Produto interno, externo e misto

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Produto interno, externo e misto"

Transcrição

1 Produto interno, externo e misto Definição: Chama-se norma (ou comprimento) do vector u ao comprimento do segmento de recta [OP ] e representa-se por u. Definição: Sejam a = OA e b = OB dois vectores não nulos. Dizemos que θ é o ângulo formado pelos vectores a e b, e denotamos θ = (a, b) se θ for o menor dos ângulos definido pela semi-recta com origem em O que passa pelo ponto A e pela semi-recta com origem em O que passa pelo ponto B. Convenção: Se algum dos vectores é o vector nulo convenciona-se que o ângulo é zero. Definição: Sejam u = OX e a = OA dois vectores com u 0.Seja U o ponto de intersecção da recta que passa por A e é perpendicular a u com a recta OX. A projecção ortogonal do vector a sobre o vector u é, por definição, o número real proj u a definido por: OU, se u pertence à semi-recta de origem no ponto O e que passa pelo ponto X. OU,caso contrário. 1

2 Propriedades: A projecção ortogonal de um vector a sobre um vector u não nulo não depende da norma de u, ou seja, para qualquer λ > 0 tem-se: proj u a = proj λu a Dados três vectores a, b, e u tais que u 0, proj u (a + b) = proj u a + proj u b PRODUTO INTERNO Definição: Sejam a e b dois quaisquer vectores de R 3 e seja θ o ângulo formado por a e b. Chamamos produto interno dos vectores a e b ao número real a b = a b cosθ 2

3 Observações: a = a a Em particular a a = 0 a = 0 e a a > 0, se a 0 Reparemos ainda que a b = a proj a b, se a 0 e a b = b proj b a, se b 0 proj a b = b cosθ, θ = (a, b) se a 0 Propriedades: 1. a b = b a 2.λ(a b) = (λa) b = a (λb), λ R 3. (a + b) c = a c + b c 4. a (b + c) = a b + a c Definição: Sejam v 1, v 2,..., v k vectores de R 3 Dizemos que (v 1, v 2,..., v k ) é uma sequência ortogonal de vectores se os vectores v 1, v 2,..., v k são ortogonais dois a dois, isto é, v i v j = 0 se i j Dizemos que uma base (e 1, e 2, e 3 )de R 3 é uma base ortogonal se é uma sequência ortogonal de vectores. Dizemos que é uma base ortonormada se é uma base ortogonal constituída por vectores de norma 1. Observações: 1. Se (v 1, v 2,..., v k ) é uma sequência ortogonal de vectores não nulos de R 3 então é uma sequência de vectores linearmente independentes e, portanto k Sejam (e 1, e 2, e 3 ) uma base ortonormada de R 3 e x um vector de R 3. Então existem x 1, x 2, x 3 R tais que x = x 1 e 1 + x 2 e 2 + x 3 e 3. Os co-senos directores do vector x relativamente a (e 1, e 2, e 3 ) são dados por Teorema: x 1 x 1, x 2 x 2, x 3 x 3 Sejam (e 1, e 2, e 3 ) uma base de R 3. Então, dados dois vectores u = u 1 e 1 + u 2 e 2 + u 3 e 3 e v = v 1 e 1 + v 2 e 2 + v 3 e 3, temos: u v = 3 (u i v j )(e i e j ) i,j=1 Além disso, se a base (e 1, e 2, e 3 ) é ortonormada, u v = u 1 v 1 + u 2 v 2 + u 3 v 3 3

