Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo

Tamanho: px
Começar a partir da página:

Download "Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo"

Transcrição

1 ensores cartesianos Quantidades (grandeas) físicas: Classificação: Escalares Vectores ensores de segunda ordem... ensores de ordem ero ensores de primeira ordem ensores de segunda ordem... Relacionadas a uma dada posição e um dado tempo Campos físicos: Grandeas físicas como funções de posição e/ou de tempo Campo escalar Campo vectorial Campo tensorial de segunda ordem...

2 O tensor de segunda ordem é plenamente determinado no ponto P quando sabemos 3 vectores de pontos de aplicação P, relacionados aos 3 planos diferentes, não paralelos, que se intersectam no P Escalares 1 valor é suficiente para a descrição completa Eemplos: temperatura, massa, densidade, tempo Vectores É necessário ter 3 dados para a descrição completa de um vector livre Representação geométrica Ponto de aplicação Direcção Sentido Intensidade O vector é plenamente determinado no ponto P quando sabemos: direcção intensidade sentido ensores de segunda ordem É necessário ter 9 dados para a descrição completa

3 Descrição matemática dos tensores Componentes num dado referencial Número de componentes necessárias: 3 n em 3D n em D onde n corresponde à ordem do tensor Sistema de coordenadas ou referencial cartesiano rês eios rectos mutuamente perpendiculares Nota: Grandeas físicas: Componentes são números Campos físicos: Componentes são funções Vectores base com a norma igual Habitualmente directo Regra de mão direita i k i j j k René Descartes ( ) Dedos de para Dedos de para Dedos de para Polegar mostra o sentido positivo de Polegar mostra o sentido positivo de Polegar mostra o sentido positivo de

4 i j k 3 1 i i i e e e e k j i ( ),,,, ) ( vectorial matricial Representação geométrica no referencial cartesiano 3 1 e e k e e j e e i Vectores Representação matemática Definição A grandea física chama-se tensor quando as suas componentes obedecem à lei de transformação ensores cartesianos A lei de transformação é válida apenas no sistema cartesiano

5 Dedução da lei de transformação D α α Rotação do sistema de coordenadas α α cos sin cos sin cos sin sin cos R é uma matri ortogonal R 1 R R cos sin sin cos Para o referencial directo det R 1 Componentes de vectores base do sistema rodado, ou seja os cosenos directores dos versores dos eios rodados, formam as linhas de matri rotação [R]

6 ensores de segunda ordem Representação das componentes na forma matricial , -, A lei de transformação R R R R ensores de ordem maior...

7 A faceta e a normal à faceta são mutuamente perpendiculares A faceta corresponde a uma recta ( um corte ) onde actuam duas componentes do tensor considerado: a componente normal (diagonal, que tem o mesmo índice como a normal à faceta) e a componente tangencial (fora da diagonal, que tem dois índices) Componente normal, diagonal acetas positivas acetas negativas Componente tangencial, fora da diagonal o 1 índice da componente tangencial corresponde à normal, o à direcção Esta representação geométrica será igual para o tensor das tensões, mas diferente para o tensor das deformações As comp. normais obedecem as regras de representação de tracção/compressão As comp. tangenciais positivas apontam para os quadrantes positivos

8 Álgebra tensorial Cálculo matricial e vectorial até tensores de segunda ordem ensores cartesianos de segunda ordem ensor simétrico ensor antisimétrico 0 ij ji ij ji ii A propriedade mantém-se, qualquer que seja o referencial Cada tensor de segunda ordem pode ser escrito como soma da sua parte simétrica e antissimétrica S A S ( )/ A ( )/ ij ij ji ij ij ji

9 Qualquer tensor pode ser escrito como a soma da sua parte esférica (isotrópica, volúmica, volumétrica) e desviadora (tangencial) I D m D i j Valor médio Valores e vectores próprios (principais) ( I) v 0 (Eq. 1) ij ij Dii ii m ( )/3 em 3D m Propriedade: o tensor desviador tem o traço nulo corresponde a n equações algébricas lineares homogéneas Eiste solução não trivial para {v} quando det ( I) 0 Os números λ que asseguram a nulidade do determinante chamam-se valores próprios, pode-se provar que são reais no caso dos tensores simétricos ( )/ em D Assim as equações (Eq. 1) são linearmente dependentes, por isso o número das soluções para {v} relacionado a cada λ é infinito m

