico da raíze. Para eboçar o lugar geométrico da raíze bata 3 do 7 pao aprendido. o Pao: Determinar o número de ramo o Pao: Determinar o egmento obre o eio real 3 o Pao: Determinar onde etão o pólo ou zero no infinito Função de Tranferência ( ) G ( ) K 4 3 Quantidade de Pólo j3 j3 Quantidade de Ramo

45 Solução: a. Eboce o lugar geométrico da raíze. Para eboçar o lugar geométrico da raíze bata 3 do 7 pao aprendido. o Pao: Determinar o número de ramo o Pao: Determinar o egmento obre o eio real 3 o Pao: Determinar onde etão o pólo ou zero no infinito Pólo j3 Zero z j3 jω j3 j j j - j - j3

46 Solução: a. Eboce o lugar geométrico da raíze. Para eboçar o lugar geométrico da raíze bata 3 do 7 pao aprendido. o Pao: Determinar o número de ramo o Pao: Determinar o egmento obre o eio real 3 o Pao: Determinar onde etão o pólo ou zero no infinito Sabemo que temo um zero no infinito, temo que aber agora para que lado ele e encontra: pólo finito zero finito a # pólo finito # zero finito θa # j3 j3 o o ( k 80 ) 80 o pólo finito # zero finito 80 ( ) 6 - jω j3 j j - - j - j - j3

47 Solução: a. Eboce o lugar geométrico da raíze. Para eboçar o lugar geométrico da raíze bata 3 do 7 pao aprendido. o Pao: Determinar o número de ramo o Pao: Determinar o egmento obre o eio real 3 o Pao: Determinar onde etão o pólo ou zero no infinito - jω j3 j j - - j - j - j3

48 Solução: b. Determine o ponto de intereção com o eio imaginário. Determine o ganh K nee ponto. Para encontrar ee ponto, bata uarmo Routh na FT de Malha Fechada. Função de Tranferência Malha Aberta K( ) G ( ) G ( ) 0 ( K 4) 3 K K 0 ( K 4) ( K 4) K 4 Função de Tranferência Malha Fechada com realimentação unitária K K( ) ( K 4) 3 K ± j4, 58 - j4,5 jω j3 j j - - j - j - j3

49 Solução: c. Determine o ponto de entrada. Para determinar o ponto de entrada, bata uar a fórmula já conhecida. m n zi pi j 3 j 3 jω j4,5 j3 j3 ( ) ( ) 4 9 NMI ,58-6,58? j3 j j j - j - j3 -j4,5

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

107484 Controle de Processos Aula: graus de liberdade, variáveis de desvio e linearização

107484 Controle de Processos Aula: graus de liberdade, variáveis de desvio e linearização 107484 Controle de Proceo Aula: grau de liberdade, variávei de devio e linearização Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Univeridade de Braília UnB 1 o Semetre 2015 E. S.

Leia mais

Professora FLORENCE. Resolução:

Professora FLORENCE. Resolução: 1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

PARTE 11 VETOR GRADIENTE:

PARTE 11 VETOR GRADIENTE: PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE Aociação de Profeore de Matemática Contacto: Rua Dr. João Couto, n.º 7-A 1500-36 Liboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Teoria Básica e o Método Simplex. Prof. Ricardo Santos

Teoria Básica e o Método Simplex. Prof. Ricardo Santos Teoria Básica e o Método Simple Prof. Ricardo Santos Teoria Básica do Método Simple Por simplicidade, a teoria é desenvolvida para o problema de PL na forma padrão: Minimizar f()=c T s.a. A=b >= Considere

Leia mais

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto tocano@im.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

O Método do Lugar das Raízes Parte 2. Controle de Sistemas I Renato Dourado Maia (FACIT)

O Método do Lugar das Raízes Parte 2. Controle de Sistemas I Renato Dourado Maia (FACIT) O Método do Lugar das Raízes Parte 2 Controle de Sistemas I Renato Dourado Maia (FACIT) 1 O procedimento para se obter o traçado do gráfico do Lugar das Raízes é realizado por meio de um procedimento ordenado

Leia mais

Método do Lugar das Raízes

Método do Lugar das Raízes Método do Lugar das Raízes 1. Conceito do Lugar das Raízes 2. Virtudes do Lugar das Raízes (LR) pag.1 Controle de Sistemas Lineares Aula 8 No projeto de um sistema de controle, é fundamental determinar

