LOM Teoria da Elasticidade Aplicada

Tamanho: px
Começar a partir da página:

Download "LOM Teoria da Elasticidade Aplicada"

Transcrição

1 Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações (MEF Carga Axial) Prof. Dr. João Paulo Pascon orena - 8

2 4.4. Elementos Finitos de Barra sob Carga Axial Em problemas estruturais mais gerais como, por exemplo, aqueles com descontinuidade de carregamento, torna-se necessária a divisão do domínio do problema em subdomínios (ou sub-regiões). Em tais casos, a resolução manual pelo PTV considerando campos de deslocamentos descritos por polinômios genéricos fica muito trabalhosa. No MEF, a escolha da aproximação para o campo de deslocamento é feita de modo que a relação entre os diferentes subdomínios (ou elementos) seja automaticamente definida, o que possibilita fácil implementação computacional. O princípio de equilíbrio utilizado no MEF também se baseia no PTV. Neste item, veremos dois elementos finitos de barra sob carga axial: D e treliça plana Elemento D No caso de barras unidimensionais submetidas a cargas axiais, podemos definir um elemento finito de dois nós com aproximação linear para o campo de deslocamento axial: u x u x u x, x (4.7) onde u e u são os deslocamentos axiais dos nós (ou das extremidades); as funções ϕ e ϕ são chamadas de funções de forma; e é o comprimento inicial do elemento. Os parâmetros u e u também são chamados de deslocamentos nodais ou graus de liberdade. Todas as demais variáveis mecânicas podem ser obtidas a partir de tais parâmetros. A partir da expressão (4.7) e das condições u u e u u, as funções de forma resultam nas seguintes expressões (válidas apenas para os elementos uniaxiais de aproximação linear):

3 x x (4.8.) x x (4.8.) Conforme o item 4.3, a aplicação do PTV consiste no cálculo da energia de deformação interna e do trabalho externo. Considerando a aproximação linear (4.7), a lei de Hooke uniaxial e a compatibilidade entre deformação e deslocamento, calculamos a energia interna de cada elemento finito: Ue dv dx da dx u u E EA du EA dx A (4.9) Pode-se notar que os campos de deformação e de tensão são constantes ao longo desse elemento. Quando temos mais de um elemento finito, a energia de deformação interna total da estrutura é obtida pela simples adição da energia interna (4.9) de cada elemento. O trabalho das forças externas considerando uma malha com vários elementos finitos é dado pelo produto entre as forças axiais aplicadas e seus respectivos deslocamentos nodais: T Pu P u P u... P u (4.) ext 3 3 N N onde N é o número total de nós da estrutura. De acordo com o PTV, a estrutura está em equilíbrio se, e somente se, a variação da energia potencial total ( Ue Text ) for nula para qualquer deslocamento virtual compatível e admissível aplicado à estrutura, ou seja:. Considerando que a energia total depende dos deslocamentos nodais (ou graus de liberdade): u u u... un u u u u 3 3 N (4.) Para garantir a igualdade acima considerando quaisquer variações virtuais dos deslocamentos nodais, devemos impor que a derivada da energia total em relação a qualquer deslocamento

4 nodal seja nula. Assim, ficamos com um sistema linear de equações N x N (N incógnitas nodais para N equações de equilíbrio) Exemplo ilustrativo Vamos aplicar o MEF para a barra da Figura 4.. O primeiro passo consiste em definir geometricamente a malha de elementos (ou a discretização). Como temos dois segmentos de barra sob esforço normal (axial) e já sabemos da teoria elementar que o deslocamento axial das seções A, B e C define a geometria final da barra, iremos utilizar a malha mais simples possível para este caso: dois elementos finitos (segmentos AB e BC) e três nós (A, B e C). Ao invés de letras, vamos utilizar números para os nós (, e 3), conforme o desenho à direita. Figura 4.. Exemplo de barra D sob carga axial. Outra informação necessária para a definição geométrica da malha é a relação entre as numerações local e global de cada nó. A Tabela 4. mostra a relação adotada para o problema da Figura 4.. Essa tabela deve especificar quais são os nós ( e ) de cada elemento 3

5 de acordo com a numeração global. Conforme a aproximação (4.7), o deslocamento axial varia linearmente de u a u no domínio do elemento (trecho BC), e de u a u 3 no domínio do elemento (trecho AB). Tabela 4.. Numerações local e global de cada nó para a barra da Figura 4.. Elemento Nó (Global) Nó (Global) 3 Considerando o mesmo módulo de Young para os dois elementos, calculamos a energia de deformação interna total a partir de (4.9): U U U E A u u A u u Elem Elem e e e 3 (4.) Para o cálculo do trabalho das forças externas, devemos lembrar que temos apenas uma carga axial aplicada ao nó 3 (ponto A): Text P u (4.3) 3 3 O produto acima só é positivo se tanto a força P 3 = 8 quanto o deslocamento nodal u 3 tiverem o mesmo sentido. Dessa forma, estamos considerando que o eixo vertical correspondente ao deslocamento axial aponta para baixo. Caso tivéssemos adotado a convenção para cima, deveríamos colocar o sinal negativo em (4.3). Outro detalhe é que, embora haja uma força ou reação de apoio no nó (ponto C), esse nó está restrito e, assim, u =, o que resulta na anulação do produto Pu. A análise pelo MEF consiste em encontrar os deslocamentos nodais. Para isso, no contexto do PTV, devemos anular as derivadas que aparecem em (4.): u EA u u (4.4.) 4