4 Corolário: Seja (e 1, e 2, e 3 ) uma base ortonormada de R 3. Então para um vector u = u 1 e 1 + u 2 e 2 + u 3 e 3 de R 3, tem-se: u = u u2 2 + u2 3 O produto externo e o produto misto Definição: Seja (e 1, e 2, e 3 ) uma base de R 3 e P = M(id R 3; (e 1, e 2, e 3 ); ((1, 0, 0), (0, 1, 0), (0, 0, 1))). Dizemos que (e 1, e 2, e 3 ) é uma base directa de R 3 se P > 0. Se P < 0 dizemos que a base é inversa. Observação: A base canónica de R 3 é directa. Definição: Sejam u e v dois vectores de R 3. Chamamos produto externo ou produto vectorial do vector u pelo vector v, ao vector de R 3, que denotamos por u v ou por u v definido do seguinte modo: 1. Se ue v são linearmente dependentes então u v = Se u e v são linearmente independentes, u v é o vector perpendicular aos vectores u e v de norma igual a u v sen(θ) tal que(u, v, u v) é uma base directa de R 3, sendo θ o ângulo formado pelos vectores u e v. Observações: O produto externo não é comutativo. O produto externo não é associativo. Definição: Sejam u, v e w três vectores de R 3. Ao número real (u v) w chamamos produto misto dos vectores u, v e w (por esta ordem). Propriedades do produto misto: Sejam u, v e w três vectores de R 3. Então: 1. (u v) w = 0 se, e só se, os vectores u,v e w são linearmente dependentes; 2. (u v) w > 0 se, e só se, (u, v, w) é uma base directa de R 3 ; 3. (u v) w < 0 se, e só se, (u, v, w) é uma base inversa de R 3 4. (u v) w = (w u) v = (v w) u; 5. (u v) w = (v u) w = (w v) u = (u w) v; 6. (u v) w = u (v w). 4

5 Propriedades do produto externo: Sejam u, v e w três vectores de R 3 e λ um número real. Então: 1. u v = v u; 2. λ(u v) = (λu) v = u (λv); 3. (u + v) w = (u w) + (v w); 4. u (v + w) = (u v) + (u w). Teorema: Seja (e 1, e 2, e 3 ) uma base ortonormada directa de R 3. Então u v = (α 2 β 3 α 3 β 2 )e 1 + (α 3 β 1 α 1 β 3 )e 2 + (α 1 β 2 α 2 β 1 )e 3 para quaisquer vectores de R 3 u = α 1 e 1 + α 2 e 2 + α 3 e 3 e v = β 1 e 1 + β 2 e 2 + β 3 e 3. Observação: Nas condições do teorema anterior é usual escrevermos simbolicamente: u v = e 1 e 2 e 3 α 1 α 2 α 3 β 1 β 2 β 3 5

6 Teorema: Seja (e 1, e 2, e 3 ) uma base ortonormada directa de R 3. Então dados três vectores u = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 e 1 + v 2 e 2 + v 3 e 3, e w = w 1 e 1 + w 2 e 2 + w 3 e 3 temos: (u v) w = u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 Aplicações 1. Considere-se o seguinte paralelogramo A área do paralelogramo é dada por OC OA 6

7 2. Sejam u = OA, v = OB e w = OC três vectores não complanares de R 3. Então os vectores u, v, e w definem um paralelipípedo de volume não nulo : O volume deste paralelipípedo é dado por ( ) OA OB OC 7

8 RECTA E PLANO Representação cartesiana da recta Definição: Designa-se por representação cartesiana de uma recta a uma equação ou sistema de equações cujas soluções são as coordenadas dos seus pontos em relação a um certo referencial. Dado um ponto P = (a, b, c) duma recta e um vector u = (u 1, u 2, u 3 ) com a direcção dessa mesma recta, um ponto qualquer (x, y, z) da recta é dado por: (x, y, z) = (a, b, c) + λ(u 1, u 2, u 3 ), λ R EQUAÇÃO VECTORIAL DA RECTA x = a + λu 1 y = b + λu 2 z = c + λu 3, λ R EQUAÇÕES PARAMÉTRICAS DA RECTA Para u 1 0, u 2 0 e u 3 0, Estas equações vêm: x a = y b = z c u 3 u 1 u 2 EQUAÇÕES NORMAIS DA RECTA Para u 1 = 0, u 2 0 e u 3 0, x = a e y b u 2 = z c u 3 Para u 1 0, u 2 = 0 e u 3 0, y = b e Para u 1 0, u 2 0 e u 3 = 0, z = c e Se u 1 = 0, u 2 = 0 e u 3 0, x a u 1 x a u 1 = z c u 3 = y b u 2 X R x = a e y = b Se u 1 = 0, u 2 0 e u 3 = 0, X R x = a e z = c Se u 1 0, u 2 = 0 e u 3 = 0, X R y = b e z = c 8