Leia mais

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação. PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

LABORATÓRIO DE CONTROLE I SINTONIA DE CONTROLADOR PID

LABORATÓRIO DE CONTROLE I SINTONIA DE CONTROLADOR PID UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 6: SINTONIA DE CONTROLADOR PID COLEGIADO DE ENGENHARIA ELÉTRICA DISCENTES: Lucas Pires

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

FÍSICA EXPERIMENTAL 3001

FÍSICA EXPERIMENTAL 3001 FÍSICA EXPERIMENTAL 3001 EXPERIÊNCIA 1 CIRCUITO RLC EM CORRENTE ALTERNADA 1. OBJETIOS 1.1. Objetivo Geral Apresentar aos acadêmicos um circuito elétrico ressonante, o qual apresenta um máximo de corrente

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.) Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe

Leia mais

ESTATÍSTICA DESCRITIVA:

ESTATÍSTICA DESCRITIVA: UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário de Sinop(CUS) ESTATÍSTICA DESCRITIVA: Medidas de forma: Assimetria e Curtose Profº Evaldo Martins Pires SINOP -MT TEMAS TRABALHADOS ATÉ AGORA Aula

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto rtocano@id.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara FUDAMETOS DE COTROLE E AUTOMAÇÃO Aula 4 Modelagem de itema no domínio da requência Pro. Marcio impara Unieridade Federal de Mato Groo do Sul Sitema mecânico tranlação Elemento Força deloc. tempo Laplace

Leia mais

Exercícios Resolvidos de Biofísica

Exercícios Resolvidos de Biofísica Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

Aplicações das derivadas ao estudo do gráfico de funções

Aplicações das derivadas ao estudo do gráfico de funções Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer

Leia mais

UNESP - Faculdade de Engenharia de Guaratinguetá 1

UNESP - Faculdade de Engenharia de Guaratinguetá 1 ANÁLISE GRÁFICA UNESP - Faculdade de Engenharia de Guaratinguetá 0.. Introdução Neste capítulo abordaremos princípios de gráficos lineares e logarítmicos e seu uso em análise de dados. Esta análise possibilitará

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1:

Capítulo I Tensões. Seja um corpo sob a ação de esforços externos em equilíbrio, como mostra a figura I-1: apítuo I Seja um corpo ob a ação de eforço externo em equiíbrio, como motra a figura I-1: Figura I-3 Eforço que atuam na eção para equiibrar o corpo Tome-e, agora, uma pequena área que contém o ponto,

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: jorgewgut@up.br Um modelo de imulação é uma repreentação

Leia mais

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2 Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade

Leia mais

Função Seno. Gráfico da Função Seno

Função Seno. Gráfico da Função Seno Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,

Leia mais

CAPÍTULO 6 - Testes de significância

CAPÍTULO 6 - Testes de significância INF 16 CAPÍTULO 6 - Tete de ignificância Introdução Tete de ignificância (também conhecido como Tete de Hipótee) correpondem a uma regra deciória que no permite rejeitar ou não rejeitar uma hipótee etatítica

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Saulo Dornellas Universidade Federal do Vale do São Francisco Juazeiro - BA Dornellas (UNIVASF) Juazeiro - BA 1 / 44 Análise do

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados.

2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados. 2 Limites e Derivadas Copyright Cengage Learning. Todos os direitos reservados. 2.7 Derivadas e Taxas de Variação Copyright Cengage Learning. Todos os direitos reservados. Derivadas e Taxas de Variação

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

Unidade Símbolo Grandeza

Unidade Símbolo Grandeza Unidade Prefixo Noe Síbolo Fator Multiplicador Noe Síbolo Fator Multiplicador exa E 10 18 deci* d 10-1 peta P 10 15 centi* c 10 - tera T 10 1 ili* 10-3 giga* G 10 9 icro* 10-6 ega* M 10 6 nano n 10-9 quilo*

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori.