6 EA EA u u u u u 3 u EA u 3 u P 3 3 (4.4.) (4.4.3) O sistema linear de equações acima pode ser reescrito na forma matricial: EA u EA EA EA EA u u 3 P 3 8 EA EA EA (4.5) A matriz que aparece em (4.5) é chamada de matriz de rigidez, já que representa a rigidez da estrutura aos deslocamentos nodais. Por exemplo, desconsiderando a força externa de 8 kips e o apoio em C, para provocar um deslocamento unitário no ponto (u = ), são necessárias duas forças: uma igual a EA / aplicada no nó ao longo do mesmo sentido de u e outra de mesmo módulo, mas aplicada no nó com sentido contrário. O primeiro vetor que aparece em (4.5) é chamado de vetor de parâmetros nodais ou vetor de graus de liberdade. Ele contém os deslocamentos nodais de todos os nós da estrutura. Já o segundo vetor é o vetor de forças externas, que contém todas as cargas externas aplicadas à estrutura. O sistema (4.5) pode ser reescrito numa forma mais compacta: ext K u f ou fint f ext (4.6) onde f int é o vetor de forças internas, que também é o produto entre a matriz de rigidez (K) e o vetor de graus de liberdade (u). O sistema de equações (4.5) não possui solução única, pois o determinante da matriz de rigidez é zero. Para encontrarmos uma solução única, devemos impor as condições de contorno que, neste caso, são representadas por u =. Um artifício numérico bastante comum para obtermos a solução única de um problema pelo MEF é executar o seguinte 5

7 procedimento: se o grau de liberdade de número J é restrito, então zeramos a linha J e a coluna J, e inserimos o número na diagonal. Aplicando tal procedimento ao problema da Figura 4.: u EA EA EA u u 3 8 EA EA (4.7) Isso é feito para que o programa obtenha, juntamente com u e u 3, a solução nula para o grau de liberdade u : u u K f (4.8) P3 u ext EA u 3 P3 P3 EA EA A solução numérica obtida acima é idêntica à solução analítica do problema. Utilizando o módulo de Young do aço (E= 9 kips/in²), obtemos u =,437 in. e u 3 =,93 in. (ambos para baixo). Resolvido o problema, ao multiplicarmos a matriz de rigidez inicial (que aparece em 4.5) pelo vetor solução (que contém os parâmetros nodais obtidos), obtemos o seguinte vetor: EA EA 8 EA EA EA EA, 437, 93 8 EA EA (4.9) 6

8 O primeiro valor do vetor à direita (-8) corresponde à reação de apoio no nó (que é de 8 kips para cima). Podemos generalizar o cálculo das reações de apoio da seguinte forma: se o grau de liberdade de número J está restrito, ao multiplicarmos a matriz de rigidez inicial (antes da modificação de acordo com as condições de contorno) pelo vetor solução, a componente J do vetor resultante corresponde à reação de apoio referente ao grau de liberdade J Montagem da matriz de rigidez global Já que o sistema de equações a ser resolvido é linear, podemos obter as componentes da matriz de rigidez com a seguinte expressão genérica: K ij (4.9) u u i j onde os índices i e j variam de até o número de graus de liberdade. Com a equação acima, pode-se notar que tanto a matriz de rigidez local quanto à global são matrizes simétricas. Para obtenção do sistema de equações de uma forma generalizada (isto é, válida para qualquer malha de elementos), o método usual consiste na determinação prévia das matrizes de rigidez locais (K ), seguida da montagem da matriz global (K). No contexto de cada elemento finito, temos o seguinte sistema local: EA EA u f EA EA u f (4.3) onde u e u se referem à numeração local dos nós (e não à global). Para somarmos a contribuição de cada elemento à matriz de rigidez global, devemos obter a matriz de rigidez local (de cada elemento) em termos globais. A partir da relação entre 7

9 as numerações local e global da Tabela 4., poderíamos dizer que a matriz de rigidez do primeiro elemento em termos globais (ou seja, em relação aos deslocamentos u, u e u 3 ) é a seguinte: EA EA EA EA (4.3) Já a matriz do segundo elemento em termos globais é: EA EA EA EA (4.3) No caso da Figura 4., os graus de liberdade locais u e u do elemento correspondem aos graus de liberdade globais u e u. Já os graus de liberdade locais do elemento correspondem aos graus de liberdade globais u e u 3. Assim sendo, após determinar as matrizes de rigidez para todos os elementos finitos, as mesmas devem ser espalhadas em termos globais e somadas para se obter a matriz de rigidez global da estrutura. Pode-se notar que a soma das matrizes presentes em (4.3) e (4.3) correspondem à matriz global em (4.5). Portanto, a metodologia geral do MEF para solução de um problema estrutural consiste nas seguintes etapas:. eitura da geometria da malha (coordenadas dos nós, numerações local e global). eitura das propriedades do material (módulo de Young, coeficiente de Poisson etc.) 3. eitura das cargas nodais aplicadas 8

