Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Tamanho: px
Começar a partir da página:

Download "Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC"

Transcrição

1 Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante Maceió - Alagoas

2 Tensor: Uma Transformação Linear Vamos assumir que T transforma qualquer vetor em um outro vetor. Se e onde a e b são vetores arbitrários e a é um escalar arbitrário. T é uma transformação linear! Também conhecido como tensor de segunda ordem ou simplesmente tensor.

3 Tensor: Uma Transformação Linear Definição alternativa de uma transformação linear: onde a e b são vetores arbitrários e a e b são escalares arbitrários. Se para qualquer vetor a, então: No entanto, dois tensores diferentes podem transformar um vetor específico da mesma forma.

4 Tensor: Uma Transformação Linear Verifique se as seguintes transformações são lineares: T é uma transformação não nula que transforma um vetor arbitrário em um vetor não nulo fixo n. T transforma um vetor arbitrário em um vetor igual ao vetor original multiplicado por um escalar k. T transforma um vetor arbitrário em sua imagem espelhada em relação a um plano fixo. R transforma um vetor desenhado em um corpo rígido (submetido a uma rotação em torno de um eixo definido por n) em um outro vetor que apresenta uma direção geralmente diferente do vetor original depois da rotação (transformação).

5 Componentes de um Tensor As componentes de um vetor dependem da base adotada para definir o sistema de coordenadas. O mesmo acontece para os tensores. Para o sistema de coordenadas retangular Cartesiano definido pelos versores e 1, e 2 e e 3, tem-se: ou T ij são as componentes do tensor T. Matriz do tensor T na base {e i }:

6 Componentes de um Tensor Obtenha a matriz do tensor T que transforma os versores da base como segue: Obtenha a matriz do tensor R que corresponde a uma rotação de corpo rígido em torno do eixo-x 3 definida pelo ângulo q : Obtenha a matriz do tensor T que transforma os versores da base como segue:

7 Componentes de um Tensor Desde que: Pode ser facilmente verificado que: ou: Assim como os vetores, os tensores são independentes do sistema de coordenadas adotado. No entanto, as suas componentes dependem do sistema de coordenadas adotado: T ij são as componentes do tensor T na base {e i }.

8 Componentes de um Vetor Transformado Para: Determine: Assim: O que resulta em:

9 Componentes de um Vetor Transformado Em notação matricial, tem-se: ou Utilizando-se notação indicial, tem-se: Como: Logo: Assim:

10 Componentes de um Vetor Transformado Para: Se: Dado um tensor T que transforma os versores da base como segue: Como ele transformaria o vetor a?

11 Soma de Tensores Definição: para um vetor arbitrário a. T + S é também um tensor? Encontrar as componentes do tensor soma: Desta forma:

12 Produto de Dois Tensores Definição: e para um vetor arbitrário a. TS e ST são também tensores? Encontrando as componentes de TS e ST: Logo: Assim como: Desta forma: Em geral: e (não é comutativo)

13 Produto de Dois Tensores Por outro lado: Logo: e (associativo) Assim, pode-se definir da seguinte forma a potência de tensores:

14 Tensor Transposto Definição: para vetores arbitrários a e b. Logo: ou T T é também um tensor? Tem-se também que: Ainda pode ser provado que: De forma mais geral, tem-se:

15 Traço de um Tensor Definição: (soma dos elementos da diagonal principal) Logo: Mostrar que para tensores de segunda ordem arbitrários A e B, tem-se que:

16 Tensor Identidade Definição do Tensor Identidade (I): (transforma um vetor arbitrário nele mesmo) Logo: Componentes Cartesianas do tensor identidade: Assim: Se: (para um vetor arbitrário a) Então: Escreva o tensor T, definido por Ta = a a, onde a é uma constante e a é um vetor arbitrário, em termos do tensor identidade, e encontre as suas componentes.

17 Tensor Inverso Definição do Tensor Inverso (S): Representação: Do estudo de matrizes, sabe-se que a inversa existe se e somente se a matriz é não singular: Assim: Pode ser mostrado que: Se a inversa existe, tem-se que: e e

18 Definição do Tensor Ortogonal (Q): Tensores Ortogonais ou: para vetores arbitrários a e b. Como: Tem-se: Logo: Assim:

19 Tensores Ortogonais Para o tensor R que corresponde a uma rotação de corpo rígido em torno do eixo-x 3 definida pelo ângulo q : Verifique que: E encontre o seu determinante.