10 D I ( ) ( I I ) 0 det 1 ( ) I1 m traço m I det( ) I1 I 0 Invariantes Escalares que não alteram o seu valor com a rotação do referencial I 1, I são invariantes fundamentais Nota: Invariante dos vectores: norma Em D a resolução pode ser facilmente eprimida analiticamente O problema pode ser definido de três maneiras equivalentes: 1. Resolver a equação característica ->valores próprios ->vectores próprios. Encontrar o máimo e o mínimo dos valores diagonais 3. Encontrar a rotação para a qual 0 cos sin sin cos sin cos sin cos ( ) ( sin cos cos sin ) A lei de transformação

11 cos sin cos sin sin cos R para 0 ma m R 0 min m R tg ( ) de até ou de até p ( min ) ( ma ) Justificação da circunferência ( ) R m ou ( ) R m Cristian Otto Mohr ( )

12 Valores fora de diagonal m in ( ) Cada ponto da circunferência corresponde às omponentes do vector na faceta correspondente Circunferência de Mohr ( ) m tg p ( ) p ( ) Pólo das normais ma 0 ( ) ( )/ R p Valores diagonais -> positivos para baio -> positivos para cima 0 R

13 R máimo da componente fora de diagonal, neste caso as componentes diagonais não se anulam, ambas têm o valor m 0 ma 0 min,ma ( min ) R ma ( ma ) Depois da resolução dos valores e direcções principais convém verificar os invariantes (fundamentais) min m,ma m,m a,ma m,m a m Invariantes traço det ( ) ( ) Referencial original Referencial alindado com dir. principais ma min ma min

14 Determinação das componentes sabendo três valores diagonais Sabemos:,, a Devido ao referencial introduido: b a c incógnitas:,, c b a b c ( ) sin ( ) sin( ) ( ) cos cos a ( ) sin ( ) sin( ) ( ) cos cos Resolver,

15 3D Os valores principais são 3, contudo podem ser múltiplos Calculam-se como raíes da equação característica I ( ) ( 3 I I I ) 0 det I1 I I3 0 Eistem pelo menos três vectores principais normaliados (e. do sentido) Quando os valores próprios são diferentes, os vectores principais normaliados são 3 (unicamente definidos ecepto do sentido) mutuamente ortogonais Invariantes fundamentais I1 3m traço I det I 3 det ( ) ( ) det det I 1, I e I 3 são também chamados invariante linear, quadrático, cúbico Outros invariantes: combinação de I 1, I e I 3, e também por eemplo valores próprios

16 Valores próprios Os vectores próprios (ortogonais) definem um referencial em que a matri de componentes é diagonal Valores na diagonal são os valores próprios (forma canónica) O máimo dos valores próprios é o máimo de todas as componentes normais, qualquer que seja o referencial O mínimo dos valores próprios é o mínimo de todas as componentes normais, qualquer que seja o referencial A matri de rotação [R] tem as linhas formadas pelos vectores próprios normaliados A solução é única, por isso encontrando a matri de coeficientes diagonal, pode-se concluir que o referencial é formado pelos vectores próprios e que os valores na diagonal são principais, um deles o máimo e um deles o mínimo Depois de calcular os valores próprios, usa-se o sistema de equações (Eq. 1) com o valor próprio substituído, para calcular a direcção principal correspondente a este valor

17 Casos particulares No caso particular da figura ao lado, vectores () e (3) não são unicamente definidos. odos os vectores que satisfaem a equação com o valor λ λ 3 substituído, formam um plano, cuja normal coincide com a direcção (1) () (1) (3) qualquer direcção é principal A 0 D 0 D B 0 0 C Já é um valor principal Vector principal correspondente: Simplificação para o caso D ( ) v ( 0,1,0 ) A D D C

18 3D Depois da resolução dos valores e direcções principais convém verificar os invariantes e a ortogonalidade de vectores próprios I Invariantes no referencial principal I I3 1 3 Valores máimos fora de diagonal Usando as conclusões de D Círculo de Mohr 3 1 ( 1) ( 3) ( ) ,ma Círculos fundamentais 1 3

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia Cap. 1. ensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores.