10 4. Cálculo das matrizes de rigidez local (de cada elemento) 5. Espalhamento das matrizes locais em relação ao sistema global 6. Montagem do sistema global 7. Modificação do sistema (imposição das condições de contorno) 8. Solução do sistema 9. Cálculo das reações de apoio Cargas distribuídas No caso de cargas axiais distribuídas ao longo do comprimento do elemento finito, devemos obter as chamadas cargas nodais equivalentes. Para isso, devemos determinar a parcela de trabalho referente ao carregamento distribuído p(x). Aplicando o PTV, derivamos essa parcela em relação aos parâmetros nodais: T ext Text p x x dx T u ext p xu xdx u T ext u p x x dx (4.33) No caso de carga uniforme, notamos que as duas componentes do vetor acima são iguais a p/. Assim sendo, no caso de carga uniformemente distribuída, basta substituirmos o carregamento distribuído por duas cargas equivalentes idênticas aplicadas nas extremidades (com o mesmo sentido) Treliça plana 9

11 Ainda no contexto de carga axial, temos o elemento finito de treliça plana, mostrado na Figura 4.. Nesse caso, cada elemento finito possui quatro graus de liberdade: os dois deslocamentos planos do nó (u e u ) e os dois deslocamentos planos do nó (u e u ). Figura 4.. Elemento Finito de Treliça Plana. Assim como no caso D, a aproximação adotada para o campo de deslocamentos planos também é linear: x* u x* u x* u (4.34.) x* u x* u x* u (4.34.) onde x* é o eixo longitudinal local do elemento. As funções de forma acima são as mesmas definidas em (4.8). O cálculo da deformação normal longitudinal do elemento é feito considerando a compatibilidade aproximada entre os deslocamentos dos nós e a variação de comprimento (conforme a teoria elementar de carga axial da mecânica dos sólidos): u u cos u u sen (4.35)

12 onde o ângulo α, mostrado na Figura 4., deve ser positivo quando tem o sentido anti-horário. Podemos notar que a deformação normal na barra de treliça também é uniforme ao longo de seu comprimento. Utilizando a lei de Hooke uniaxial e a expressão (4.35), a energia de deformação interna em função dos parâmetros nodais resulta em: u u cos u u sen EA U e (4.36) O trabalho das forças externas para uma treliça plana é dado pela soma dos produtos entre as forças nodais aplicadas e seus respectivos deslocamentos: N N N N Text P u P u P u P u... P u P u (4.37) onde N é o número total de nós da estrutura treliçada. A partir de (4.36), é possível mostrar que a matriz de rigidez local do elemento de treliça da Figura 4. é: cos sencos cos sencos EA sencos sen sen cos sen K (4.38) cos sencos cos sencos sencos sen sencos sen Com as expressões acima, as etapas da metodologia do MEF descritas no final do item podem ser aplicadas para o elemento finito de treliça plana.

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenaria de Materiais (DEMAR) Escola de Engenaria de Lorena (EEL) Universidade de São Paulo (USP) LOM310 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

Análise Matricial de Estruturas com orientação a objetos

Análise Matricial de Estruturas com orientação a objetos Análise Matricial de Estruturas com orientação a objetos Prefácio... IX Notação... XIII Capítulo 1 Introdução... 1 1.1. Processo de análise... 2 1.1.1. Modelo estrutural... 2 1.1.2. Modelo discreto...

Leia mais

Engenharia Biomédica EN2310 MODELAGEM, SIMULAÇÃO E CONTROLE APLICADOS A SISTEMAS BIOLÓGICOS. Professores: Ronny Calixto Carbonari

Engenharia Biomédica EN2310 MODELAGEM, SIMULAÇÃO E CONTROLE APLICADOS A SISTEMAS BIOLÓGICOS. Professores: Ronny Calixto Carbonari Engenharia Biomédica EN310 MODEAGEM, SIMUAÇÃO E CONTROE APICADOS A SISTEMAS BIOÓGICOS Professores: Ronny Calixto Carbonari Janeiro de 013 Método de Elementos Finitos (MEF): Elementos de Treliça Objetivo

Leia mais

Capítulo 5 Carga Axial

Capítulo 5 Carga Axial Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Determinar a tensão normal e as deformações em elementos

Leia mais

6 MÉTODO DE ELEMENTOS FINITOS - MEF

6 MÉTODO DE ELEMENTOS FINITOS - MEF 6 MÉTODO DE ELEMENTOS FINITOS - MEF O Método de Elementos Finitos é uma técnica de discretização de um problema descrito na Formulação Fraca, na qual o domínio é aproximado por um conjunto de subdomínios

Leia mais

Prefácio... Notação... XIII

Prefácio... Notação... XIII Sumário Prefácio... IX Notação... XIII Capítulo 1 Introdução... 1 1.1. Processo de análise... 2 1.1.1. Modelo estrutural... 2 1.1.2. Modelo discreto... 3 1.1.3. Modelo computacional... 1.2. Organização