20 Tensores Ortogonais Determinante da matriz de um tensor ortogonal Q arbitrário: Tem-se que: Como: e Logo: Além disso: Desta forma:

21 Matriz de Transformação entre Dois Sistemas de Coordenadas Cartesianas Retangulares Para dois sistemas de coordenadas Cartesianas retangulares distintos, tem-se: Desta forma: No caso de sistemas destrógiros (que satisfazem a regra da mão direita), o tensor Q representa uma rotação de corpo rígido.

22 Matriz de Transformação entre Dois Sistemas de Coordenadas Cartesianas Retangulares Tem-se que: Resultando na seguinte Matriz de Transformação:

23 Matriz de Transformação entre Dois Sistemas de Coordenadas Cartesianas Retangulares Encontre a matriz de transformação para uma rotação de corpo rígido de 30º da base {e 1,e 2,e 3 } em torno do eixo-x 3.

24 Lei de Transformação das Componentes Cartesianas de um Vetor Componentes Cartesianas de um vetor arbitrário a utilizando a base original: Componentes Cartesianas do mesmo vetor a utilizando uma base transformada: Fazendo-se: Tem-se: Logo:

25 Lei de Transformação das Componentes Cartesianas de um Vetor Em notação matricial: O que implica em:

26 Lei de Transformação das Componentes Cartesianas de um Tensor Componentes Cartesianas de um tensor arbitrário T utilizando a base original: Componentes Cartesianas do mesmo tensor T utilizando uma base transformada: Fazendo-se: Tem-se: Logo:

27 Lei de Transformação das Componentes Cartesianas de um Tensor Em notação matricial: ou: O que implica em: Mostre que o traço de um tensor T é invariante com a mudança de base.

28 Definição de Tensor a partir das Leis de Transformação Para uma lei de transformação entre bases ortonormais: onde Tem-se: (tensor de ordem zero ou escalar) (tensor de primeira ordem ou vetor) (tensor de segunda ordem ou tensor) (tensor de terceira ordem) (tensor de quarta ordem)

29 Definição de Tensor a partir das Leis Regras baseadas nas leis de transformação: Regra da Soma: a soma das componentes de um tensor de determinada ordem resultam nas componentes de um tensor de mesma ordem. Provar para: de Transformação Regra da Multiplicação: a ordem de um tensor cujas componentes são obtidas da multiplicação entre componentes de tensores é igual ao número de índices livres. Provar para: e

30 Definição de Tensor a partir das Leis Regras baseadas nas leis de transformação: de Transformação Regra do Quociente: se a e T são um vetor e um tensor arbitrários, respectivamente, e a i = T ij b j para qualquer sistema de coordenadas, então b j são as componentes de um vetor. Outra aplicação da regra do quociente: Se T e E são tensores de segunda ordem arbitrários, e T ij = C ijkl E kl para qualquer sistema de coordenadas, então C ijkl são componentes de um tensor de quarta ordem.

31 Tensores Simétricos e Anti-simétricos Definição de Tensor Simétrico: Assim: Definição de Tensor Anti-simétrico: Assim: Todo tensor pode ser decomposto na soma de um tensor simétrico T S com um tensor anti-simétrico T A : onde: e

32 Autovalores e Autovetores de um Tensor Se a é um vetor transformado por T em um vetor paralelo a ele mesmo: Tem-se que a é um autovetor e l seu correspondente autovalor. Mostrar que qualquer vetor paralelo a a também será um autovetor com o mesmo autovalor l. Como os autovetores possuem tamanho arbitrário, serão de nosso interesse os autovetores com tamanho unitário: Fazendo-se: onde: Tem-se: onde:

33 Autovalores e Autovetores de um Tensor Expandindo-se (sistema de equações lineares homogêneo): Solução trivial: Solução não trivial: Resultando em uma equação polinomial cúbica em l (equação característica do tensor T ). Para autovetores unitários, tem-se:

34 Autovalores e Autovetores de um Tensor Encontrar os autovalores e autovetores para os seguintes tensores: a) b) c)

35 Autovalores e Autovetores de um Tensor Encontrar os autovalores e autovetores do tensor R que corresponde a uma rotação de 90º em torno de e 3 : Observação: Apenas os autovetores correspondentes aos autovalores reais são de nosso interesse.

36 Valores e Direções Principais de Tensores Reais Simétricos Os tensores de tensão e de deformação são tensores reais simétricos. Teorema da Álgebra Linear: Um tensor real simétrico possui todos os autovalores reais (valores principais) e autovetores ortogonais entre si (direções principais). Mostrar que para um tensor real simétrico existe pelo menos um conjunto de três autovetores mutuamente ortogonais. a) Supondo três autovalores reais distintos (l 1 l 2 l 3 ). b) Supondo apenas dois autovalores reais distintos (l 1 = l 2 l 3 ). c) Supondo a existência de um único autovalor real (l 1 = l 2 = l 3 ).