Leia mais

Cap. 0. Cálculo tensorial

Cap. 0. Cálculo tensorial Cap. 0. Cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos em D simétricos

Leia mais

4. Tensores cartesianos em 3D simétricos

4. Tensores cartesianos em 3D simétricos 4. Tensores cartesianos em D simétricos 4.1 Valores e vectores próprios ou valores e direcções principais Em D não é possível deduzir as fórmulas que determinam os valores e as direcções principais na

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial

Cap. 1. Tensores cartesianos, cálculo tensorial Cap. 1. ensores cartesianos, cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos

Leia mais

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P Cap. 3. Tensão 1. Existência das forças internas 2. Princípio das tensões de Euler e Cauchy 3. Vector das tensões no ponto P 3.1 Componentes cartesianas 3.2 Componentes intrínsecas 4. Tensor das tensões

Leia mais

Teórica 3_complementar

Teórica 3_complementar Teórica _complementar Problema 1 Considere o estado bidimensional de tensões indicado na figura. Detere: a) As tensões e as direcções principais (define a base do referencial principal em que a primeiro

Leia mais

Análise de Tensões. Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil

Análise de Tensões. Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Disciplina: Mecânica dos Sólidos Código: ECIV3 rofessor: Eduardo Nobre Lages Análise de Tensões Maceió/AL Agosto/14 Motivação

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão) Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL REGIME NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA º FREQUÊNCIA de Janeiro de 8 Duração:

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil º ANO EXERCICIOS PRÁTICOS Ano lectivo 005/006 Ano lectivo: 005/006.º semestre MECÂNICA APLICADA II I - Teoria do estado de

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial

Cap. 1. Tensores cartesianos, cálculo tensorial Sebenta da Disciplina MMC, Zuzana Dimitrovová, DEC/FC/UNL, 016 Cap. 1. ensores cartesianos, cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores

Leia mais

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais.

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais. CAPÍTULO CÁLCULO VECTORIAL.1. Grandeas escalares e vectoriais. Noção de Vector. As grandeas físicas podem ser escalares ou vectoriais. As grandeas massa, comprimento, tempo ficam completamente definidas

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar. 4.3 Significado físico das pequenas deformações

2.1 Translação, rotação e deformação da vizinhança elementar. 4.3 Significado físico das pequenas deformações Sebenta da Disciplina MMC, Zuzana Dimitrovová, DEC/FC/UNL, 016 Cap. 4. Deformação 1. Deslocamento. Gradiente de deslocamento.1 ranslação, rotação e deformação da vizinhança elementar. Significado físico

Leia mais

Tensores Cartesianos

Tensores Cartesianos Tensores Cartesianos Mecânica II Notas de apoio à disciplina de Mecânica II Vitor Leitão Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Lisboa, 2011 vitor@civil.ist.utl.pt -

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705)

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705) Método dos trabalhos virtuais Jacob ernoulli (também James ou Jacques) (Suiça, 7 December 1654 16 ugust 1705) Trabalho mecânico de uma força num deslocamento infinitesimal (trabalho elementar) x z 0 Trabalho

Leia mais

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão Departamento de Engenharia Mecânica Parte 3 Estado Plano de Tensão Prof. Arthur M. B. Braga 15.1 Mecânica dos Sólidos Problema F 1 Corpo sujeito a ação de esforços eternos (forças, momentos, etc.) F 7

Leia mais

Capítulo 2 Deformação. dum componente mecânico, mediram-se as seguintes deformações:

Capítulo 2 Deformação. dum componente mecânico, mediram-se as seguintes deformações: Capítulo Deformação Problema Numa roseta de etensómetros (ver figura) colocada na superfície dum componente mecânico, mediram-se as seguintes deformações: ε etensómetro (a): εa 900μ c etensómetro (b):

Leia mais

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC Exercícios de Álgebra Linear o Semestre 008/009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC João Ferreira Alves/Ricardo Coutinho Sistemas de Equações Lineares e Matrizes Exercício Resolva por eliminação de Gauss

Leia mais

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705)