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Fíica Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Introdução: Ao uarmo uma chave de roda para retirar o parafuo para trocar o pneu de um automóvel, a roda inteira pode

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson

MATEMÁTICA. Aula 1 Revisão. Prof. Anderson MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma

Leia mais

Curso de Análise Matricial de Estruturas 1 I - INTRODUÇÃO

Curso de Análise Matricial de Estruturas 1 I - INTRODUÇÃO Curo de Análie Matricial de Etrutura 1 I - INTRODUÇÃO I.1 - Introdução O proceo de um projeto etrutural envolve a determinação de força interna e de ligaçõe e de delocamento de uma etrutura. Eta fae do

Leia mais

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA Sistema ELITE de Ensino IME - 01/01 1 COMENTÁRIO DA PROVA 01. O polinômio P() = 5 + 10 0 + 81 possui raízes compleas simétricas e uma raiz com valor igual ao módulo das raízes compleas. Determine todas

Leia mais

20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA

20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA 144 20 TNGÊNI E ONORDÂNI 20.1 PROPRIEDDES DE TNGÊNI Definições: 1) tangente a uma curva é uma reta que tem um só ponto em comum com esta curva. 2) Duas curvas são tangentes num ponto dado T, quando as

Leia mais

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R 2 Conceitos Básicos Neste capítulo são apresentados alguns conceitos importantes e necessários para o desenvolvimento do trabalho. São apresentadas as definições de campo vetorial, fluxo e linhas de fluxo.

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

Resolução Comentada Unesp - 2013-1

Resolução Comentada Unesp - 2013-1 Resolução Comentada Unesp - 2013-1 01 - Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t0 = 0 s. A bola atinge, no instante t4, um

Leia mais

RETA. Sumário: Manual de Geometria Descritiva - António Galrinho Reta - 1

RETA. Sumário: Manual de Geometria Descritiva - António Galrinho Reta - 1 2 RETA O alfabeto da reta é o conjunto das posições genéricas que uma reta pode ter em relação aos planos de projeção. Neste capítulo apresentam-se essas posições, assim como posições particulares que

Leia mais

WWW.RENOVAVEIS.TECNOPT.COM

WWW.RENOVAVEIS.TECNOPT.COM Energia produzida Para a industria eólica é muito importante a discrição da variação da velocidade do vento. Os projetistas de turbinas necessitam da informação para otimizar o desenho de seus geradores,

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas.

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas. Ecola Báic a 2º º e 3º º Ciclo Tema 1 Viver com o outro Tema Conteúdo Competência Actividade Tema 1 Viver com o outro Valore Direito e Devere Noção de valor O valore como referenciai para a acção: - o

Leia mais

Figuras geométricas planas. Joyce Danielle. e espaciais

Figuras geométricas planas. Joyce Danielle. e espaciais Figuras geométricas planas Joyce Danielle e espaciais Figuras geométricas planas Joyce Danielle UNIVERSIDADE FEDERAL DE ALAGOAS 2 Apresentação Na geometria plana vamos então nos atentar ao método de cálculo

Leia mais

ATIVIDADES PRÁTICAS SUPERVISIONADAS

ATIVIDADES PRÁTICAS SUPERVISIONADAS ATIVIDADES PRÁTICAS SUPERVISIONADAS ª Série Cálculo Numérico Engenharia Civil A atividade prática supervisionada (ATPS) é um procedimento metodológico de ensino-aprendizagem desenvolvido por meio de um

Leia mais

Física Básica: Mecânica - H. Moysés Nussenzveig, 4.ed, 2003 Problemas do Capítulo 2

Física Básica: Mecânica - H. Moysés Nussenzveig, 4.ed, 2003 Problemas do Capítulo 2 Fíica Báica: Mecânica - H. Moyé Nuenzveig, 4.ed, 003 Problea do Capítulo por Abraha Moyé Cohen Departaento de Fíica - UFAM Manau, AM, Brail - 004 Problea Na célebre corrida entre a lebre e a tartaruga,

Leia mais

Eleição de Líder. Alysson Neves Bessani Departamento de Informática Faculdade de Ciências da Universidade de Lisboa

Eleição de Líder. Alysson Neves Bessani Departamento de Informática Faculdade de Ciências da Universidade de Lisboa Eleição de Líder Alysson Neves Bessani Departamento de Informática Faculdade de Ciências da Universidade de Lisboa Algoritmos de Eleição Muitos algoritmos distribuídos necessitam de seleccionar um processo