Leia mais

Aula 04 MÉTODO DAS FORÇAS. Classi cação das estruturas quanto ao seu equilíbrio estático. ² Isostática:

Aula 04 MÉTODO DAS FORÇAS. Classi cação das estruturas quanto ao seu equilíbrio estático. ² Isostática: Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Disciplina: Análise Matricial de Estruturas Professor: Antônio Macário Cartaxo de Melo Aula 04

Leia mais

Prof. Dr. Eduardo Lenz Cardoso

Prof. Dr. Eduardo Lenz Cardoso Introdução ao Método dos Elementos Finitos Prof. Dr. Eduardo Lenz Cardoso lenz@joinville.udesc.br Breve Curriculo Dr. Eng Mecânica UFRGS/DTU Prof. Subst. UFRGS (Mecânica dos Sólidos I/ MEF/ Mecânica dos

Leia mais

PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta

PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta Questão 1 (5,0) A Figura abaixo ilustra um sólido com comportamento elástico linear, solicitado por ações externas. Este sólido possui espessura t sendo t c, t L e está sem qualquer impedimento a deslocamentos

Leia mais

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 6 MÉTODO DOS ELEMENTOS FINITOS

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO   6 MÉTODO DOS ELEMENTOS FINITOS LINHAS DE 6 MÉTODO DOS ELEMENTOS FINITOS Método de Rayleigh - Ritz É um método de discretização, ou seja, a minimização de um conjunto restrito π = (a 1, a 2,... a n ), que depende de um número finito

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS COM ORIENTAÇÃO A OBJETOS

ANÁLISE MATRICIAL DE ESTRUTURAS COM ORIENTAÇÃO A OBJETOS ANÁLISE MATRICIAL DE ESTRUTURAS COM ORIENTAÇÃO A OBJETOS Luiz Fernando Martha Capítulo 0 Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio Departamento de Engenharia Civil Rua Marquês de São Vicente,

Leia mais

Prof. Dr. Eduardo Lenz Cardoso

Prof. Dr. Eduardo Lenz Cardoso Elementos Finitos I Análise Estática Prof. Dr. Eduardo Lenz Cardoso lenz@joinville.udesc.br Sumário Revisão de trabalho e energia; Definição de Energia Potencial Total; Princípio da Mínima Energia Potencial

Leia mais

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE 3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE

Leia mais

Exame de. Licenciatura em Engenharia Civil 21 de Junho de ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre

Exame de. Licenciatura em Engenharia Civil 21 de Junho de ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre Exame de Licenciatura em Engenharia Civil 21 de Junho de 1997 1ª Chamada 1ª Época Ano lectivo 96/97-2º Semestre Observações: Duração de 3 horas; Consulta livre; Inicie cada um dos problemas numa folha

Leia mais

Exercícios de Análise Matricial de Estruturas 1. 1) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido.

Exercícios de Análise Matricial de Estruturas 1. 1) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido. Exercícios de Análise Matricial de Estruturas ) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido. Dicas: - Obtenção da energia de deformação do sistema estrutural

Leia mais

Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2

Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2 Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça

Leia mais

26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia

26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Universidade Federal de São João Del-Rei MG 6 a 8 de maio de 010 Associação Brasileira de Métodos Computacionais em Engenharia Um Estudo sobre a Validade da Hipótese de Pequenos Deslocamentos em Projetos

Leia mais

EXAME NORMAL. x 2 B D. x 1 C. Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) Duração: 3h00m

EXAME NORMAL. x 2 B D. x 1 C. Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) Duração: 3h00m EXAME NORMAL Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) DEPARAMENO DE ENGENHARIA CIVIL SECÇÃO DE ESRUURAS Duração: h00m - (.5 val.) Considere a laje de betão armado representada

Leia mais

MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais

MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

Conceitos de vetores. Decomposição de vetores

Conceitos de vetores. Decomposição de vetores Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas

Leia mais

FORMULAÇÃO TRELIÇA PLANA

FORMULAÇÃO TRELIÇA PLANA CE ESTABILIDADE DAS CONSTRUÇÕES II FORMULAÇÃO TRELIÇA PLANA MODELO 1 Para a treliça hiperestática, indicada na Figura 1a, determinar por Análise Matricial de Estruturas: a) o deslocamento vertical do ponto

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria

Leia mais

4 SOLUÇÕES ANALÍTICAS

4 SOLUÇÕES ANALÍTICAS 4 SOLUÇÕES ANALÍTICAS 4 Desenvolvimento Dentre os mais diversos tipos de estruturas que fazem uso de materiais compósitos, os tubos cilindricos laminados são um caso particular em que soluções analíticas,

Leia mais

IV.5 Solução de Treliça Plana Visando sua Implementação Computacional

IV.5 Solução de Treliça Plana Visando sua Implementação Computacional Curso de Análise Matricial de struturas IV. olução de Treliça Plana Visando sua Implementação Computacional O exemplo roteirizado a seguir busca a apretação dos passos e metodologias a serem adotados no

Leia mais

CONTEÚDOS PROGRAMADOS. (Análise Computacional de Tensões EEK 533)

CONTEÚDOS PROGRAMADOS. (Análise Computacional de Tensões EEK 533) (Análise Computacional de Tensões EEK 533) - AULAS POR UNIDADE 1 - Princípios Variacionais 1.1 - Princípio dos Trabalhos Virtuais 1.2 - Princípios da Mínima Energia Total e da Mínima energia complementar.