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705) Método dos trabalhos virtuais Jacob ernoulli (também James ou Jacques) (Suiça, 7 December 1654 16 ugust 1705) Trabalho mecânico de uma força num deslocamento infinitesimal (trabalho elementar) x z 0 Trabalho

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

Indicação de uma possível resolução do exame

Indicação de uma possível resolução do exame Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere

Leia mais

CAPíTULO 1. Vetores e tensores Notação indicial

CAPíTULO 1. Vetores e tensores Notação indicial CAPíTULO 1 Vetores e tensores 1.1. Notação indicial A notação indicial é uma simplificação da notação de uma somatória. Por exemplo, seja a somatória de 3 monômios a i b i (a i multiplicado por b i ) com

Leia mais

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2 Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:

Leia mais

1 Espaços Vectoriais

1 Espaços Vectoriais Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um

Leia mais

Produto interno, externo e misto

Produto interno, externo e misto Produto interno, externo e misto Definição: Chama-se norma (ou comprimento) do vector u ao comprimento do segmento de recta [OP ] e representa-se por u. Definição: Sejam a = OA e b = OB dois vectores não

Leia mais

Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise.

Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise. 1. Corpos Rígidos Nesta secção será feito o estudo de forças aplicadas a um corpo rígido. Estudar-se-á a substituição de um dado sistema de forças por um sistema de forças equivalente mais simples, cálculo

Leia mais

Preparação para o Teste de Maio 2012 (GEOMETRIA)

Preparação para o Teste de Maio 2012 (GEOMETRIA) Nº8 Matemática: ºA Preparação para o Teste de Maio (GEOMETIA) Grupo I. Num referencial o.n. Oy, considera um ponto A pertencente ao semieio positivo O e um ponto B pertencente ao semieio positivo Oy. Quais

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Departamento de Matemática e Ciências Experimentais FÍSICA 12.º Ano

Departamento de Matemática e Ciências Experimentais FÍSICA 12.º Ano Departamento de Matemática e Ciências Eperimentais FÍSICA 12.º Ano Teto de apoio n.º 1 Assunto: Calculo vectorial O vector é uma entidade matemática caracteriada por três elementos: módulo, (magnitude

Leia mais

Colectânea de Exercícios

Colectânea de Exercícios ÁLGEBRA Colectânea de Exercícios P. Milheiro de Oliveira 1998/1999 Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto A presente colectânea de exercícios foi elaborada para

Leia mais

Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise.

Forças exteriores representam a acção de outros corpos sobre o corpo rígido em análise. Nesta secção será feito o estudo de forças aplicadas a um corpo rígido. Estudar-se-á a substituição de um dado sistema de forças por um sistema de forças equivalente mais simples, cálculo de produtos externos

Leia mais

Álgebra linear e geometria analítica

Álgebra linear e geometria analítica 27//29 o teste Álgebra linear e geometria analítica OCV Instruç~oes escolha n exercícios e responda em Portugu^es.. (2 valores) Determine uma equação cartesiana da recta que passa pelos pontos (, ) e (

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

6 Valores e Vectores Próprios de Transformações Lineares

6 Valores e Vectores Próprios de Transformações Lineares Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)

Leia mais

P4 de Álgebra Linear I de junho de 2005 Gabarito

P4 de Álgebra Linear I de junho de 2005 Gabarito P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana

Leia mais

Sumário e Objectivos. 2007/2008 Lúcia M.J.S.Dinis. Mecânica dos Sólidos 2ªAula

Sumário e Objectivos. 2007/2008 Lúcia M.J.S.Dinis. Mecânica dos Sólidos 2ªAula Sumário e Objectivos Sumário: Equações de Equilíbrio de Forças e Momentos. Mudança de Eixos de Referência. Tensões Principais e Direcções Principais. Invariantes das Tensões. Tensor Hidrostático ou Isotrópico.

Leia mais

Seja f um endomorfismo de um espaço vectorial E de dimensão finita.