37 Matriz de um Tensor Real Simétrico com relação às Direções Principais Para um tensor real simétrico, cujos os autovetores são ortogonais entre si, tem-se: Assim:

38 Matriz de um Tensor Real Simétrico com relação às Direções Principais Os valores principais de um tensor T incluem os máximo e mínimos valores que os elementos da diagonal principal de qualquer matriz que represente o tensor T podem assumir. Dado um vetor unitário arbitrário: Tem-se: Logo: Assumindo-se: Tem-se: Como: (valor máximo)

39 Matriz de um Tensor Real Simétrico com relação às Direções Principais Também tem-se: Como: (valor mínimo)

40 Principais Invariantes Escalares Da equação característica de um tensor T: de um Tensor onde:

41 Principais Invariantes Escalares Como os autovalores não dependem da base adotada, os coeficientes da equação característica também não dependerão (principais invariantes escalares do tensor). Em termos dos autovalores do tensor, tem-se: de um Tensor

42 Obrigado pela atenção!

CAPíTULO 1. Vetores e tensores Notação indicial

CAPíTULO 1. Vetores e tensores Notação indicial CAPíTULO 1 Vetores e tensores 1.1. Notação indicial A notação indicial é uma simplificação da notação de uma somatória. Por exemplo, seja a somatória de 3 monômios a i b i (a i multiplicado por b i ) com

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Tensores (Parte 1) 15 de abril de Primeira aula sobre tensores para a disciplina de CVT 2019Q1

Tensores (Parte 1) 15 de abril de Primeira aula sobre tensores para a disciplina de CVT 2019Q1 Tensores (Parte 1) 15 de abril de 2019 Primeira aula sobre tensores para a disciplina de CVT 2019Q1 Introdução Procuramos generalizar a ideia de escalares e vetores introduzindo esse novo conceito que

Leia mais

Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia.

Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. 1 2. Vetores Força 2.1- Escalares e Vetores Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. Vetor: Grandeza a qual se associa um

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

31/05/2017. Corpo rígido. 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA. Coordenadas do corpo rígido. Coordenadas do corpo rígido

31/05/2017. Corpo rígido. 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA. Coordenadas do corpo rígido. Coordenadas do corpo rígido Corpo rígido Sistema de partículas sujeitas aos vínculos holonômicos 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA Embora um corpo com Npartículas possa ter 3Ngraus de liberdade, os vínculos

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

P4 de Álgebra Linear I de junho de 2005 Gabarito

P4 de Álgebra Linear I de junho de 2005 Gabarito P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Lista de Exercícios 05 Álgebra Matricial

Lista de Exercícios 05 Álgebra Matricial Lista de Exercícios 05 Álgebra Matricial - 016.1 1. Determine a quantidade desconhecida em cada uma das expressões: ( ) ( ) ( ) T 0 3 x + y + 3 3 w (a) 3.X = (b) = 6 9 4 0 6 z. Uma rede de postos de combustíveis

Leia mais

Tensores Cartesianos

Tensores Cartesianos Tensores Cartesianos Mecânica II Notas de apoio à disciplina de Mecânica II Vitor Leitão Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Lisboa, 2011 vitor@civil.ist.utl.pt -

Leia mais

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo ensores cartesianos Quantidades (grandeas) físicas: Classificação: Escalares Vectores ensores de segunda ordem... ensores de ordem ero ensores de primeira ordem ensores de segunda ordem... Relacionadas

Leia mais

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Lista de Álgebra Linear Aplicada

Lista de Álgebra Linear Aplicada Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Marcelo M. Santos DM-IMECC-UNICAMP msantos/

Marcelo M. Santos DM-IMECC-UNICAMP  msantos/ Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 0 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Identificação de Cônicas

Leia mais

Visualização por Computador: Teoria, Prática e Aplicações

Visualização por Computador: Teoria, Prática e Aplicações Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,

Leia mais

Revisão de Álgebra Linear

Revisão de Álgebra Linear Introdução: Revisão de Álgebra Linear Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2121 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP) Revisão de

Leia mais

Métodos Matemáticos II

Métodos Matemáticos II Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 nbastos@mat.estv.ipv.pt http://www.estv.ipv.pt/paginaspessoais/nbastos.