Leia mais

Determinação dos Deslocamentos em Vigas Segundo o Método dos Elementos Finitos A.L. Christoforo1; A. B. Monteiro 2 ; T.H. Panzera 3 ; G. C. L.

Determinação dos Deslocamentos em Vigas Segundo o Método dos Elementos Finitos A.L. Christoforo1; A. B. Monteiro 2 ; T.H. Panzera 3 ; G. C. L. Universidade Federal de São João Del-Rei MG 26 a 28 de maio de 200 Associação Brasileira de Métodos Computacionais em Engenharia Determinação dos Deslocamentos em igas Segundo o Método dos Elementos Finitos

Leia mais

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii

1 Introdução 3. 2 Estática de partículas Corpos rígidos: sistemas equivalentes SUMÁRIO. de forças 67. xiii SUMÁRIO 1 Introdução 3 1.1 O que é a mecânica? 4 1.2 Conceitos e princípios fundamentais mecânica de corpos rígidos 4 1.3 Conceitos e princípios fundamentais mecânica de corpos deformáveis 7 1.4 Sistemas

Leia mais

UMA FERRAMENTA COMPUTACIONAL APLICADA AO ENSINO BÁSICO DE ENGENHARIA

UMA FERRAMENTA COMPUTACIONAL APLICADA AO ENSINO BÁSICO DE ENGENHARIA UMA FERRAMENTA COMPUTACIONAL APLICADA AO ENSINO BÁSICO DE ENGENHARIA Lauro H. M. Chueiri - lauroh@bauru.unesp.br Newton C. P. Ferro - ferro@bauru.unesp.br Unesp, Departamento de Engenharia Civil da Faculdade

Leia mais

Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções

Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções Curso de Mestrado em Engenharia de Estruturas 1. a Edição (014/015) Elementos Finitos 014/015 Colectânea de trabalhos, exames e resoluções Lista dos trabalhos e exames incluídos: Ano lectivo 014/015 Trabalho

Leia mais

DIMENSIONAMENTO PARA TRELIÇAS DE MODO A MINIMIZAR CUSTOS MATERIAIS E OTIMIZAR A RESISTÊNCIA A DESLOCAMENTO

DIMENSIONAMENTO PARA TRELIÇAS DE MODO A MINIMIZAR CUSTOS MATERIAIS E OTIMIZAR A RESISTÊNCIA A DESLOCAMENTO DIMENSIONAMENTO PARA TRELIÇAS DE MODO A MINIMIZAR CUSTOS MATERIAIS E OTIMIZAR A RESISTÊNCIA A DESLOCAMENTO Carlos Eduardo Gabriel 1 Luiz Gustavo Razoto Taborda 2 André Luiz Emidio de Abreu 3 RESUMO Treliças

Leia mais

Análise do Lugar das Raízes

Análise do Lugar das Raízes Análise do Lugar das Raízes A característica básica da resposta transitória de um sistema de malha fechada, depende essencialmente da localização dos pólos de malha fechada. É importante, então, que o

Leia mais

5 Formulação Dinâmica Não Linear no Domínio da Frequência

5 Formulação Dinâmica Não Linear no Domínio da Frequência 129 5 Formulação Dinâmica Não Linear no Domínio da Frequência No Capítulo 2, foram apresentadas as formulações para a análise dinâmica de estruturas reticuladas no domínio do tempo, sendo uma informação

Leia mais

Mecânica dos Sólidos. Prof. Sergio Schneider

Mecânica dos Sólidos. Prof. Sergio Schneider Mecânica dos Sólidos Prof. Sergio Schneider REFERÊNCIAS A.C. UGURAL. Mecânica dos Materiais. Rio de Janeiro LTC, 2009, 638p. J.M. GERE. Mecânica dos Materiais. São Paulo: Pioneira Thomson Learning, 2003,

Leia mais

Introdução ao Método dos Elementos Finitos

Introdução ao Método dos Elementos Finitos Introdução ao Método dos Elementos Finitos Estruturas Aeroespaciais II (10373) 2014 1. Introdução O Método dos Elementos Finitos (MEF), cuja génese se verificou por volta de 1940, é uma ferramenta matemática

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1 PME-235 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1 6.1. Introdução O objetivo destas notas é apresentar, de forma um pouco mais detalhada,

Leia mais

η η < η j + η 0 de outro modo η η η η φ φ φ δ = δ φ, η [ η, η ]

η η < η j + η 0 de outro modo η η η η φ φ φ δ = δ φ, η [ η, η ] BASE TEÓRICA Este capítulo apresenta a formulação teórica do elemento finito utilizando funções spline. Com este objetivo descrevem-se primeiro as funções que definem os deslocamentos no elemento. A partir