Seja f um endomorfismo de um espaço vectorial E de dimensão finita. 6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio

Leia mais

SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea:

SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea: Disciplina: Álgebra Linear e Geometria Analítica Curso: Engenharia Mecânica Professora: Valéria Lessa APOSTILA SISTEMAS LINEARES Muitos problemas em várias áreas da Ciência recaem na solução de sistemas

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

Exercícios Resolvidos Variedades

Exercícios Resolvidos Variedades Instituto Superior Técnico Departamento de atemática Secção de Álgebra e Análise Eercícios Resolvidos Variedades Eercício 1 Considere o conjunto = {(,, ) R : + = 1 ; 0 < < 1}. ostre que é uma variedade,

Leia mais

ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7.

ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 20/Nov/2003 ÁLGEBRA LINEAR A FICHA 6 SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Propriedades dos Determinantes

Leia mais

Teórica 4 Problema 1 Um componente estrutural está sujeito ao carregamento de tal

Teórica 4 Problema 1 Um componente estrutural está sujeito ao carregamento de tal Teórica 4 Problema Um componente estrutural está sujeito ao carregamento de tal C maneira que o campo de deslocamentos é linear (u, v lineares, w ). Sabendo que o vértice B[6cm,cm] desloca-se para cima

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

MECÂNICA APLICADA II. Enunciados Exames 2003/2004. Enunciados Exames 2004/2005. Resolução dos exames 2004/2005

MECÂNICA APLICADA II. Enunciados Exames 2003/2004. Enunciados Exames 2004/2005. Resolução dos exames 2004/2005 INSTITUTO POLITÉCNICO DE BRAGANÇA Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO Enunciados Exames 2003/2004 Enunciados Exames 2004/2005 Resolução dos exames 2004/2005

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

Resolução Exame 26 de Junho de 2006

Resolução Exame 26 de Junho de 2006 Resolução ame de Junho de Problema : Resolução: Al. a) (Apontamentos das Aulas Teóricas) Os invariantes de um sistema de vectores são: (a) Força resultante: R - invariante vectorial um vector livre, não

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013 ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Prática Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

Matemática. Lic. em Enologia, 2009/2010

Matemática. Lic. em Enologia, 2009/2010 Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

Vectores e Geometria Analítica

Vectores e Geometria Analítica Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário

Leia mais

Teoria do Estado de Tensão

Teoria do Estado de Tensão Mecânica Aplicada Teoria do Estado de Tensão Teoria do Estado de Tensão Índice Introdução Conceito de Meio Contínuo 3 Forças 3 4 Princípio da Objectividade 4 5 Princípio de Euler e Cauchy 4 6 Tensão devida

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Escola Superior de Tecnologia e Gestão

Escola Superior de Tecnologia e Gestão Escola Superior de Tecnologia e Gestão Curso de Engenharia Civil Duração: 60 min. Sem consulta e sem calculadora Nome: Nº Exercício 1 (50%) Responda classificando com V (verdadeiro) ou F (falso) as afirmações

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny 1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações

Leia mais

1. Considere a seguinte matriz dos vértices dum triângulo D = 0 2 3

1. Considere a seguinte matriz dos vértices dum triângulo D = 0 2 3 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA 7 a LISTA DE PROBLEMAS E EXERCÍCIOS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2006/07 - aulas práticas de 2006-12-04 e 2006-12-06

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação. Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II 2º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

ficha 6 espaços lineares com produto interno

ficha 6 espaços lineares com produto interno Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação

Leia mais

Forma Canônica de Matrizes 2 2

Forma Canônica de Matrizes 2 2 Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 2) lim. k f(x k) = f(a)

CDI-II. Resumo das Aulas Teóricas (Semana 2) lim. k f(x k) = f(a) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 2) 1 Funções Contínuas. Classificação de Conjuntos Seja f

Leia mais

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3 Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,

Leia mais

Capítulo 3 Comportamento mecânico dos materiais = = = =

Capítulo 3 Comportamento mecânico dos materiais = = = = apítlo omportamento mecânico dos materiais Problema Uma peça prismática de comprimento L e secção transversal rectanglar de altra 0cm e largra 0cm foi sjeita ao ensaio de tracção. variação de comprimento

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. 2º Teste de avaliação. Escola Secundária com º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector

Leia mais

Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc..

Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. Introdução a vetor Professor Fiore O que são grandezas? Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. O que são

Leia mais

6. Esforço normal, tensão normal e extensão

6. Esforço normal, tensão normal e extensão 6. Esforço normal, tensão normal e etensão 1. Mecânica dos materiais Restrição dos conceitos da Mecânica dos sólidos para peças lineares Peça linear (ou elemento unidimensional): elemento estrutural que

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G2 de Álgebra Linear I 2013.1 17 de Maio de 2013. Gabarito 1) Considere a transformação linear T : R 3 R 2 definida por: T (1, 1, 0) = (2, 2, 0), T (0, 1, 1) = (1, 0, 0) T (0, 1, 0) = (1, 1, 0). (a) Determine

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

ficha 5 transformações lineares

ficha 5 transformações lineares Exercícios de Álgebra Linear ficha 5 transformações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 5 Notação

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma

Leia mais

duas forças que actuam numa partícula, estas podem ser substituídas por uma única força que produz o mesmo efeito sobre a partícula.

duas forças que actuam numa partícula, estas podem ser substituídas por uma única força que produz o mesmo efeito sobre a partícula. Ao longo desta secção será abordada a análise do efeito de forças actuando em partículas. Substituição de duas ou mais forças que actuam na partícula por uma equivalente. A relação entre as várias forças

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3. Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/9 Resistência dos Materiais 003/004 Curso de Gestão e Engenharia Industrial 5ª Aula Duração - Horas Data - 6 de Outubro de 003 Sumário: Caso Particular do Estado Plano de Tensão. Circunferência de Mohr.

Leia mais

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018 GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente

Leia mais

No eixo das ordenadas o ponto B tem abcissa nula (x 1 = 0) pelo que a equação se reduz a 20x 2 = 300. Madeira. C(10,10) não é admissível.

No eixo das ordenadas o ponto B tem abcissa nula (x 1 = 0) pelo que a equação se reduz a 20x 2 = 300. Madeira. C(10,10) não é admissível. IV. MÉTODO GRÁFICO O método gráfico só permite resolver problemas de PL de pequena dimensão (duas ou três variáveis) não sendo pois de considerar para resolução de problemas da vida real. Porque a determinação

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

x 1 + b a 2 a 2 : declive da recta ;

x 1 + b a 2 a 2 : declive da recta ; - O que é a Álgebra Linear? 1 - É a Álgebra das Linhas (rectas). Equação geral das rectas no plano cartesiano R 2 : a 1 x 1 + a 2 = b Se a 2 0, = a 1 a 2 x 1 + b a 2 : m = a 1 : declive da recta ; a 2

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR

EXERCÍCIOS DE ÁLGEBRA LINEAR IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!

Leia mais

Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios

Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios Álgebra Linear e Geometria nalítica Valores Próprios e Vectores Próprios Será assim para todos os vectores? R α α, Será assim para todos os vectores? Definição: Seja um número real e uma matriz quadrada

Leia mais

Ficha de Exercícios nº 1

Ficha de Exercícios nº 1 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 1 Espaços Vectoriais 1 Qual das seguintes afirmações é verdadeira? a) Um espaço vectorial pode ter um número ímpar de elementos.

Leia mais

Marcelo M. Santos DM-IMECC-UNICAMP msantos/

Marcelo M. Santos DM-IMECC-UNICAMP  msantos/ Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 0 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Identificação de Cônicas

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

TESTE DE AVALIAÇÃO MATEMÁTICA A. Versão A

TESTE DE AVALIAÇÃO MATEMÁTICA A. Versão A E S C O L A S E C U N D Á R I A A F O N S O L O P E S V I E I R A Escola Secundária Afonso Lopes Vieira TESTE DE AVALIAÇÃO MATEMÁTICA A Nome:... Data: //9 Duração da prova 9 min Nº:... º Ano Turma A Versão

Leia mais

UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIÊNCIAS E TECNOLOGIA CURSO DE LICENCIATURA EM ENGENHARIA GEOLÓGICA

UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIÊNCIAS E TECNOLOGIA CURSO DE LICENCIATURA EM ENGENHARIA GEOLÓGICA UNIVERSIAE NOVA E LISBOA FACULAE E CIÊNCIAS E TECNOLOGIA CURSO E LICENCIATURA EM ENGENHARIA GEOLÓGICA Resistência de Materiais (LEG): Exame de época normal Semestre par 005/006, 6 de Julho 006, duração

Leia mais