9 Para u 3 0 temos ainda que se: m = u 1 u 3, n = u 2 u 3, p = a cu 1 u 3 e q = b cu 2 u 3, Então { x = mz + p y = nz + q EQUAÇÕES REDUZIDAS DA RECTA Representação cartesiana do plano Dado um ponto P = (p 1, p 2, p 3 ) dum plano e dois vectores u = ( u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) linearmente independentes, um ponto qualquer (x, y, z) do plano definido pelo ponto P e pelos vectores u e v é dado por: (x, y, z) = (p 1, p 2, p 3 ) + λ( u 1, u 2, u 3 ) + µ(v 1, v 2, v 3 ), λ, µ R EQUAÇÃO VECTORIAL DO PLANO x = a + λu 1 + µv 1 y = b + λu 2 + µv 2 z = c + λu 3 + µv 3, λ, µ R EQUAÇÕES PARAMÉTRICAS DO PLANO 9

10 Por outro lado sabemos que X P X P + u, v P X u, v P X (u v) = 0 x p 1 y p 2 z p 3 u 1 u 2 u 3 v 1 v 2 v 3 = 0 Assim os pontos do plano P são os pontos de R 3 que são solução da equação linear nas variaveis x, y e z: ax + by + cz + d = 0 EQUAÇÃO GERAL DO PLANO Sabemos que (a, b, c) são as coordenadas dum vector perpendicular ao plano P. INCIDÊNCIA E PARALELISMO Sejam P 1 e P 2 dois planos, P 1 e P 2 verificam uma e uma só das condições: a) P 1 = P 2 10

11 b) P 1 e P 2 são estritamente paralelos c) A intersecção de P 1 com P 2 é uma recta 11

12 Seja P 1 um plano e R 1 uma recta, P 1 e R 1 verificam uma e uma só das condições: a) R 1 P 1 b) R 1 é estritamente paralela a P 1 c) A intersecção de R 1 com P 1 é um ponto, ou seja, a recta R 1 e o plano P 1 são concorrentes. 12

13 Sejam R 1 e R 2 duas rectas, R 1 e R 2 verificam uma e uma só das seguintes condições: a) R 1 = R 2 b) R 1 e R 2 são estritamente paralelas c) R 1 e R 2 são concorrentes d) R 1 e R 2 são enviezadas. 13

14 DISTÂNCIAS Distância entre dois pontos Sejam P = (a, b, c) e Q = (x, y, z) dois pontos de R 3. Então: d(p, Q) = P Q = (x a) 2 + (y b) 2 + (z c) 2 Distância de um ponto a um plano P = (x 0, y 0, z 0 ) R 3 P um plano Seja R a recta perpendicular ao plano P que passa pelo ponto P. Se Q é o ponto de intersecção desta recta com o plano P. d(p, P) = d(p, Q) = P Q M P, w P d(p, P) = proj w MP = w MP w 14

15 Se o plano P está representado pela equação vectorial: X = M + λ u + µv, λ, µ R Dado que o vector u v é perpendicular ao plano P, da equação anterior vem: d(p, P) = proj u v MP = u v MP u v Se o plano P é representado pela equação geral ax + by + cz + d = 0 d(p, P) = ax 0 + by 0 + cz 0 + d a 2 + b 2 + c 2 15