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

Uso de escalas logaritmicas e linearização

Uso de escalas logaritmicas e linearização Uso de escalas logaritmicas e linearização Notas: Rodrigo Ramos 1 o. sem. 2015 Versão 1.0 Obs: Esse é um texto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as coisas

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 21 de Junho de 2013 3 Uma outra medida usada para verificar o ajuste do modelo. Essa estatística é dada por X

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE P U C R S PONTIFÍCI UNIERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI CURSO DE ENGENHRI CIIL CONCRETO RMDO II FORÇ CORTNTE Pro. lmir Schäer PORTO LEGRE MRÇO DE 006 1 FORÇ CORTNTE 1- Notaçõe principai

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

CONTROLO DE SISTEMAS. APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox. Pedro Dinis Gaspar António Espírito Santo J. A. M.

CONTROLO DE SISTEMAS. APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox. Pedro Dinis Gaspar António Espírito Santo J. A. M. UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox Pedro Dini Gapar António Epírito Santo J. A. M. Felippe de Souza

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 04 Prof. Dr. Marco Antonio Leonel Caetano Guia de Estudo para Aula 04 Aplicação de Produto Escalar - Interpretação do produto escalar

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

GEOMETRIA DESCRITIVA... o que é e para que serve!

GEOMETRIA DESCRITIVA... o que é e para que serve! GEOMETRIA DESCRITIVA... o que é e para que serve! Desde sempre, o homem, na sua necessidade de comunicação, procurou encontrar um meio de representar as formas dos objectos que o rodeavam. Assim, Gaspar

Leia mais

Manual Geral de Aplicação Universal Entrada 2008

Manual Geral de Aplicação Universal Entrada 2008 Universal Entrada 2008 Programa Programa - Manual do Aplicador Teste Universal - 2008 Teste Cognitivo Leitura/Escrita e Matemática Caro alfabetizador(a): Se você está recebendo este material, é porque

Leia mais

Símbolos e Identificação

Símbolos e Identificação Símbolos e Identificação 1. Introdução A simbologia de instrumentação analógica e digital, compartilhada e integral, distribuída e centralizada se baseia nas seguintes normas americanas (geralmente traduzidas

Leia mais

Razões e proporções. Profa. Dra. Denise Ortigosa Stolf

Razões e proporções. Profa. Dra. Denise Ortigosa Stolf Razões e proporções Profa. Dra. Denise Ortigosa Stolf Sumário Página Razão... 1 Razões inversas... Algumas razões especiais... 5 As razões escritas na forma percentual... 6 Calculando a porcentagem...

Leia mais

MÓDULO 2 Topologias de Redes

MÓDULO 2 Topologias de Redes MÓDULO 2 Topologias de Redes As redes de computadores de modo geral estão presentes em nosso dia adia, estamos tão acostumados a utilizá las que não nos damos conta da sofisticação e complexidade da estrutura,

Leia mais

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2

Códigos de bloco. Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Instituto Federal de Santa Catarina Curso superior de tecnologia em sistemas de telecomunicação Comunicações móveis 2 Códigos de bloco Prof. Diego da Silva de Medeiros São José, maio de 2012 Codificação

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss

Resolução de sistemas de equações lineares: Método de eliminação de Gauss Resolução de sistemas de equações lineares: Método de eliminação de Gauss Marina Andretta ICMC-USP 21 de março de 2012 Baseado no livro Análise Numérica, de R L Burden e J D Faires Marina Andretta (ICMC-USP)

Leia mais

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de

Leia mais

ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas:

ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas: 6ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA POLINÔMIOS E OPERAÇÕES COM POLINÔMIOS ORIENTAÇÕES: Ensino Fundamental 8 Ano Realize os exercícios em folhas de fichário com a identificação completa,

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

MDS II Aula 04. Concepção Requisitos Diagrama de Casos de Uso (Use Cases)

MDS II Aula 04. Concepção Requisitos Diagrama de Casos de Uso (Use Cases) MDS II Aula 04 Concepção Requisitos Diagrama de Casos de Uso (Use Cases) 55 DIAGRAMA DE CASOS DE USO BENEFÍCIOS DOS CASOS DE USO ILUSTRAR POR QUE O SISTEMA É NECESSÁRIO OS REQUISITOS DO SISTEMA SÃO COLOCADOS

Leia mais