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U).

linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U). 11 linearmente independentes se e somente se: 1.4. Exercícios 1. Determine o vetor X, tal que X-2V = 15(X - U). Figura 21 14. Determine os vetores X e Y tais que: 1.4.2 Multiplicação por um escalar. Se

Leia mais

REVISÃO DE ANÁLISE TENSORIAL

REVISÃO DE ANÁLISE TENSORIAL REVISÃO DE ANÁLISE TENSORIAL 1.1- Vetores Espaciais Def.: Para cada par de pontos (a,b) do espaço E, existe um segmento de linha ab, caracterizado por um comprimento e uma direção. -Conjunto de vetores

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

aula6 Curvas de Hermite 2016/2 IC / UFF Criadas por Charles Hermite ( ) https://pt.wikipedia.org/wiki/charles_hermite

aula6 Curvas de Hermite 2016/2 IC / UFF Criadas por Charles Hermite ( ) https://pt.wikipedia.org/wiki/charles_hermite Criadas por Charles Hermite (1822-1901) https://pt.wikipedia.org/wiki/charles_hermite aula6 Vetor é : Na matemática - um elemento com de um espaço vetorial Em Física em oposição as grandezas escalares,

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Conceitos de vetores. Decomposição de vetores

Conceitos de vetores. Decomposição de vetores Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas

Leia mais

Dinâmica Estrutural. Múltiplos Graus de Liberdade Equações de Movimento e Soluções. Ramiro Brito Willmersdorf

Dinâmica Estrutural. Múltiplos Graus de Liberdade Equações de Movimento e Soluções. Ramiro Brito Willmersdorf Dinâmica Estrutural Múltiplos Graus de Liberdade Equações de Movimento e Soluções Ramiro Brito Willmersdorf ramiro@willmersdorf.net DEMEC/UFPE 2014.1 Equações de Movimento Para sistemas não amortecidos

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Matrizes. Exemplos. Ordem de Uma Matriz. Exemplos. Representação 7. Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz Coluna. Exemplos. Diagonal

Leia mais

0.1 Matrizes, determinantes e sistemas lineares

0.1 Matrizes, determinantes e sistemas lineares SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente

Leia mais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro

Leia mais

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B = 3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao

Leia mais

MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga MATRIZES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Definição: chama-se matriz de ordem m por n a um quadro de m xn elementos dispostos em m linhas e n colunas. a a a a a a a a

Leia mais

23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário

23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário 23 e 24 Forma Quadrática e Equação do Segundo Grau em R 3 Sumário 23.1 Introdução....................... 2 23.2 Autovalores e Autovetores de uma matriz 3 3.. 2 23.3 Mudança de Coordenadas no Espaço........

Leia mais

1 Auto vetores e autovalores

1 Auto vetores e autovalores Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo

Leia mais

. Repare que ao multiplicar os vetores (-1,1) e

. Repare que ao multiplicar os vetores (-1,1) e Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Econometria. Operações básicas de vetores. Operações básicas de vetores. Operações básicas de vetores. Independência de vetores

Econometria. Operações básicas de vetores. Operações básicas de vetores. Operações básicas de vetores. Independência de vetores Operações básicas de vetores Econometria Adição Suponha dois vetores x e y com n componentes cada: 1. Alguns tópicos importantes de Álgebra Linear Operações básicas de vetores Multiplicação escalar x é

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006 Sumário e Objectivos Sumário: Deformações. Sólido Uniaxial. Descrição Lagrangeana e Euleriana. Gradiente de Deformação. Decomposição Polar. Tensores das Deformações de Green e Lagrange. Deformação de Corte.

Leia mais

Universidade Federal da Paraíba Departamento de Matemática. Álgebra Linear e Geometria Analítica

Universidade Federal da Paraíba Departamento de Matemática. Álgebra Linear e Geometria Analítica Departamento de Matemática Álgebra Linear e Geometria Analítica João Pessoa, 16 de março de 2013 AGENDA Primeira prova: 31 de janeiro de 2013 - Sistemas de Equações Lineares e Espaços Vetoriais Segunda

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de

Leia mais

Capítulo II Relatividade Newtoniana

Capítulo II Relatividade Newtoniana Capítulo II Relatividade Newtoniana A mecânica newtoniana é baseada nas três leis de Newton, (1) a lei da inércia, (2) a lei da força e (3) a lei da ação e reação, válidas nos referenciais inerciais. Esses

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519

PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Medianeira PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 FUNDAMENTAÇÃO LEGAL Resolução 075/09 COEPP, de 21 de agosto de