16 Distância dum ponto a uma recta Sejam P um ponto de R 3 e R uma recta. Dado um ponto M da recta R sabemos que: d(p, R) = MP senθ Se u é um vector director da recta então: u MP d(p, R) = u Se S é a recta que passa pelo ponto P e é perpendicular e concorrente no ponto Q com a recta R, então : d(p, R) = d(p, Q) = P Q 16

17 Distância entre dois planos Sejam P e P dois planos 1. Se os planos são coincidentes d(p, P ) = 0 2. Se os planos P e P se intersectam segundo uma recta então: d(p, P ) = 0 3. Se os planos P e P são estritamente paralelos a distância entre P e P é igual à distância de um ponto qualquer de P ao plano P. d(p, P ) = d(p, P )com P P 17

18 Distância de uma recta a um plano 1. Se a recta e o plano são concorrentes: d(r, P) = 0 2. Se a recta R é paralela ao plano P d(p, R) = d(p, P), P R 18

19 Distância entre duas rectas 1. Se as rectas são concorrentes: d(r, R ) = 0 2. Se as rectas são paralelas: d(r, R ) = d(p, R ), P R 3. Se a recta R é paralela ao plano P que contêm a recta R, i. e., R e R são enviezadas, e u e v são os vectores directores de R e R respectivamente d(r, R ) = u v QP u v, P R, Q R 19

20 ÂNGULOS Ângulo de duas rectas Sejam R 1 e R 2 duas rectas cujos vectores directores são u e v respectivamente (R 1, R 2 ) = Arc cos u v u v 20

21 Ângulo de uma recta com um plano Seja P um plano, R uma recta e R uma recta perpendicular a P (R, P) = π 2 (R, R ) Se w é um vector director da recta e u e v são os vectores directores do plano então k = u v é um vector director de R e: w k (R, P) = Arc sen w k Se o plano P é representado pela equação geral ax + by + cz + d = 0 vem que k = (a, b, c) e sendo w = ( w 1, w 2, w 3 ) aw 1 + bw 2 + cw 3 (R, P) = Arc sen a 2 + b 2 + c 2 w1 2 + w2 2 + w2 3 21

22 Ângulo de dois planos Sejam P 1 e P 2 dois planos e k 1 e k 2 dois vectores perpendiculares a P 1 e P 2 respectivamente (P 1, P 2 ) = Arc cos k 1 k 2 k 1 k 2 Suponhamos que a 1 x + b 1 y + c 1 z + d 1 = 0 e a 2 x + b 2 y + c 2 z + d 2 = 0 são as equações gerais de P 1 e P 2 respectivamente, (P 1, P 2 ) = Arc cos a 1 a 2 + b 1 b 2 + c 1 c 2 a b c2 1 a b c2 2 22

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Vectores. Figura Vector PQ

Vectores. Figura Vector PQ Vectores 1 Introdução Neste tutorial vou falar sobre vectores. Os vectores são muito importantes em muitas ciências quer para a matemática, quer para alguns tipos de programação (especialmente programação

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 9 (entregar em 11-03-011)

Leia mais

Produto interno no espaço vectorial R n

Produto interno no espaço vectorial R n ALGA - 008/09 - Produto interno 8 Produto interno no espaço vectorial R n A noção de produto interno de vectores foi introduzida no ensino secundário, para vectores de R e R : Neste capítulo generaliza-se

Leia mais

Preparação para o Teste de Maio 2012 (GEOMETRIA)

Preparação para o Teste de Maio 2012 (GEOMETRIA) Nº8 Matemática: ºA Preparação para o Teste de Maio (GEOMETIA) Grupo I. Num referencial o.n. Oy, considera um ponto A pertencente ao semieio positivo O e um ponto B pertencente ao semieio positivo Oy. Quais

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3 VETORES E R3 Ultra-Fast Prof.: Fábio Rodrigues fabio.miranda@engenharia.ufjf.br Obs.: A maioria das figuras deste texto foram copiadas do livro virtual álgebra vetorial e geometria analítica, 9ª edição,

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2).