Leia mais

Teoria das Estruturas - Aula 17

Teoria das Estruturas - Aula 17 Teoria das Estruturas - Aula 17 Análise Matricial de Treliças via Método da Rigidez Fundamentos da Análise Matricial; Matriz de Rigidez Elementar de Barra de Treliça; Matrizes de Transformação de Deslocamentos

Leia mais

4 EXTENSÃO DAS FORMULAÇÕES AO PROBLEMA DO ACOPLAMENTO FLUIDO-MECÂNICO

4 EXTENSÃO DAS FORMULAÇÕES AO PROBLEMA DO ACOPLAMENTO FLUIDO-MECÂNICO 4 EXTENSÃO DAS FORMULAÇÕES AO PROBLEMA DO ACOPLAMENTO FLUIDO-MECÂNICO Neste capítulo são apresentadas as equações governantes do acoplamento fluido-mecânico para um corpo cortado por uma descontinuidade.

Leia mais

Universidade de Coimbra Faculdade de Ciências e Tecnologia 2001/02 Estruturas II (aulas teóricas)

Universidade de Coimbra Faculdade de Ciências e Tecnologia 2001/02 Estruturas II (aulas teóricas) Sumário da 1ª lição: Sumário da 2ª lição: - Apresentação. - Objectivos da Disciplina. - Programa. - Avaliação. - Bibliografia. - Método dos Deslocamentos. - Introdução. - Grau de Indeterminação Cinemática.

Leia mais

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:

Leia mais

2 ANÁLISE ESTÁTICA DA ESTABILIDADE MÉTODO ANALÍTICO.

2 ANÁLISE ESTÁTICA DA ESTABILIDADE MÉTODO ANALÍTICO. ANÁISE ESTÁTICA DA ESTABIIDADE MÉTODO ANAÍTICO. Neste capítulo são apresentados conceitos básicos de estabilidade de estruturas, dando maior ênfase à estabilidade de arcos parabólicos com apoios elásticos

Leia mais

Teoria das Estruturas I - Aula 08

Teoria das Estruturas I - Aula 08 Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,

Leia mais

UFERSA / Departamento de Ciências Exatas / 2. UFERSA / Departamento de Ciências Exatas /

UFERSA / Departamento de Ciências Exatas / 2. UFERSA / Departamento de Ciências Exatas / Método dos Deslocamentos para Análise de Estruturas: Resoluções Numéricas de Equações Lineares Rodolfo de Azevedo Palhares 1, Rafael de Azevedo Palhares 2, Lisarb Henneh Brasil 3, Dylson Junyer de Sousa

Leia mais

TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO

TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: victor.silva@progeto.com.br victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE

Leia mais

APLICAÇÃO DO MÉTODO DA RIGIDEZ DIRETA NA ANÁLISE MATRICIAL DE TRELIÇAS PLANAS INDETERMINADAS ESTATICAMENTE

APLICAÇÃO DO MÉTODO DA RIGIDEZ DIRETA NA ANÁLISE MATRICIAL DE TRELIÇAS PLANAS INDETERMINADAS ESTATICAMENTE APLICAÇÃO DO MÉTODO DA RIGIDEZ DIRETA NA ANÁLISE MATRICIAL DE TRELIÇAS PLANAS INDETERMINADAS ESTATICAMENTE Luís F. dos Santos Ribeiro¹ (EG), Eliana Carla Rodrigues¹ (PQ), Lucas Silveira F. Silva¹ (EG),

Leia mais

Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear.

Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear. 4 Método Numérico Foi utilizado o método dos elementos finitos como ferramenta de simulação com a finalidade de compreender e avaliar a resposta do tubo, elemento estrutural da bancada de teste utilizada

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/9 Resistência dos Materiais 003/004 Curso de Gestão e Engenharia Industrial 5ª Aula Duração - Horas Data - 6 de Outubro de 003 Sumário: Caso Particular do Estado Plano de Tensão. Circunferência de Mohr.

Leia mais

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um

Leia mais

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 2 CARGAS X DESLOCAMENTOS

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO   2 CARGAS X DESLOCAMENTOS LINHAS DE 2 CARGAS X DESLOCAMENTOS Equilíbrio x Deslocamento x Deformação Já conhecemos o conceito de equilíbrio, e as diferenças entre deslocamento e deformação. Vimos que o deslocamento pode ocorre com

Leia mais

PROVA COMENTADA. Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:

PROVA COMENTADA. Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes: ? Momento fletor Diagrama de Corpo Livre Reação redundante escolhida Reação vertical no ponto A: Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 2 Tensão e deformação: Carregamento axial Conteúdo Tensão e Deformação: Carregamento Axial Deformação Normal

Leia mais

3. Metodologia utilizada na modelagem numérica dos conglomerados

3. Metodologia utilizada na modelagem numérica dos conglomerados 52 3. Metodologia utilizada na modelagem numérica dos conglomerados Neste capítulo apresenta-se a metodologia utilizada para a determinação das propriedades mecânicas dos conglomerados, utilizando a interpretação