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS

UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA DIAGONALIZAÇÃO DE MATRIZES SIMETRICAS DE 2º ORDEM. BELO HORIZONTE 2012 ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

Baseado no Capítulo 2 do livro: Material preparado pelo

Baseado no Capítulo 2 do livro: Material preparado pelo Baseado no Capítulo 2 do livro:.. h,.. h 2. (28) h &,. Material preparado pelo.. é ç : @. Departamento de Ciências Exatas / ESALQ USP Fevereiro de 22 Í N D I C E 2.. Matrizes e vetores... 2 2... Matrizes,

Leia mais

INTRODUÇÃO À ÁLGEBRA LINEAR. Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática

INTRODUÇÃO À ÁLGEBRA LINEAR. Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática INTRODUÇÃO À ÁLGEBRA LINEAR Prof.ª Chiara Maria S. L. Dias 3ª fase Licenciatura em Matemática PLANO DE ENSINO: 1. EMENTA: Matrizes. Sistemas de Equações Lineares. Espaços Vetoriais 2. CARGA HORÁRIA: 60

Leia mais

Análise Dinâmica de Sistemas Mecânicos e Controle

Análise Dinâmica de Sistemas Mecânicos e Controle Análise Dinâmica de Sistemas Mecânicos e Controle Unidade 3 Espaço de Estados: álgebra e resolução das equações dinâmicas Prof. Thiago da Silva Castro thiago.castro@ifsudestemg.edu.br Para trabalhar no

Leia mais

tenha tamanho igual a 5. Determinar o valor de k, se existir, para que os vetores u k,2,k

tenha tamanho igual a 5. Determinar o valor de k, se existir, para que os vetores u k,2,k Vetores Questão 1 Determine o valor de k para que o vetor v (2k,k, 3k) tenha tamanho igual a 5. Questão 2 Ache w tal que w i k 2 i k 2 i j k e w 6. Questão 3 Determinar o valor de k, se existir, para que

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia Cap. 1. ensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores.

Leia mais

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO Engenharia Elétrica MATRIZ 548 FUNDAMENTAÇÃO LEGAL Processo N 00/11, aprovado pela Resolução n.

Leia mais

Setor de Tecnologia - TC Engenharia Ambiental 2/2011. Prova 1. Matemática Aplicada I

Setor de Tecnologia - TC Engenharia Ambiental 2/2011. Prova 1. Matemática Aplicada I Universidade Federal do Paraná Matemática Aplicada I Setor de Tecnologia - TC Engenharia Ambiental /11 Curitiba,.1.11 Prova 1 Matemática Aplicada I Tobias Bleninger Departamento de Engenharia Ambiental

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado

Leia mais

Dou Mó Valor aos Autovalores

Dou Mó Valor aos Autovalores 1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,

Leia mais

Elementos de Matemática Avançada

Elementos de Matemática Avançada Elementos de Matemática Avançada Prof. Dr. Arturo R. Samana Semestre: 2012.2 Conteúdo - Objetivos da Disciplina - Ementa curricular - Critérios de avaliação - Conteúdo programático - Programação Objetivos

Leia mais

MAE125 Álgebra Linear /1 Turmas EQN/QIN

MAE125 Álgebra Linear /1 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/ Turmas EQN/QIN Planejamento (última revisão: 0 de junho de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na semana seguinte à aula e valem nota Todas

Leia mais

MAE125 Álgebra Linear /2 Turmas EQN/QIN

MAE125 Álgebra Linear /2 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/2 Turmas EQN/QIN Planejamento (última revisão: 26 de outubro de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES DURANTE AS AULAS DE VETORES VOCÊ APRENDERÁ: Diferença entre grandezas escalares e vetoriais

Leia mais

Cinemática da partícula fluida

Cinemática da partícula fluida Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática

Leia mais

Aula 07 mtm B MATRIZES

Aula 07 mtm B MATRIZES Aula 07 mtm B MATRIZES Definição Tabela de números dispostos em linhas e colunas. Representação ou ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

Cap. 0. Cálculo tensorial

Cap. 0. Cálculo tensorial Cap. 0. Cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos em D simétricos

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Matrizes. Lino Marcos da Silva

Matrizes. Lino Marcos da Silva Matrizes Lino Marcos da Silva lino.silva@univasf.edu.br Introdução Chamamos de matriz a uma tabela de elementos dispostos em linhas e colunas. Por exemplo, ao recolhermos os dados população, área e distância

Leia mais

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,

Leia mais