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2). Lista II: Retas, Planos e Distâncias Professora: Ivanete Zuchi Siple. Equação geral do plano que contém o ponto A = (,, ) e é paralelo aos vetores u = (,, ) e v = (,, ).. Achar a equação do plano que passa

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Pequena Introdução à Trigonometria Hiperbólica

Pequena Introdução à Trigonometria Hiperbólica Pequena Introdução à Trigonometria Hiperbólica (Filipe Oliveira, 9) 1 Motivação Consideremos o plano euclidiano munido de um referencial ortonormado (, e 1, e ). Quando θ percorre o intervalo [; π[, o

Leia mais

Curso de Geometria Analítica

Curso de Geometria Analítica Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 10 - Posições relativas entre Pontos Retas e Planos. I.

Leia mais

, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2.

, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2. Escola Secundária de lberto Sampaio Ficha Formativa de Matemática Geometria I Inclinação e declive de uma reta no plano; ângulo de duas retas; retas perpendiculares. º no Equação vetorial da reta: Dado

Leia mais

Programa. 3. Curvas no Plano: equação de lugar geométrico no plano; equações reduzidas da elipse,

Programa. 3. Curvas no Plano: equação de lugar geométrico no plano; equações reduzidas da elipse, Programa 1. Vetores no Plano e no Espaço: conceito; adição de vetores; multiplicação de vetor por n real; combinação linear de vetores; coordenadas; produto interno; produto vetorial; produto misto. 2.

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

2.1 Equações do Plano

2.1 Equações do Plano 2.1 Equações do Plano EXERCÍCIOS & COMPLEMENTOS 2.1 1. Classi que as a rmações em verdadeiras V) ou falsas F), justi cando cada resposta. a) ) Um ponto A x; y; z) pertence ao eixo z se, e somente se, x

Leia mais

MAP2110 Matemática e Modelagem

MAP2110 Matemática e Modelagem 1 Reta e Plano MAP2110 Matemática e Modelagem Folha de Estudos 4 1 o semestre de 2010 Prof. Claudio H. Asano 1.1 Encontre as equações paramétricas e simétricas da reta que passa pelos pontos A e B. Em

Leia mais

13 PARALELISMO SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

13 PARALELISMO SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS NOTA: Se bem que os dados métricos dos enunciados estejam em centímetros, as soluções apresentadas a partir da página seguinte não consideraram o centímetro como unidade.

Leia mais

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff 1 Coordenadas no plano 1 1.1 Introdução........................................ 2 1.2 Coordenada e distância na reta............................ 3 1.3 Coordenadas no plano.................................

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0 MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo

Leia mais

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

3. Representação diédrica de pontos, rectas e planos

3. Representação diédrica de pontos, rectas e planos 3. Representação diédrica de pontos, rectas e planos Geometria Descritiva 2006/2007 Geometria de Monge Utilizam-se simultaneamente dois sistemas de projecção paralela ortogonal. Os planos de projecção

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE

ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Electromagnetismo A 009/010 ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE 1. O campo magnético no interior dum solenóide

Leia mais

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici 2 V E TO R E S E M C O O R D E N A DA S No primeiro capítulo estudamos vetores de um ponto de vista totalmente geométrico.