Leia mais

2 Análise do Colapso de Estruturas através do Método dos Elementos Finitos

2 Análise do Colapso de Estruturas através do Método dos Elementos Finitos 2 Análise do Colapso de Estruturas através do Método dos Elementos Finitos Neste capítulo, através do método dos elementos finitos baseado em deslocamentos, são apresentadas três técnicas de análise do

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm² CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação

Leia mais

2 Casca cilíndrica delgada

2 Casca cilíndrica delgada Vibrações livres não lineares de cascas cilíndricas com gradação funcional 29 2 Casca cilíndrica delgada Inicia-se este capítulo com uma pequena introdução sobre cascas e, em seguida, apresenta-se a teoria

Leia mais

0RGHODJHP&RPSXWDFLRQDO$WUDYpVGR3URJUDPD$%$486

0RGHODJHP&RPSXWDFLRQDO$WUDYpVGR3URJUDPD$%$486 0RGHODJHP&RPSXWDFLRQDO$WUDYpVGR3URJUDPD$%$486 Neste capítulo apresenta-se de forma sucinta o programa de elementos finitos ABAQUS, em particular o elemento finito de placa usado neste trabalho. A seguir

Leia mais

MAC de outubro de 2009

MAC de outubro de 2009 MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em

Leia mais

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5

Leia mais

CIV Estruturas Hiperestáticas I -1992/1. P1-27/04/92 - Duração: 2 horas - Sem Consulta

CIV Estruturas Hiperestáticas I -1992/1. P1-27/04/92 - Duração: 2 horas - Sem Consulta CIV 22 - Estruturas Hiperestáticas I -992/ P - 27/04/92 - Duração: 2 horas - Sem Consulta a Questão (4.5 pontos) Descreva toda a metodologia do Método das Forças através da resoluçao do quadro hiperestático

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

$QiOLVHHDQiOLVHGHVHQVLELOLGDGHGHHVWUXWXUDVUHWLFXODGDV

$QiOLVHHDQiOLVHGHVHQVLELOLGDGHGHHVWUXWXUDVUHWLFXODGDV $QiOVHHDQiOVHGHVHQVEOGDGHGHHVWUXWXUDVUHWFXODGDV,QWURGXomR Vários são os métodos para análise de estruturas. Dentre eles, o método dos elementos finitos com formulação em deslocamentos é o mais difundido

Leia mais

ESTUDO DO COMPORTAMENTO DE UM SÓLIDO ELÁSTICO-LINEAR TRANSVERSALMENTE ISOTRÓPICO VIA MHA E VIA MEF

ESTUDO DO COMPORTAMENTO DE UM SÓLIDO ELÁSTICO-LINEAR TRANSVERSALMENTE ISOTRÓPICO VIA MHA E VIA MEF ISSN 1809-5860 ESTUDO DO COMPORTAMENTO DE UM SÓLIDO ELÁSTICO-LINEAR TRANSVERSALMENTE ISOTRÓPICO VIA MA E VIA MEF Edmar Borges Theóphilo Prado 1 & Adair Roberto Aguiar 2 Resumo Neste trabalho utiliza-se

Leia mais

6. MÉTODO DOS DESLOCAMENTOS

6. MÉTODO DOS DESLOCAMENTOS 6. MÉTODO DOS DESLOCAMENTOS Conforme foi introduzido na Seção.3 do Capítulo, o Método dos Deslocamentos pode ser considerado como o método dual do Método das Forças. Em ambos os métodos a solução de uma

Leia mais

Proposta para o cálculo da frequência natural de vibração sob não-linearidade geométrica

Proposta para o cálculo da frequência natural de vibração sob não-linearidade geométrica 4 Proposta para o cálculo da frequência natural de vibração sob não-linearidade geométrica A formulação analítica que leva em conta a rigidez geométrica dos sistemas elásticos no cálculo de suas frequências,

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini

Leia mais

Modelagem Numérica de Flexão de Placas Segundo a Teoria de Kirchhoff

Modelagem Numérica de Flexão de Placas Segundo a Teoria de Kirchhoff Resumo odelagem Numérica de Flexão de Placas Segundo a Teoria de Kirchhoff aniel ias onnerat 1 1 Hiperestática Engenharia e Projetos Ltda. /ddmonnerat@yahoo.com.br A teoria clássica ou teoria de Kirchhoff

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 02

RESISTÊNCIA DOS MATERIAIS AULAS 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais

Leia mais

Atuador Eletrotermomecânico. Operam no modo quasi-estático

Atuador Eletrotermomecânico. Operam no modo quasi-estático Atuador Eletrotermomecânico Operam no modo quasi-estático Equações Constitutivas Equação de Condutividade Elétrica Equação de Termoelasticidade Equação de Condutividade Térmica q 1 1 1 2 1 I 2 em ; em

Leia mais

Análise de Suporte para Televisão e DVD

Análise de Suporte para Televisão e DVD Universidade Federal de Minas Gerais Elementos Finitos para Análise de Estruturas Professor Estevam as Casas Análise de Suporte para Televisão e DVD Carlos Secundino Heleno Santos ucia ima obo eite Willer