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

Prova Vestibular ITA 1995

Prova Vestibular ITA 1995 Prova Vestibular ITA 1995 Versão 1.0 ITA - 1995 01) (ITA-95) Seja A = n ( 1) n!. π + sen ; n ℵ n! 6 a) (- 1) n n. b) n. c) (- 1) n n. d) (- 1) n+1 n. e) (- 1) n+1 n. Qual conjunto abaixo é tal que sua

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria III Equação do plano e equação da reta no espaço º Ano Plano definido por um ponto e um vetor normal : um Seja A x um ponto

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

Capítulo 6: Transformações Lineares e Matrizes

Capítulo 6: Transformações Lineares e Matrizes 6 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 6: Transformações Lineares e Matrizes Sumário 1 Matriz de uma Transformação Linear....... 151 2 Operações

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica

ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica ALGA - Eng. Civil e Eng. Topográ ca - ISE - 010/ - Geometria Analítica Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste capítulo

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Álgebra Linear. Sérgio L. Zani

Álgebra Linear. Sérgio L. Zani Álgebra Linear Sérgio L Zani Segundo Semestre de 2001 2 Sumário 1 Espaços Vetoriais 5 11 Introdução e Exemplos 5 12 Propriedades 8 2 Subespaços Vetoriais 9 21 Introdução e Exemplos 9 22 Propriedades 10

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

O PLANO...> Equação do Plano

O PLANO...> Equação do Plano Equação do Plano O PLANO...> Equação vetorial de um Plano Equações Paramétricas do Plano Equações Geral de um Plano Casos Particulares da Equações Geral de um Plano Vetor normal a um plano Feixe de Planos

Leia mais

Teorema da Divergência

Teorema da Divergência Instituto Superior Técnico epartamento de atemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema da ivergência Nestas notas apresentaremos o teorema da divergência em R 3 (Teorema de Gauss devido

Leia mais

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

f, da, onde R é uma das regiões mostradas na

f, da, onde R é uma das regiões mostradas na Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

MATEMÁTICA 10º A T 2

MATEMÁTICA 10º A T 2 Escola Secndária lfredo Reis Silveira no lectivo 008/009 MTEMÁTIC 0º T Ficha de Trabalho Eqação Vectorial e redzida de ma recta Eqação Vectorial da Recta Dado m ponto e m vector não nlo, podemos definir

Leia mais

3. Algumas classes especiais de superfícies

3. Algumas classes especiais de superfícies 3. ALGUMAS CLASSES ESPECIAIS DE SUPERFÍCIES 77 3. Algumas classes especiais de superfícies Nesta secção descrevemos algumas das classes de superfícies mais simples. Superfícies quádricas As superfícies

Leia mais

A lei dos cossenos da geometria plana estabelece que a 2 = b 2 +c 2 2bc cosâ. Podemos ver as possíveis situações na figura acima.

A lei dos cossenos da geometria plana estabelece que a 2 = b 2 +c 2 2bc cosâ. Podemos ver as possíveis situações na figura acima. Capítulo 4 Produtos e aplicações Palavras-chave: produto escalar, produto vetorial, produto misto, vetores ortogonais, base ortogonal, base ortonormal, ângulos, distâncias, projeção ortogonal, área de

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Dependência linear e bases

Dependência linear e bases Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência

Leia mais

Prof. José Carlos Morilla

Prof. José Carlos Morilla 1 Cálculo Vetorial e Geometria Analítica Santos 009 1 CÁLCULO VETORIAL... 4 1.1 Segmentos Orientados... 4 1. Vetores... 4 1..1 Soma de um ponto com um vetor... 5 1.. Adição de vetores... 5 1..3 Diferença

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Superfícies (2) 1 Cilindro. Sadao Massago. 3 de novembro de Paramétrica. P curva. reta.

Superfícies (2) 1 Cilindro. Sadao Massago. 3 de novembro de Paramétrica. P curva. reta. Superfícies (2) Sadao Massago 3 de novembro de 2009 http://www.dm.ufscar.br/~sadao DM-UFSCar 1 Cilindro Dado uma e uma reta, podemos obter família de retas passando no ponto da e sendo paralela a reta

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria)

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria) ESCOL SECUNDÁRI DE LBERTO SMPIO MTEMÁTIC º NO FICH DE TRBLHO Nº (Trigonometria) ESCOLH MÚLTIPL. De um ângulo α sabe-se que sen( α) é positivo e que cosα é negativo. Então α pertence a: º quadrante B º

Leia mais

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.

Leia mais

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação 3º Período 2º Período 1º Período AGRUPAMENTO DE ESCOLAS DE CASTRO DAIRE Escola Secundária de Castro Daire Grupo de Recrutamento 500 MATEMÁTICA Ano lectivo 2012/2013 Planificação Anual Disciplina: Matemática

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

TEORIA DOS SISTEMAS DE VECTORES

TEORIA DOS SISTEMAS DE VECTORES DECivil Secção de ecânica Estrutural e Estruturas TEOI DOS SISTES DE ECTOES I. Cabrita Neves bril de 00 TEOI DOS SISTES DE ECTOES 1. Classes de vectores e parâmetros necessários à sua definição 3. dição

Leia mais

(Todos os cursos da Alameda) Paulo Pinto

(Todos os cursos da Alameda) Paulo Pinto Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas

Leia mais

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 011 Assunto: Preparação para o Exame Nacional 1. Copia o triângulo [ ABC ] para o teu caderno. Desenha o triângulo [ A '

Leia mais

TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1

TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1 TESTE INTERMÉDIO DE MATEMÁTICA A RESOLUÇÃO - VERSÃO 1 rupo I 1. A superfície esférica de equação B C D œ % tem centro no ponto de coordenadas Ð!ß!ß Ñ e raio, pelo que é tangente ao plano BSC. Assim, a

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

7. Calcule o valore de x + y z sabendo que as

7. Calcule o valore de x + y z sabendo que as . Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual

Leia mais

MATEMÁTICA. A(6; 5) t IV) m t. c) Para 0 < θ <, resolva a equação: θ + cos θ + 1 =. sen 2 1

MATEMÁTICA. A(6; 5) t IV) m t. c) Para 0 < θ <, resolva a equação: θ + cos θ + 1 =. sen 2 1 MATEMÁTICA A diferença entre dois números inteiros positivos é. Ao multiplicar um pelo outro, um estudante cometeu um engano, tendo diminuído em 4 o algarismo das dezenas do produto. Para conferir seus

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II Universidade Fernando Pessoa Departamento de Ciência e Tecnologia Apontamentos de ANÁLISE MATEMÁTICA II Maria Alzira Pimenta Dinis 1999 Índice Índice Pág. Capítulo I Funções Vectoriais. 1 Curvas e Movimento

Leia mais

Álgebra Linear I - Aula 5. Roteiro

Álgebra Linear I - Aula 5. Roteiro 1. Produto vetorial. 2. Aplicações. 3. Produto misto. Álgebra Linear I - Aula 5 1 Produto vetorial Roteiro Definição: Dados vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3 definimos o produto

Leia mais

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

Proposta de Teste Intermédio Matemática A 11.º ano

Proposta de Teste Intermédio Matemática A 11.º ano Nome da Escola no letivo 20-20 Matemática 11.º ano Nome do luno Turma N.º Data Professor - - 20 GRUP I s cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções,

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Multimédia Informação Prova da Disciplina de Física - Módulo: 1 Forças e Movimentos; Estática Modalidade da Prova: Escrita Ano

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Complementos sobre Números Complexos

Complementos sobre Números Complexos Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número

Leia mais

ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO -

ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO - ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO - MATEMÁTICA 8º Ano Professora: Patrícia Isidoro Antes de Começar para recordar Posição relativa de duas retas no plano Retas Concorrentes Perpendiculares Oblíquas

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais

Álgebra Linear I - Aula 19

Álgebra Linear I - Aula 19 Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 2011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

Planificação Anual (por unidades)

Planificação Anual (por unidades) Planificação Anual (por unidades) Total de tempos letivos planificados: 10 Disciplina: MATEMÁTICA 5º ANO Ano letivo: 01/015 Período Unidade didática Nº DE TEMPOS PREVISTOS Total - Apresentação. - Atividades

Leia mais