Leia mais

ANÁLISE MATRICIAL DE PÓRTICOS ESPACIAIS COM IMPLEMENTAÇÃO COMPUTACIONAL WILLAMIS DE JESUS OLIVEIRA FILHO 1 ; RODOLFO SANTOS DA CONCEIÇÃO 2

ANÁLISE MATRICIAL DE PÓRTICOS ESPACIAIS COM IMPLEMENTAÇÃO COMPUTACIONAL WILLAMIS DE JESUS OLIVEIRA FILHO 1 ; RODOLFO SANTOS DA CONCEIÇÃO 2 Congresso Técnico Científico da Engenharia e da Agronomia CONTECC 2018 Maceió - AL 21 a 24 de agosto de 2018 ANÁLISE MATRICIAL DE PÓRTICOS ESPACIAIS COM IMPLEMENTAÇÃO COMPUTACIONAL WILLAMIS DE JESUS OLIVEIRA

Leia mais

plano da figura seguinte. A rótula r expressa que não háh

plano da figura seguinte. A rótula r expressa que não háh Método das Forças Sistema Principal Consideremos o pórtico p plano da figura seguinte. A rótula r em D expressa que não háh transmissão de momento fletor da barra CD para a extremidade D das barras BD

Leia mais

Método de Diferenças Finitas

Método de Diferenças Finitas Método de Diferenças Finitas Câmpus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Aplicações Quase todos os problemas em ciências físicas e engenharia podem ser reduzidos a uma equação diferencial.

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

3 Implementação Computacional

3 Implementação Computacional 3 Implementação Computacional Neste trabalho considerou-se o estudo da instabilidade elástica e inelástica de estruturas planas como vigas, colunas, pórticos e arcos. No estudo deste tipo de estruturas

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de

Leia mais

Aula 4: Diagramas de Esforços internos

Aula 4: Diagramas de Esforços internos ula 4: Diagramas de Esforços internos Estudo das Vigas Isostáticas Como já mencionado, vigas são peças (barras) da estrutura onde duas dimensões são pequenas em relação a terceira. Isto é, o comprimento

Leia mais

Comparação de Desempenho entre o Método dos Elementos de Contorno com Integração Direta e o Método dos Elementos Finitos em problemas de Poisson

Comparação de Desempenho entre o Método dos Elementos de Contorno com Integração Direta e o Método dos Elementos Finitos em problemas de Poisson Trabalho apresentado no III CMAC - SE, Vitória-ES, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Comparação de Desempenho entre o Método dos Elementos de Contorno

Leia mais

2 MÉTODO DIRETO 2.2 ELEMENTO DE MOLA 1-D. Escola Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Civil

2 MÉTODO DIRETO 2.2 ELEMENTO DE MOLA 1-D. Escola Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Civil Escola Engenharia Universidade Presbiteriana Macenzie MÉTODO DIRETO. ELEMENTO DE MOLA -D Escola Engenharia Universidade Presbiteriana Macenzie. ELEMENTO DE MOLA -D HIPÓTESES BÁSICAS Material elástico-linear

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

Análise de assentamento do terreno

Análise de assentamento do terreno Manual de engenharia No. 21 Atualização: 01/2019 Análise de assentamento do terreno Programa: Arquivo: MEF Demo_manual_21.gmk Este exemplo contém a análise do assentamento do terreno sob o carregamento

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Aula 05. Conteúdo. 1. Introdução 1.1 Grau de indeterminação cinemática: ² Exemplo:

Aula 05. Conteúdo. 1. Introdução 1.1 Grau de indeterminação cinemática: ² Exemplo: Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Disciplina: Análise Matricial de Estruturas Professor: Antônio Macário Cartaxo de Melo Aula 05

Leia mais

Cálculo Numérico BCC760

Cálculo Numérico BCC760 Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita

Leia mais

4 Análise de elementos unidimensionais

4 Análise de elementos unidimensionais 4 Análise de elementos unidimensionais Neste capítulo é mostrado o desenvolvimento da formulação feita no capítulo anterior para um elemento de treliça e um elemento de viga de Timosheno com amortecimento

Leia mais

CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta

CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta CIV 27 ANÁLISE DE ESRUURAS II 2º Semestre 2002 Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta ª Questão (6,0 pontos) Considere a estrutura hiperestática abaixo, onde também está indicado

Leia mais

Aula 3 Volumes Finitos

Aula 3 Volumes Finitos Universidade Federal do ABC Aula 3 Volumes Finitos EN3224 Dinâmica de Fluidos Computacional Duas metodologias Leis de Conservação Integrais EDPs O Método dos Volumes Finitos (MVF) Leis de Conservação Integrais

Leia mais

MÉTODOS DE ENERGIA 1 INTRODUÇÃO

MÉTODOS DE ENERGIA 1 INTRODUÇÃO MÉTODOS DE ENERGIA 1 INTRODUÇÃO Quando não ocorre dissipação de energia, o trabalho realizado pelas cargas aplicadas e a energia são iguais, sendo o trabalho um produto vetorial da força pelo deslocamento.

Leia mais